1
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
2
|
Elshaer SL, El-Remessy AB. Implication of the neurotrophin receptor p75 NTR in vascular diseases: beyond the eye. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:149-158. [PMID: 28979360 DOI: 10.1080/17469899.2017.1269602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The p75 neurotrophin receptor (p75NTR) is a member of TNF-α receptor superfamily that bind all neurotrophins, mainly regulating their pro-apoptotic actions. Ischemia is a common pathology in different cardiovascular diseases affecting multiple organs, however the contribution of p75NTR remains not fully addressed. The aim of this work is to review the current evidence through published literature studying the impact of p75NTR receptor in ischemic vascular diseases. AREAS COVERED In the eye, several ischemic ocular diseases are associated with enhanced p75NTR expression. Ischemic retinopathy including diabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are characterized initially by ischemia followed by excessive neovascularization. Beyond the eye, cerebral ischemia, myocardial infarction and critical limb ischemia are ischemic cardiovascular diseases that are characterized by altered expression of neurotrophins and p75NTR expression. We surveyed both clinical and experimental studies that examined the impact of p75NTR receptor in ischemic diseases of eye, heart, brain and peripheral limbs. EXPERT COMMENTARY p75NTR receptor is a major player in multiple ischemic vascular diseases affecting the eye, brain, heart and peripheral limbs with significant increases in its expression accompanying neuro-vascular injury. This has been addressed in the current review along with the beneficial vascular outcomes of p75NTR inhibition.
Collapse
Affiliation(s)
- Sally L Elshaer
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA.,Augusta Biomedical Research Corporation, Augusta, GA, USA
| |
Collapse
|
3
|
Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 2014; 220:121-164. [PMID: 24668472 DOI: 10.1007/978-3-642-45106-5_6] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75(NTR) and regulate its signaling. P75(NTR) promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75(NTR) and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75(NTR), emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.
Collapse
Affiliation(s)
- B R Kraemer
- Department of Biochemistry, Vanderbilt University School of Medicine, 625 Light Hall, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
4
|
El Touny LH, Henderson F, Djakiew D. Biochanin A reduces drug-induced p75NTR expression and enhances cell survival: a new in vitro assay for screening inhibitors of p75NTR expression. Rejuvenation Res 2010; 13:527-37. [PMID: 20818983 DOI: 10.1089/rej.2009.1006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following spinal cord injury (SCI) or peripheral neuropathy, increased levels of the p75(NTR) death receptor initiate the signal transduction cascade leading to cell death. Investigations of compounds that may ameliorate neuronal cell death have largely used rodent models, which are time consuming, expensive, and cumbersome to perform. Previous studies had demonstrated that steroids, particularly dexamethasone and its analog methylprednisolone sodium succinate, exhibit limited neuroprotective effects against neuronal injury. Significantly, many naturally occurring nonsteroidal plant compounds exhibit structural overlap with steroids. In this report, we present an in vitro cellular screen model to practically examine the efficacy of various phytoestrogens in modulating the ibuprofen-induced expression of p75(NTR) and reduced cell survival of CCFSTTG1 and U87MG cells in a rescue (postinjury) or prevention (preinjury) regimen. We show that the phytoestrogen, biochanin A, and, to a lesser extent, genistein are more effective than dexamethasone at reducing p75(NTR) expression and improving the viability of U87MG and CCFSTTG1 before and after p75(NTR) induction. Furthermore, these studies implicate biochanin A's inactivation of p38-MAPK as a possible contributor to reducing p75(NTR) with associated increased cell survival. This new in vitro assay facilitates a more time-efficient screening of compounds to suppress p75(NTR) expression and increase neuronal cell viability prior to their evaluation in animal models of neurological diseases.
Collapse
Affiliation(s)
- Lara H El Touny
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
5
|
Gao X, Daugherty RL, Tourtellotte WG. Regulation of low affinity neurotrophin receptor (p75(NTR)) by early growth response (Egr) transcriptional regulators. Mol Cell Neurosci 2007; 36:501-14. [PMID: 17916431 DOI: 10.1016/j.mcn.2007.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 12/21/2022] Open
Abstract
The low affinity neurotrophin receptor p75(NTR) is a multifunctional receptor with important roles in neurotrophin signaling, axon outgrowth, and oligodendroglia and neuron survival. It is transcriptionally regulated with spatial and temporal precision during nervous system development, injury and regeneration. Very little is known about how p75(NTR) expression is dynamically regulated but it is likely to influence how p75(NTR) signals in particular cellular contexts. Here, we identify the early growth response (Egr) transcriptional regulators, Egr1 and Egr3, as direct modulators of p75(NTR) gene expression. Egr1 and Egr3 bind and transactivate the p75(NTR) promoter in vitro and in vivo, using distinct response elements on the p75(NTR) promoter. Consistent with these results, p75(NTR) expression is greatly diminished in muscle spindle stretch receptors and in peripheral nerve Schwann cells in Egr gene deficient mice. Taken together, the results elucidate a novel mechanism whereby Egr proteins can directly modulate p75(NTR) expression and signaling in vivo.
