1
|
Elliott KL, Houston DW, DeCook R, Fritzsch B. Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. Dev Neurobiol 2015; 75:1339-51. [PMID: 25787878 DOI: 10.1002/dneu.22287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022]
Abstract
Second-order sensory neurons are dependent on afferents from the sense organs during a critical period in development for their survival and differentiation. Past research has mostly focused on whole populations of neurons, hampering progress in understanding the mechanisms underlying these critical phases. To move toward a better understanding of the molecular and cellular basis of afferent-dependent neuronal development, we developed a new model to study the effects of ear removal on a single identifiable cell in the hindbrain of a frog, the Mauthner cell. Ear extirpation at various stages of Xenopus laevis development defines a critical period of progressively-reduced dependency of Mauthner cell survival/differentiation on the ear afferents. Furthermore, ear removal results in a progressively decreased reduction in the number of dendritic branches. Conversely, addition of an ear results in an increase in the number of dendritic branches. These results suggest that the duration of innervation and the number of inner ear afferents play a quantitative role in Mauthner cell survival/differentiation, including dendritic development.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242
| | | | - Rhonda DeCook
- Department of Statistics and Actuarial Sciences, University of Iowa, Iowa City, IA, 52242
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
2
|
Smithson LJ, Krol KM, Kawaja MD. Neuronal degeneration associated with sympathosensory plexuses in the trigeminal ganglia of aged mice that overexpress nerve growth factor. Neurobiol Aging 2014; 35:2812-2821. [PMID: 25037287 DOI: 10.1016/j.neurobiolaging.2014.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Aberrant sympathetic sprouting is seen in the uninjured trigeminal ganglia of transgenic mice that ectopically express nerve growth factor under the control of the glial fibrillary acidic protein promoter. These sympathetic axons form perineuronal plexuses around a subset of sensory somata in 2- to 3-month-old transgenic mice. Here, we show that aged transgenic mice (i.e., 11-14 and 16-18 months old) have dystrophic sympathetic plexuses (i.e., increased densities of swollen axons), and that satellite glial cells, specifically those in contact with dystrophic plexuses in the aged mice display strong immunostaining for tumor necrosis factor alpha. The colocalization of dystrophic plexuses and reactive satellite glial cells in the aged mice coincides with degenerative features in the enveloped sensory somata. Collectively, these novel results show that, with advancing age, sympathetic plexuses undergo dystrophic changes that heighten satellite glial cell reactivity and that together these cellular events coincide with neuronal degeneration.
Collapse
Affiliation(s)
- Laura J Smithson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Karmen M Krol
- Department of Anesthesiology, Queen's University, Kingston, Ontario, Canada
| | - Michael D Kawaja
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
3
|
Heterogeneity of nervous system mitochondria: Location, location, location! Exp Neurol 2009; 218:293-307. [DOI: 10.1016/j.expneurol.2009.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/30/2009] [Accepted: 05/08/2009] [Indexed: 01/03/2023]
|
4
|
Karnes HE, Kaiser CL, Durham D. Deafferentation-induced caspase-3 activation and DNA fragmentation in chick cochlear nucleus neurons. Neuroscience 2008; 159:804-18. [PMID: 19166907 DOI: 10.1016/j.neuroscience.2008.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 01/09/2023]
Abstract
Cochlea removal severs peripheral processes of cochlear ganglion cells and permanently abolishes afferent input to nucleus magnocellularis (NM) neurons. Deafferented chick NM neurons undergo a series of morphologic and metabolic changes, which ultimately trigger the death of 20%-40% of neurons. Previous studies suggested that this cell specific death involves activation of the intrinsic apoptotic pathway, including increased presence of cytochrome c and active caspase-9 in the cytoplasm of deafferented NM neurons. Interestingly, however, both markers were detected pan-neuronally, in both degenerating and surviving NM neurons [Wilkinson BL, Elam JS, Fadool DA, Hyson RL (2003) Afferent regulation of cytochrome-c and active caspase-9 in the avian cochlear nucleus. Neuroscience 120:1071-1079]. Here, we provide evidence for the increased appearance of late apoptotic indicators and describe novel characteristics of cell death in deafferented auditory neurons. Young broiler chickens were subjected to unilateral cochlea removal, and brainstem sections through NM were reacted for active caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Caspase-3 activation is observed in the cytoplasm of both dying and surviving deafferented NM neurons 24 h to 7 days following cochlea removal, suggesting that caspase-3, usually considered an "executioner" of apoptotic death, may also function as a "modulator" of death. In addition, we find that TUNEL labeling of degraded DNA is observed in deafferented NM. In contrast to upstream apoptotic markers, however, TUNEL labeling is restricted to a subpopulation of deafferented neurons. Twelve hours following cochlea removal, TUNEL labeling is observed as punctate accumulations within nuclei. Twenty-four hours following cochlea removal, TUNEL accumulates diffusely throughout neuronal cytoplasm in those neurons likely to die. This cytoplasmic TUNEL labeling may implicate mitochondrial nucleic acid degradation in the selective death of some deafferented NM neurons. Our study examines the subcellular distributions of two prominent apoptotic mediators, active caspase-3 and TUNEL, relative to known histochemical markers, in deafferented NM; provides new insight into the apoptotic mechanism of cell death; and proposes a role for mitochondrial DNA in deafferentation-induced cell death.