Collapse
Affiliation(s)
- Xiaoguang Gao
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
6
|
Hess DM, Scott MO, Potluri S, Pitts EV, Cisterni C, Balice-Gordon RJ. Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses. J Comp Neurol 2007; 501:465-82. [PMID: 17278135 DOI: 10.1002/cne.21163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurotrophins and their receptors, the Trks, are differentially expressed among the cell types that make up neuromuscular and other synapses, but the function and directionality of neurotrophin signaling at synapses are poorly understood. Here we demonstrate, via immunostaining, Western blotting, and RT-PCR analyses, that TrkC, the receptor for neurotrophin-3 (NT3), is expressed by mouse perisynaptic and myelinating Schwann cells from birth through adulthood and is unaltered after denervation. Analyses of transgenic mice in which the NT3 coding sequence is replaced by lacZ showed that NT3 is expressed in motor neurons and Schwann cells during perinatal development, but not in adult mice. In muscle, NT3 is expressed by intrafusal muscle fibers within spindles, as has been previously reported. Surprisingly, NT3 is also expressed in extrafusal muscle fibers during perinatal life and in adults. Genetic approaches were used to explore the roles of NT3 and TrkC signaling at neuromuscular synapses. Overexpression of NT3 in muscle fibers during development resulted in an increased number of perisynaptic Schwann cells at neuromuscular synapses, without altering synaptic size, suggesting that muscle-derived NT3 might act as a mitogen or trophic factor for Schwann cells. Conditional deletion of NT3 from motor neurons did not alter the number of Schwann cells or other aspects of neuromuscular synaptic structure, suggesting that motor-neuron-derived NT3 is not required for normal development of perisynaptic Schwann cells or synapses. Together, these results demonstrate that NT3 expression is developmentally regulated in skeletal muscle and may modulate the number of Schwann cells at neuromuscular synapses.
Collapse
Affiliation(s)
- Darren M Hess
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | | | | | | | |
Collapse
|
7
|
Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ. PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 2007; 134:1181-90. [PMID: 17301083 DOI: 10.1242/dev.02808] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian brain, ongoing neurogenesis via the rostral migratory stream (RMS) maintains neuronal replacement in the olfactory bulb throughout life. Mechanisms that regulate the final number of new neurons in this system include proliferation, migration and apoptosis. Here we show that the polysialylated isoforms of the neural cell adhesion molecule (PSA-NCAM) act as a pro-survival molecule in immature newborn neurons. Confocal microscopic analysis revealed a threefold increase in TUNEL-positive cells in the subventricular zone (SVZ) and the RMS of transgenic animals lacking the gene encoding NCAM (NCAM(-/-)), as compared with wild types. The enhanced apoptotic cell death occurred specifically in the population of mCD24-positive newborn neurons, but not in GFAP-positive astrocytes. Using in vitro cultures of purified SVZ-derived neurons, we demonstrate that the loss or inactivation of PSA on NCAM, as well as the deletion of NCAM, lead to reduced survival in response to neurotrophins including BDNF and NGF. These changes in cell survival are accompanied by an upregulation of p75 neurotrophin receptor expression in vitro as well as in vivo. Furthermore, the negative effects of PSA-NCAM inactivation on cell survival could be prevented by the pharmacological blockade of the p75 receptor-signaling pathway. We propose that PSA-NCAM may promote survival by controlling the expression of the p75 receptor in developing neurons.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neuroscience, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Stampachiacchiere B, Aloe L. Differential modulatory effect of NGF on MHC class I and class II expression in spinal cord cells of EAE rats. J Neuroimmunol 2005; 169:20-30. [PMID: 16169604 DOI: 10.1016/j.jneuroim.2005.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 07/25/2005] [Indexed: 11/20/2022]
Abstract
Nerve growth factor (NGF) undergoes significant changes in the central nervous system (CNS) of patients affected by multiple sclerosis (MS) and of rats with experimental allergic encephalomyelitis (EAE). The major histocompatibility complex (MCH) class I and class II antigens are molecules that play a pivotal role in these neuro-inflammatory disorders. The aim of this study was to investigate the role of NGF on MCH class I and class II antigens in spinal cords cells of EAE rats. It was found that the administration of NGF in EAE rats enhances MHC-I, IFN-gamma receptor and interferon regulatory factor-1 expression on the neurons but not in the glial cells, while NGF decreased MHC class II antigen in the glial cells. NGF administration into the brain of EAE rats has no effect on TNF-alpha expression. The present findings suggest that NGF may have a regulatory function in spinal cord cells during tissue inflammation.
Collapse
Affiliation(s)
- Barbara Stampachiacchiere
- Institute of Neurobiology and Molecular Medicine, Department of Neurobiology, National Research Council (CNR), Italy
| | | |
Collapse
|
9
|
Barrett GL, Greferath U, Barker PA, Trieu J, Bennie A. Co-expression of the P75 neurotrophin receptor and neurotrophin receptor-interacting melanoma antigen homolog in the mature rat brain. Neuroscience 2005; 133:381-92. [PMID: 15878242 DOI: 10.1016/j.neuroscience.2005.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 11/02/2004] [Accepted: 01/19/2005] [Indexed: 12/26/2022]
Abstract
The p75 neurotrophin receptor (p75(NTR)) is involved in the regulation of neuronal survival and phenotype, but its signal transduction mechanisms are poorly understood. Recent evidence has implicated the cytoplasmic protein NRAGE (neurotrophin receptor-interacting MAGE (from Melanoma AntiGEn) homolog) in p75(NTR) signaling. To gain further insight into the role of NRAGE, we investigated the co-expression of NRAGE and p75(NTR) in mature rat brain. In all areas examined, NRAGE appeared to be confined to neurons. In the basal forebrain cholinergic complex, NRAGE immunoreactivity was evident in all p75(NTR)-positive neurons. There were many more NRAGE-positive than p75(NTR)-positive neurons in these regions, however. NRAGE was also expressed in areas of the basal forebrain that did not express p75(NTR), including the lateral septal nucleus and the nucleus accumbens. A finding in marked contrast to previous studies was the presence of p75(NTR) immunoreactivity in neuronal cell bodies in the hippocampus. Hippocampal p75(NTR) immunoreactivity was apparent in rats 6 months and older, and was localized to the dentate gyrus and stratum oriens. All p75(NTR)-positive neurons in the dentate gyrus and hippocampal formation were positive for NRAGE. The majority of granular cells of the dentate gyrus and pyramidal cells in the hippocampal formation were positive for NRAGE and negative for p75(NTR). NRAGE was also present in some neuronal populations that express p75(NTR) after injury, including striatal cholinergic interneurons, and motor neurons. A region of marked disparity was the cerebral cortex, in which NRAGE immunoreactivity was widespread whereas p75(NTR) was absent. The results are consistent with an important role for NRAGE in p75(NTR) signaling, as all cells that expressed p75(NTR) also expressed NRAGE. The wider distribution of NRAGE expression suggests that NRAGE may also participate in other signaling processes.
Collapse
Affiliation(s)
- G L Barrett
- Department of Physiology, University of Melbourne, Parkville 3010, Australia.
| | | | | | | | | |
Collapse
|
10
|
Giardino L, Giuliani A, Fernandez M, Calzà L. Spinal motoneurone distress during experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 2004; 30:522-31. [PMID: 15488028 PMCID: PMC7194307 DOI: 10.1111/j.1365-2990.2004.00559.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The main pathophysiological feature characterizing multiple sclerosis (MS) is demyelination. However, the possibility of neural damage has recently been proposed as a mechanism in chronic disease. Experimental allergic encephalomyelitis (EAE) is the most widely used experimental model for MS. We investigated occurrences of microglial activation and astrocytosis in the spinal cord, choline acetyl‐transferase (ChAT) and calcitonin gene‐related peptide (CGRP) mRNA regulation in spinal motoneurones during EAE. EAE was induced in female Lewis rats by injecting guinea pig spinal cord tissue in complete Freund's adjuvant (CFA) to which heat‐inactivated Mycobacterium had been added. Rats injected with CFA and uninjected rats were used as controls. ChAT and CGRP mRNAs were studied by in situ hybridization in the lumbar spinal cord and a computerized grain counting procedure was used for quantification. No differences in ChAT mRNA level were found between control and CFA‐injected rats. ChAT mRNA level was strongly reduced in EAE 14 days after immunization and then recovered (29 days after immunization). CGRP mRNA increased 14 days after immunization, and then recovered to control level. Extensive long‐lasting gliosis developed in the spinal cord and around motoneurones and a transient expression of p75LNGFR in motoneurones was also found. These data suggest that during EAE, gliosis induces distress in spinal cord neurones involving the synthesis enzyme for the main transmitter.
Collapse
Affiliation(s)
- L. Giardino
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Ozzano dell'Emilia, and
- Pathophysiology Center for the Nervous System, Hesperia Hospital, Modena, Italy
| | - A. Giuliani
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Ozzano dell'Emilia, and
| | - M. Fernandez
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Ozzano dell'Emilia, and
| | - L. Calzà
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Ozzano dell'Emilia, and
- Pathophysiology Center for the Nervous System, Hesperia Hospital, Modena, Italy
| |
Collapse
|
11
|
Wu W, Chai H, Zhang J, Gu H, Xie Y, Zhou L. Delayed Implantation of a Peripheral Nerve Graft Reduces Motoneuron Survival but Does Not Affect Regeneration following Spinal Root Avulsion in Adult Rats. J Neurotrauma 2004; 21:1050-8. [PMID: 15319004 DOI: 10.1089/0897715041651006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adult spinal motoneurons can regenerate their axons into a peripheral nerve (PN) graft following root avulsion injury if the graft is implanted immediately after the lesion is induced. The present study was designed to determine how avulsed motoneurons respond to a PN graft if implantation takes place a few days to a few weeks later. Survival, regeneration, and gene expression changes of injured motoneurons after delayed PN graft implantation were studied. The survival rates of spinal motoneurons were 78%, 65%, 57%, or 53% if a PN graft was implanted immediately, 1, 2, or 3 weeks after root avulsion, respectively. Interestingly, most of the surviving motoneurons were able to regenerate their axons into the graft regardless of the delay. All regenerating motoneurons expressed p75, but not nNOS, while all motoneurons that failed to regenerate expressed nNOS, but not p75. p75 and nNOS may, therefore, be used as markers for success or failure to regenerate axons. In the group with immediate graft implantation, 85% of the surviving motoneurons extended axons into the PN graft, while in the groups in which implantation was delayed 1, 2, or 3 weeks, 84%, 82%, and 83% of the surviving motoneurons, respectively, were found to have regenerated into the grafts. These findings indicate that avulsed spinal motoneurons retain the ability to regenerate for at least 3 weeks, and perhaps for as long as they survive. Therefore, the delayed implantation of a PN graft after root avulsion may provide a continued conducive environment to support regeneration.
Collapse
Affiliation(s)
- Wutian Wu
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
12
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
13
|
Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. PROGRESS IN BRAIN RESEARCH 2004; 146:41-62. [PMID: 14699955 DOI: 10.1016/s0079-6123(03)46003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of p75 neurotrophin receptor (p75NTR) in mediating cell death is now well characterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75NTR in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-xL), caspase-3, c-jun kinase, and p53 in the p75NTR cell death pathway is discussed and regulatory roles for the p75NTR ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.