Collapse
Affiliation(s)
- H E Karnes
- Auditory and Vestibular Neuroscience Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Mail Stop 3051, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
5
|
NICHOLAS AH, HYSON RL. Afferent regulation of oxidative stress in the chick cochlear nucleus. Neuroscience 2006; 140:1359-68. [PMID: 16650604 PMCID: PMC1847353 DOI: 10.1016/j.neuroscience.2006.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/28/2006] [Accepted: 03/12/2006] [Indexed: 11/21/2022]
Abstract
The chick auditory brain stem has been a useful model system for examining the afferent-dependent signals that regulate postsynaptic neurons. Like other sensory systems, compromised afferent input results in rapid death and atrophy of postsynaptic neurons. The present paper explores the possible contributions of an oxidative stress pathway in determining neuronal fate following deafferentation. Levels of reactive oxygen species, lipid damage measured by 4-hydroxynonenal formation, and a compensatory reactive oxygen species-induced response regulated by glutathione s transferase M1 and the reactive oxygen species-sensitive transcriptional factor, nuclear respiratory factor 1 were examined. Unilateral cochlea removal surgery was performed on young posthatch chicks. Labeling in the cochlear nucleus, nucleus magnocellularis, on opposite sides of the same tissue sections were compared by densitometry. The results showed a dramatic increase in reactive oxygen species in the deafferented nucleus magnocellularis by 6 h following cochlea removal. This increase in reactive oxygen species was accompanied by lipid damage and a compensatory upregulation of both glutathione s transferase M1 and nuclear respiratory factor 1. Double-labeling revealed that glutathione s transferase M1 expression was highest in neurons that were likely to survive deafferentation, as assessed immunocytochemically with Y10b, a marker for ribosomal integrity. Together, these data suggest reactive oxygen species are generated and a compensatory detoxifying pathway is upregulated in the first few hours following deafferentation. This is consistent with the hypothesis that oxidative stress plays a role in determining whether a given neuron survives following deafferentation.
Collapse
Affiliation(s)
| | - R. L. HYSON
- *Corresponding author. Tel: +1-850-644-5824; fax: +1-850-644-7739. E-mail address: (R. L. Hyson)
| |
Collapse
|
6
|
|
7
|
Rubel EW, Parks TN, Zirpel L. Assembling, Connecting, and Maintaining the Cochlear Nucleus. PLASTICITY OF THE AUDITORY SYSTEM 2004. [DOI: 10.1007/978-1-4757-4219-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
WILKINSON BL, ELAM JS, FADOOL DA, HYSON RL. Afferent regulation of cytochrome-c and active caspase-9 in the avian cochlear nucleus. Neuroscience 2003; 120:1071-9. [PMID: 12927212 PMCID: PMC1847350 DOI: 10.1016/s0306-4522(03)00387-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During development, a subpopulation (approximately 30%) of neurons in the avian cochlear nucleus, nucleus magnocellularis (NM), dies following removal of the cochlea. It is clear that neuronal activity coming from the auditory nerve provides trophic support critical for cell survival in the NM. Several aspects of the intracellular signaling cascades that regulate apoptosis have been defined for naturally occurring, or programmed cell death, in neurons. These intracellular cascades involve the extrusion of cytochrome-c from the mitochondria into the cytosol and the subsequent activation of proteolytic caspase cascades, which ultimately act on substrates that lead to the death of the cell. In contrast, the intracellular signaling cascades responsible for deafferentation-induced cell death are not fully understood. In the present series of experiments, the potential extrusion of cytochrome-c from the mitochondria into the cytosol, and the activation of caspases were examined in the NM following deafferentation. Cytochrome-c immunoreactivity increased within 6 h following deafferentation and persisted for at least 3-5 days following surgery. However, cytochrome-c was not detectable within immunoprecipitates obtained from cytosolic fractions of deafferented NM neurons. This suggests that the increased immunoreactivity of cytochrome-c is related to mitochondrial proliferation. As a positive control, cytochrome-c was detected in cytosolic fractions of deafferented NM neurons treated with kainic acid, a substance known to cause cytochrome-c release into the cytosol. In addition, immunoreactivity for downstream active caspase-9 did increase following cochlea ablation. This increase was observed within 3 h following cochlea removal, but was not observed 4 days following surgery, a time point after the dying population of NM neurons have already degenerated. Together, these findings suggest that deafferentation of NM neurons results in caspase activation, but this activation may be cytochrome-c independent.
Collapse
Affiliation(s)
- B. L. WILKINSON
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA
| | - J. S. ELAM
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA
| | - D. A. FADOOL
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA
- Program in Molecular Biophysics, The Florida State University, Tallahassee, FL 32306, USA
| | - R. L. HYSON
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA
- *Corresponding author. Tel: +1-850-644-5824; fax: +1-850-644-7739. E-mail address: (R. L. Hyson)
| |
Collapse
|
9
|
Abstract
The neurons of the cochlear ganglion transmit acoustic information between the inner ear and the brain. These placodally derived neurons must produce a topographically precise pattern of connections in both the inner ear and the brain. In this review, we consider the current state of knowledge concerning the development of these neurons, their peripheral and central connections, and their influences on peripheral and central target cells. Relatively little is known about the cellular and molecular regulation of migration or the establishment of precise topographic connection to the hair cells or cochlear nucleus (CN) neurons. Studies of mice with neurotrophin deletions are beginning to yield increasing understanding of variations in ganglion cell survival and resulting innervation patterns, however. Finally, existing evidence suggests that while ganglion cells have little influence on the differentiation of their hair cell targets, quite the opposite is true in the brain. Ganglion cell innervation and synaptic activity are essential for normal development of neurons in the cochlear nucleus.
Collapse
Affiliation(s)
- Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle 98195-7923, USA.
| | | |
Collapse
|
10
|
Park DL, Girod DA, Durham D. Avian brainstem neurogenesis is stimulated during cochlear hair cell regeneration. Brain Res 2002; 949:1-10. [PMID: 12213294 DOI: 10.1016/s0006-8993(02)02539-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unlike mammals, adult avians are able to regenerate cochlear sensory hair cells following injury. Brainstem auditory neurons in chicken nucleus magnocellularis (NM), which receive their sole excitatory afferent input from the cochlea, were examined for evidence of mitosis during ototoxin-induced loss and regeneration of cochlear hair cells. Using tritiated thymidine as a mitotic marker in tissue processed for autoradiography and counterstained with thionin, labeled NM neurons and glia were counted from chickens killed 16 days after gentamicin or saline injections. Newly generated NM neurons were observed during cochlear hair cell regeneration. More labeled neurons were observed in the experimental chickens, but a few were also seen in the control chickens. We predicted labeled NM neurons would be found solely in the rostral high frequency region, given the gentamicin-induced high frequency cochlear hair cell loss and regeneration. However, the labeled NM neurons were located throughout the tonotopic axis of the nucleus. The total number of labeled neurons was lower than predicted. Many labeled NM glia were observed in experimental and control chickens. Labeled cells were also observed throughout the chicken brainstem and cerebellum in both experimental and control chickens, indicating great potential for CNS plasticity. Results in NM indicate the avian auditory system is capable of regenerating brainstem auditory neurons in addition to the previously well-established capability of regenerating cochlear hair cells in response to ototoxic injury. Recovery of both central and peripheral auditory components will be necessary to restore hearing damaged by noise or ototoxic drugs.
Collapse
Affiliation(s)
- Debra L Park
- Department of Otolaryngology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
11
|
Abstract
Two types of chickens are commercially available. Broiler birds are bred to develop quickly for meat production, while egg layers are bred to attain a smaller adult size. Because we have observed breed differences in the response of central auditory neurons to cochlear ablation in adult birds [Edmonds et al. (1999) Hear. Res. 127, 62-76], we examined cochleae from the two breeds for differences in integrity. We evaluated cochlear hair cell structure using scanning electron microscopy and cochlear hair cell function using distortion product otoacoustic emissions (DPOAEs) and the auditory brainstem response. We observed striking breed differences in cochlear integrity in adult but not hatchling birds. In adult broiler birds, all cochleae showed damage, encompassing at least the basal 29% of the cochlea. In 15 of 18 broiler ears, damage was observed throughout the basal 60% of the cochlea. In contrast, cochleae from egg layer adults were largely normal. Two thirds of egg layer ears showed no anatomical abnormalities, while in the remainder cochlear damage was seen within the basal 48% of the cochlea. DPOAEs recorded from egg layer birds showed loss of high frequency emissions in every ear for which the cochlea displayed anatomical damage. Average sound pressure levels in both commercial facilities were 90 dB, suggesting these two breeds may exhibit differential susceptibility to noise damage.