Collapse
Affiliation(s)
- E J Coulson
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Dechant G, Barde YA. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 2002; 5:1131-6. [PMID: 12404007 DOI: 10.1038/nn1102-1131] [Citation(s) in RCA: 433] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 07/29/2002] [Indexed: 02/08/2023]
Abstract
Neurotrophins have long been known to promote the survival and differentiation of vertebrate neurons. However, these growth factors can also induce cell death through the p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor receptor superfamily. Consistent with a function in controlling the survival and process formation of neurons, p75(NTR) is mainly expressed during early neuronal development. In the adult, p75(NTR) is re-expressed in various pathological conditions, including epilepsy, axotomy and neurodegeneration. Potentially toxic peptides, including the amyloid beta- (Abeta-) peptide that accumulates in Alzheimer's disease, are ligands for p75(NTR). Recent work also implicates p75(NTR) in the regulation of both synaptic transmission and axonal elongation. It associates with the Nogo receptor, a binding protein for axonal growth inhibitors, and appears to be the transducing subunit of this receptor complex.
Collapse
Affiliation(s)
- Georg Dechant
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
15
|
Ferri CC, Ghasemlou N, Bisby MA, Kawaja MD. Nerve growth factor alters p75 neurotrophin receptor-induced effects in mouse facial motoneurons following axotomy. Brain Res 2002; 950:180-5. [PMID: 12231242 DOI: 10.1016/s0006-8993(02)03035-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p75 neurotrophin receptor (p75(NTR)) has been implicated as being detrimental for cell survival in facial motoneurons following injury. Although facial motoneurons do not respond to nerve growth factor (NGF) under normal circumstances, this study shows that NGF can interfere with p75(NTR)-mediated cell survival effects on motoneurons following injury. Twenty-five days following injury, the proportion of surviving axotomized neurons in NGF/p75(+/+) mice, which overexpress NGF, was significantly higher compared to wild-type mice, while NGF/p75(-/-) mice, which overexpress NGF but carry two mutated alleles for p75(NTR), had fewer neurons compared to wild-type and p75(-/-) mice, which carry two mutated alleles for p75(NTR), resulting in a lack of functional expression of this receptor. Sympathetic axons sprouted into the axotomized facial nucleus of both NGF/p75(+/+) and NGF/p75(-/-) following injury, due to transgene expression of NGF in reactive astrocytes. Removal of these sympathetic axons enhanced the number of surviving axotomized neurons in NGF/p75(-/-) mice but not in NGF/p75(+/+) mice. Although motoneurons do not express trkA and should therefore be unresponsive to NGF, our results reveal that NGF can influence p75-mediated motoneuron survival following axotomy.
Collapse
Affiliation(s)
- Catharine C Ferri
- Department of Physiology, Queen's University, ON K7L 3N6, Kingston, Canada
| | | | | | | |
Collapse
|
16
|
Giardino L, Giuliani A, Bettelli C, Calzà L. Thyroid hormone and retinoids affect motoneuron phenotype and reaction after axotomy in the spinal cord of adult rats. Brain Res 2002; 925:122-32. [PMID: 11792360 DOI: 10.1016/s0006-8993(01)03266-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motoneuron phenotype in the spinal cord is regulated by an intrinsic genetic program, extrinsic environmental signals and target-derived molecules. Axonal lesions trigger a phenotype switch to foster repair phenomena and axonal re-growth. We have investigated the influence of the long-term treatment with thyroid hormone and all trans retinol palmitate (RA) on motoneuron phenotype and spinal cord reaction to axotomy in adult male rats. Neurochemical markers, investigated by in situ hybridization and immunocytochemistry, included choline acetyltransferase (ChAT), calcitonin gene-related peptide (CGRP) and neurotrophin low affinity receptor p75. Treatment was administered for 56 days and then mid-thigh sciatic axotomy was performed on a number of animals from each experimental groups; the rats were examined 9 days after surgery. The results indicate that: (1) Number and size of ChAT-immunoreactive neurons in the lumbar tract of the spinal cord was reduced in hypothyroid compared to control rats, whereas steady-state level of ChAT mRNA in labelled motoneurons failed to be modified by hypo and hyperthyroidism, but was increased by RA administration; (2) none of the administered treatments did alter CGRP mRNA level, whereas all of them influenced the axotomy-induced changes of motoneuron phenotype; (3) in hyperthyroid rats ChAT mRNA level of lumbar motoneurons not reduced homolateral to lesion while the number of ChAT-IR profiles was pronouncedly reduced; (4) up-regulation of p75 induced by peripheral nerve lesion was reduced in RA-treated rats. These data indicate that the motoneuron phenotype is regulated by transcription factors, which also play a role in phenotype switch regulation after axotomy.
Collapse
Affiliation(s)
- Luciana Giardino
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
17
|
Talley EM, Bayliss DA. Postnatal development of 5-HT(1A) receptor expression in rat somatic motoneurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 122:1-10. [PMID: 10915900 DOI: 10.1016/s0165-3806(00)00036-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prior work has established that hypoglossal motoneurons (HMs) change postnatally in their response to serotonin (5-HT), in part as a result of a decline in expression of 5-HT(1A) receptors. In the current study, two issues were addressed. First, using in situ hybridization we found that transient expression of 5-HT(1A) receptors occurs in other populations of brainstem (facial and trigeminal) and spinal (cervical and lumbar) motoneurons. Second, the participation of motoneuronal afferent (serotonergic) and efferent (neuromuscular) innervation in inducing and maintaining this decline in expression was investigated. Serotonergic innervation of the hypoglossal nucleus (nXII) was disrupted in neonatal rats by intra-cisternal injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), and 5-HT(1A) receptor mRNA levels in nXII from these rats were assayed at postnatal day 21. In spite of an almost complete loss of serotonergic fibers in the region, the postnatal decrease in 5-HT(1A) receptor expression by HMs still occurred. To test for potential regulation by target-derived factors or by nerve injury, receptor mRNA levels were assayed after unilateral transection of the hypoglossal nerve in adult rats. Though this treatment resulted in re-induction of developmentally transient expression of the p75 neurotrophin receptor, 5-HT(1A) receptor expression remained low. Thus, neonatal expression of 5-HT(1A) receptors appears to be common to somatic motoneurons, but we found no evidence for changes in serotonergic innervation in influencing this expression, nor did we find evidence for its regulation by peripheral factors.
Collapse
Affiliation(s)
- E M Talley
- Department of Pharmacology, University of Virginia Health System, P. O. Box 800735, Charlottesville, VA 22908-0735, USA.
| | | |
Collapse
|
18
|
Oh JD, Chartisathian K, Chase TN, Butcher LL. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res 2000; 853:174-85. [PMID: 10640615 DOI: 10.1016/s0006-8993(99)02054-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both excitotoxicity and altered trophic factor support have been implicated in the pathogenesis of Alzheimer's disease. To determine whether stimulation of p75, the low-affinity receptor for nerve growth factor, contributes to the excitotoxin-induced apoptotic death of cholinergic neurons, we examined the effect of unilateral kainic acid (KA; PBS vehicle, 1.25, 2.5 and 5.0 nmol) administration into rat basal forebrain on neuronal loss and p75 expression. KA (2. 5 nmol) destroyed 43% of Nissl-stained neurons and 70% of choline acetyltransferase (ChAT)-positive neurons 5 days after injection. Agarose gel electrophoresis revealed that KA (2.5 nmol) induced local internucleosomal DNA fragmentation after 6-48 h. Immunohistochemical analysis further showed that KA (2.5 nmol) augmented p75 immunoreactivity at a time when terminal transferase-mediated deoxyuridine trophosphate (d-UTP)-digoxigenin nick end labeling (TUNEL)-positive nuclei were increased. Many fragmented nuclei were co-labeled with ChAT antibody. The chronic administration of anti-rat p75 or the protein synthesis inhibitor, cycloheximide, but not anti-human p75, substantially reduced the KA-induced destruction of cholinergic neurons and the induction of internucleosomal DNA fragmentation. Anti-rat p75, but not cycloheximide, also reversed the spatial memory impairment produced by KA. These findings suggest that overexpression of p75 contributes to the excitotoxin-induced death of rat basal forebrain cholinergic neurons by an apoptotic-like mechanism.
Collapse
Affiliation(s)
- J D Oh
- Experimental Therapeutics Branch, Building 10, Room 5C103, National Institute of Neurological Disorders and Stroke, NIH, Bldg. 10, Room 5C211, 90900 Rockville Pike, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
19
|
Gonzalez SL, Saravia F, Gonzalez Deniselle MC, Lima AE, De Nicola AF. Glucocorticoid regulation of motoneuronal parameters in rats with spinal cord injury. Cell Mol Neurobiol 1999; 19:597-611. [PMID: 10384258 DOI: 10.1023/a:1006980301382] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Glucocorticoids exert beneficial effects after acute CNS injury in humans and experimental animals. To elucidate potential mechanisms of glucocorticoid action in the lesioned spinal cord, we have studied if treatment with dexamethasone (DEX) modulated the neurotrophin binding receptor p75 (p75NTR) and choline acetyltransferase (ChAT), a marker of neuronal functional viability. 2. Rats with a sham operation or with spinal cord transection at the thoracic level received vehicle or DEX several times postlesion and were sacrificed 48 hr after surgery. The lumbar region caudal to the lesion was processed for p75NTR and ChAT immunoreactivity (IR) using quantitative densitometric analysis. 3. We observed that p75NTR-IR was absent from ventral horn motoneurons of sham-operated rats, in contrast to strong staining of neuronal perikaryon in TRX rats. Administration of DEX to TRX rats had no effect on the number of neuronal cell bodies expressing p75NTR-IR but significantly increased the number and length of immunostained neuronal processes. 4. Furthermore, spinal cord transection reduced ChAT immunostaining of motoneurons by 50%, whereas DEX treatment reverted this pattern to cells with a strong immunoreaction intensity in perikaryon and cell processes. 5. It is hypothesized that increased expression of p75NTR in cell processes and of ChAT in motoneurons may be part of a mechanism by which glucocorticoids afford neuroprotection, in addition to their known antiinflammatory effects.
Collapse
Affiliation(s)
- S L Gonzalez
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, UBA-CONICET, Argentina
| | | | | | | | | |
Collapse
|
20
|
Rende M, Brizi E, Sorci G, Bianchi R, Provenzano C, Bruno R, Donato R. Regulation of the p75 neurotrophin receptor in a rat myogenic cell line (L6). THE HISTOCHEMICAL JOURNAL 1999; 31:589-601. [PMID: 10579628 DOI: 10.1023/a:1003851024732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotrophins are expressed in muscle cells both during development and postnatally. Furthermore, during development muscle cells express high levels of the common p75 neurotrophin receptor, which binds all neurotrophins. Only fragmentary and controversial data are available regarding the responsiveness of muscle cells to neurotrophins and the importance of low-affinity p75 receptor in muscle development. The present study investigates in vitro the immunocytochemical expression of p75 in a rat myogenic cell line (L6) at various time points and in response to different coating substrates as a first step in elucidating the regulation of p75 in muscle. We found that in L6 myoblasts, p75 is expressed only at very early stages of maturation and its levels of expression are regulated by the nature of the coating substrates. p75 expression decreases in cells growing on substrates more suitable for myoblast fusion into myotubes. Time course analysis indicates a reverse correlation between myoblast fusion into myotubes and the levels of p75 expression. Myotubes were always p75 negative. Substrates not suitable for the fusion process induced a prolonged presence of p75 in myoblasts with an increase of their apoptosis. We conclude that expression of p75, at least in this in vitro condition, is regulated by the stages of myoblast differentiation and the nature of the coating substrates. According to the observed time- and substrate-related evidences, future studies should investigate in vivo both the regulation of p75 in the myoblast fusion and the effects and the importance of neurotrophins binding during myoblast differentiation.
Collapse
Affiliation(s)
- M Rende
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia School of Medicine, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Rende M, Morales M, Brizi E, Bruno R, Bloom F, Sanna PP. Modulation of serotonin 5-HT3 receptor expression in injured adult rat spinal cord motoneurons. Brain Res 1999; 823:234-40. [PMID: 10095035 DOI: 10.1016/s0006-8993(99)01180-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of sciatic nerve lesions on the expression of serotonin 5-HT3 receptor (5-HT3R) alpha subunit in motoneurons of the spinal cord was investigated by semi-quantitative immunohistochemistry. Following sciatic nerve crush, a significant reduction in density of staining in motoneurons was observed in longitudinal sections of the ventral horn at 3 and 15 days on the lesioned side when compared to the contralateral side (p<0.01). At 30 days after crush, after completion of sciatic nerve regeneration and reinnervation of peripheral targets, intensity of staining had returned to normal. Conversely, after sciatic nerve cut, a lesion that does not allow for target reinnervation, highly significant reductions were observed at 3, 15, 30 and 45 days. These results suggest a role for functional contacts with muscular targets in the maintenance of 5-HT3R expression in spinal motoneurons.
Collapse
Affiliation(s)
- M Rende
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia School of Medicine, Perugia, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies.
Collapse
Affiliation(s)
- G Terenghi
- Blond McIndoe Centre, Queen Victoria Hospital, East Grinstead, Sussex, UK.
| |
Collapse
|
23
|
Sotgiu ML, Biella G, Firmi L, Pasqualucci V. Topical axonal transport blocker vincristine prevents nerve injury-induced spinal neuron sensitization in rats. J Neurotrauma 1998; 15:1077-82. [PMID: 9872464 DOI: 10.1089/neu.1998.15.1077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of vincristine (Vin, a fast axonal transport blocker) to prevent any alteration in the excitability of dorsal horn neurons, following peripheral nerve injury, was investigated on 31 rats: 20 with chronic constriction injury (CCI) of the sciatic nerve and 11 sham preparations. In 15 of the 20 CCI rats, a small piece of gelfoam soaked with Vin was applied to the sciatic nerve before ligation (Vin+); in the remaining 5 rats the nerve was ligated without Vin (Vin-). The 11 sham rats were 7 Vin+ and 4 Vin-. The dorsal horn neuronal activity was recorded after 2-3 postoperative (PO) weeks. In the CCI Vin- rats, the neurons showed increased spontaneous activity and hyperresponsiveness to noxious stimulus with prolonged afterdischarges, events considered to signal central neuron sensitization. In the CCI Vin+ rats, the neuronal spontaneous and stimulated activity values were significantly lower (p < 0.001) than in the CCI Vin- rats being comparable to normal values. In sham Vin+ and Vin- rats, the neuronal activities had normal values. Given the crucial role attributed to central neuron sensitization for the development of neuropathic pain, the possibility that vincristine, by blocking the axonal transport, exerts a preventive action on this syndrome is discussed.
Collapse
Affiliation(s)
- M L Sotgiu
- Istituto di Neuroscienze e Bioimmagini, CNR, Segrate, Italy
| | | | | | | |
Collapse
|
24
|
Ferri CC, Moore FA, Bisby MA. Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(199801)34:1<1::aid-neu1>3.0.co;2-c] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Rende M, Provenzano C, Stipa G, Tonali P. Effects of sciatic nerve grafts on choline acetyltransferase and p75 expression in transected adult hypoglossal motoneurons. Neuroscience 1997; 81:517-25. [PMID: 9300438 DOI: 10.1016/s0306-4522(97)00150-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously reported that a permanent transection of adult rat sciatic and hypoglossal nerves resulted in distinct changes in the levels of both low-affinity nerve growth factor receptor (p75) and choline acetyltransferase in the corresponding motoneurons as determined by immunoreactivity. Permanent axotomy of hypoglossal motoneurons induced a progressive loss of choline acetyltransferase immunoreactivity and a persistent expression of p75 immunoreactivity, phenomena that were not observed in spinal motoneurons. These observations indicated that spinal and brainstem motoneurons respond to permanent axotomy with a differential immunoreactivity for p75 and choline acetyltransferase. Such differences could be ascribed to specific intrinsic properties of each population of motoneurons or, alternatively, to different factors present in the periphery (nerve stump or target muscle). The aim of the present study was to test these two possibilities by determining if a segment of sciatic nerve transplanted to a transected hypoglossal nerve may counteract or attenuate the loss of choline acetyltransferase immunoreactivity in injured hypoglossal motoneurons. In addition, as further parameter, we analysed the presence of p75 immunoreactivity. Prior to grafting, segments of sciatic nerve were prepared by one of three methods: (i) a fresh piece; (ii) a degenerated piece; and (iii) a heated piece. Seven and 30 days following the placement of grafts, hypoglossal motoneurons were analysed for choline acetyltransferase and p75 immunolabelling. The results revealed that viable sciatic grafts (fresh and degenerated) are able to partially attenuate the loss in the number of choline acetyltransferase-positive injured hypoglossal motoneurons, even if an important decrease in choline acetyltransferase still persists with respect to the contralateral nucleus. In addition, viable sciatic grafts decreased the number of p75 immunoreactive hypoglossal motoneurons both at seven and at 30 days. In conclusion, the effects of viable sciatic grafts on the number of choline acetyltransferase and p75-labelled hypoglossal motoneurons indicate that these adult neurons are able to respond to factors released from the sciatic nerve, and that the number of injured motoneurons positive for choline acetyltransferase and p75 can be influenced by the presence of factors that may reach their proximal stumps. Furthermore, we hypothesize that the differential expression patterns between hypoglossal and sciatic motoneurons may be due, at least in part, to factors released from the nerve trunks themselves.
Collapse
Affiliation(s)
- M Rende
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia School of Medicine, Italy
| | | | | | | |
Collapse
|
26
|
Zhou XF, Rush RA. Endogenous nerve growth factor is required for regulation of the low affinity neurotrophin receptor (p75) in sympathetic but not sensory ganglia. J Comp Neurol 1996; 372:37-48. [PMID: 8841920 DOI: 10.1002/(sici)1096-9861(19960812)372:1<37::aid-cne4>3.0.co;2-n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During development, many sympathetic and sensory neurons are dependent on nerve growth factor (NGF) for survival. The low affinity neurotrophin receptor (p75), expressed in these neurons, is regulated by exogenous NGF in vitro and in vivo. However, whether p75 expression in vivo is under the control of endogenous NGF has not been determined. The role of NGF in regulating the expression of p75 in sympathetic and sensory nerves was investigated in Sprague-Dawley rats treated with an antiserum specific for NGF. P75 was differentially regulated. P75 immunoreactivity (-ir) within sympathetic neurons in the superior cervical ganglia (SCG) was reduced after 2 days, and disappeared after 5 days, of treatment with the NGF antiserum. In contrast, a significant increase in p75-ir was detected in nerve bundles within and close to the SCG from 3 to 14 days after treatment. A similar pattern of p75 expression was observed in the stellate and coeliac ganglia. In contrast, p75 expression in nerve terminals of the mesenteric arteries and irides was reduced. However, in the same animals the expression of p75 was not significantly affected by the treatment in dorsal root, trigeminal or nodose ganglia, salivary gland or small intestine. In contrast to p75, the NGF high affinity receptor trkA was little affected in sympathetic neurons by depletion of endogenous NGF for 2 weeks. These results indicate that endogenous NGF is required in sympathetic ganglia for the expression of p75 but not trkA in neurons, but for the down-regulation of p75 in glia. In contrast, endogenous NGF is not essential for the regulation of p75 in neurons or glia within sensory ganglia.
Collapse
Affiliation(s)
- X F Zhou
- Centre for Neuroscience, Flinders University of South Australia, Australia.
| | | |
Collapse
|
27
|
Yamamoto M, Sobue G, Yamamoto K, Terao S, Mitsuma T. Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 1996; 21:929-38. [PMID: 8895847 DOI: 10.1007/bf02532343] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The steady-state mRNA levels of the four neurotrophic factors of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF) and their receptors (p75NGFR, trkA, trkB and trkC) in the adult human peripheral nervous system (PNS) as well as nonneural tissues were examined using quantitative reverse transcription-polymerase chain reaction (RT-PCR). NGF and BDNF mRNA levels were high in the heart and spleen as well as in the dorsal root ganglia (DRG) and spinal cord, showing similar spatial expression patterns, while NT-3 mRNA levels were more pronounced in the liver and spleen. In contrast to these neurotrophins, GDNF mRNA expression occurred at the highest levels in the muscle, and it was also comparatively high in the spinal cord. p75NGFR mRNA was expressed extensively throughout the PNS tissues and in the spleen. The spatial expression patterns differed among trkA, and trkB and trkC mRNAs. trkA mRNA was greatly expressed in the DRG, sympathetic ganglia and spleen, while the trkB and trkC mRNA levels were high in the DRG, spinal cord and brain. The levels of trkB and trkC mRNAs with tyrosine kinase domain, compared to those with extracellular domain, were relatively high in the DRG, whereas they were low in the spinal cord and brain. The spatial patterns of the distributions of neurotrophic factors and their receptors mRNA levels in the adult human PNS and nonneural tissues are largely similar to those reported in other mammals, but these findings provide further, more specific, understanding relevant to the therapeutic approach to human diseases.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Neurology, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
28
|
Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci 1996. [PMID: 8622121 DOI: 10.1523/jneurosci.16-09-02901.1996] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sympathetic nerve terminals on blood vessels within the dorsal root ganglia sprout after sciatic nerve lesions in the rat. The mechanism underlying this phenomenon is not clear, but might be predicted to involve nerve growth factor or its homologs because these factors are known to trigger collateral sprouting of undamaged sympathetic noradrenergic terminals. We have found that sciatic nerve lesions lead to a decreased expression of neuronal p75, the low-affinity receptor for the neurotrophins, but an increased expression of glial p75 in ipsilateral dorsal root ganglia. Intriguingly, the increased expression of p75 was found primarily in association with glia surrounding large-diameter neurons, which are those associated with the noradrenergic sprouts. A smaller but significant glial response was also found in contralateral ganglia. The glial response in ipsilateral ganglia could be mimicked by ventral, but not dorsal, root transection. The dorsal root lesion-induced glial responses in contralateral ganglia were greater than those induced by ventral root or sciatic nerve lesions. Combined lesions of dorsal root and either ventral root or sciatic nerve did not prevent the glial responses of ipsilateral ganglia, suggesting that a peripheral signal is involved. Colocalization studies indicate that tyrosine hydroxylase-immunoreactive nerve sprouts were associated with p75-immunoreactive glial cells. Thus, increased glial synthesis of p75 might provide an explanation for the abnormal growth of sympathetic fibers in dorsal root ganglia after peripheral nerve injury.
Collapse
|
29
|
Rende M, Giambanco I, Buratta M, Tonali P. Axotomy induces a different modulation of both low-affinity nerve growth factor receptor and choline acetyltransferase between adult rat spinal and brainstem motoneurons. J Comp Neurol 1995; 363:249-63. [PMID: 8642073 DOI: 10.1002/cne.903630207] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adult rat spinal and brainstem motoneurons re-express low-affinity nerve growth factor receptor (p75) after their axotomy. We have previously reported and quantified the time course of this reexpression in spinal motoneurons following several types of injuries of the sciatic nerve. Other studies reported the reexpression of p75 in axotomized brainstem motoneurons. Results of these previous studies differed regarding the type of the most effective triggering injury for p75 reexpression, the relative duration of this reexpression and the decrease of choline acetyltransferase (ChAT) immunoreactivity (-IR) following a permanent axotomy of spinal or brainstem motoneurons. These differences suggest that these two populations of motoneurons respond to axotomy with a different modulation of p75 and ChAT expression. The aim of the present study was to determine whether differential modulation exists. We have analyzed and quantified the presence of p75- and ChAT-IR motoneurons in the hypoglossal nucleus following the same types of injury and the same time course we previously used for sciatic motoneurons. The results show that a nerve crush is the most effective triggering injury for p75 and that it induces similar temporal patterns of p75 and ChAT expression for sciatic and hypoglossal motoneurons. In contrast, a cut injury of the sciatic and hypoglossal nerves resulted in distinct temporal courses of both p75 and ChAT expression between these two populations of motoneurons. In fact, a permanent axotomy of the hypoglossal motoneurons induced i) a much longer maintenance phase for p75 than in sciatic motoneurons and ii) a progressive loss of ChAT-IR with a successive return to normal values in contrast to the modest decrease in the sciatic motoneurons. This evidence indicates that spinal and brainstem motoneurons respond to a permanent axotomy with a different modulation of p75 and ChAT expression. Altogether, the present data and the reported evidence of a differential post-axotomy cell death support the hypothesis that these two populations of motoneurons undergo different dynamic changes after axotomy.
Collapse
Affiliation(s)
- M Rende
- Department of Experimental Medicine and Biochemical Sciences, University of Perguia School of Medicine, Italy
| | | | | | | |
Collapse
|
30
|
Dusart I, Morel MP, Sotelo C. Parasagittal compartmentation of adult rat Purkinje cells expressing the low-affinity nerve growth factor receptor: changes of pattern expression after a traumatic lesion. Neuroscience 1994; 63:351-6. [PMID: 7891850 DOI: 10.1016/0306-4522(94)90534-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pattern of expression of p75, the low affinity nerve growth factor receptor, in the adult rat cerebellum and its fate after a traumatic lesion were analysed using immunohistochemical localization of this receptor. A subset of Purkinje cells was immunoreactive for low affinity nerve growth factor receptor in the intact adult cerebellum. These cells were arranged in alternating positive and negative parasagittal compartments along the cerebellar cortex. This pattern of expression had 90% homology with zebrin I. After a traumatic lesion, the specific pattern of expression of zebrin I remained unchanged, whereas the low affinity nerve growth factor receptor pattern changed as early as one day: Purkinje cells near the lesion site, independent of zebrin I staining, became immunoreactive. During the first week, the increase in immunoreactivity remained high. Thereafter, there was a short, fast decrease followed by a long period in which a faint immunostaining on lesioned Purkinje cells is maintained for up to one year. The increase in the expression of the low affinity nerve growth factor receptor by all traumatically affected Purkinje cells suggests a correlation between this specific up-regulation and the high resistance of these neurons to axotomy or other traumatic injuries.
Collapse
Affiliation(s)
- I Dusart
- INSERM U106, Hôpital de la Salpétrière, Paris, France
| | | | | |
Collapse
|
31
|
Aloe L, Bracci-Laudiero L, Alleva E, Lambiase A, Micera A, Tirassa P. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc Natl Acad Sci U S A 1994; 91:10440-4. [PMID: 7937971 PMCID: PMC45036 DOI: 10.1073/pnas.91.22.10440] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We examined the plasma nerve growth factor (NGF) level and the distribution of NGF receptors in peripheral lymphocytes of young soldiers (mean age, 20-24 yr) experiencing the thrill of a novice about to make their first parachute jumps. Blood was collected from soldiers who knew they were selected to jump (n = 26), as well as from soldiers who knew they were not selected (n = 17, controls). The former group was sampled the evening before the jump and 20 min after landing. Compared with controls, NGF levels increased 84% in prejump and 107% in postjump sampling. Our studies also showed that the increase of NGF levels preceded the increase of plasma cortisol and adrenocorticotropic hormone. No changes in the baseline levels of circulating interleukin 1 beta or tumor necrosis factor were found, suggesting that the increased levels of NGF were not correlated with change in these cytokines. Moreover, immunofluorescence analysis demonstrated that parachuting stress enhances the distribution of low-affinity p75LNGFR and high-affinity p140trkA NGF receptors in circulating peripheral blood mononuclear cells. These observations suggest that the release of NGF might be involved in the activation of cells of the immune system and is most probably associated with homeostatic adaptive mechanisms, as previously shown for stressed rodents.
Collapse
Affiliation(s)
- L Aloe
- Institute of Neurobiology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | | | | |
Collapse
|