Collapse
MESH Headings
- Aging/pathology
- Aging/physiology
- Animals
- Breeding
- Chickens/anatomy & histology
- Chickens/physiology
- Evoked Potentials, Auditory, Brain Stem
- Female
- Hair Cells, Auditory/abnormalities
- Hair Cells, Auditory/physiology
- Hair Cells, Auditory/ultrastructure
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Microscopy, Electron, Scanning
- Otoacoustic Emissions, Spontaneous
- Regeneration
- Species Specificity
Collapse
Affiliation(s)
- Dianne Durham
- Department of Otolaryngology and the Smith Mental Retardation Research Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7380, USA.
| | | | | |
Collapse
|
12
|
Wilkinson BL, Sadler KA, Hyson RL. Rapid deafferentation-induced upregulation of bcl-2 mRNA in the chick cochlear nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 99:67-74. [PMID: 11869810 DOI: 10.1016/s0169-328x(02)00113-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal survival in developing animals is often dependent on afferent activity. In the posthatch chick, approximately 30% of the neurons in the avian cochlear nucleus, nucleus magnocellularis (NM) die following elimination of VIIIth nerve activity. The factors that influence death or survival of an individual NM neuron are largely unknown. Previous studies indicate that both cell death and cell survival mechanisms compete to determine cell fate. One factor that has been shown to suppress cell death cascades in a variety of systems is bcl-2. If this gene product plays a role in regulating cell survival following deafferentation, then one might expect the expression of this gene to be influenced by removal of afferent input. In the present study, in situ hybridization revealed a rapid and transient increase in bcl-2 mRNA in NM neurons following deafferentation. Enhanced bcl-2 mRNA expression was observed at 6 and 12 h following deafferentation, but not at 3 or 24 h. Surprisingly, the upregulation of bcl-2 mRNA was limited to a subpopulation (20-30%) of deafferented neurons corresponding to the number of NM neurons that eventually die following cochlea removal. The robust and rapid upregulation of this gene suggests that cell death cascades regulated by bcl-2 may be initiated following deafferentation.
Collapse
Affiliation(s)
- Brandy L Wilkinson
- Department of Psychology, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-1270, USA
| | | | | |
Collapse
|
13
|
Tucci D, Cant NB, Durham D. Conductive hearing loss results in changes in cytochrome oxidase activity in gerbil central auditory system. J Assoc Res Otolaryngol 2002; 3:89-106. [PMID: 12083727 PMCID: PMC3202368 DOI: 10.1007/s101620010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Conductive hearing loss (CHL) restricts auditory input to an intact peripheral auditory system. Effects of deprivation on the central auditory system (CAS) have been debated, although a number of studies support the hypothesis that CHL can cause modification of CAS structure and function. The present study was designed to test the hypothesis that unilateral CHL results in a decrease in cytochrome oxidase (CO) activity in CAS nuclei that receive major afferent input from the affected ear. Gerbils at postnatal day 12 (P21) or 6-8 weeks underwent left unilateral CHL (malleus removal), cochlear ablation, or a sham surgical procedure. After a survival time of 48 hours or 3 weeks, animals were sacrificed and tissue was processed for cytochrome oxidase histochemistry. Optical density (OD) measurements were made from individual neurons in the anteroventral cochlear nucleus (AVCN) and from medial and lateral dendritic fields in the medial superior olivary nucleus (MSO), the lateral superior olivary nucleus, and the inferior colliculus. The width of the CO-stained neuropil in MSO was also measured as an estimate of dendritic length. OD measures were corrected to neutral areas of the brain. Cochlear ablation caused significant decreases in CO activity in left lower brainstem nuclei, particularly in adult animals. Following CHL, a significant decrease in CO activity was observed in the ipsilateral AVCN and a significant increase was observed in the contralateral AVCN. Cochlear ablation resulted in decreased width of MSO neuropil containing dendrites that receive primary input from the ablated ear. CHL resulted in a significant increase in the width of MSO neuropil on both sides of the brain in the P21 animals that survived 3 weeks but not in P21 animals that survived only 48 hours or in the adult animals. Unilateral CHL is associated with changes in CO activity in the AVCN and may affect MSO dendritic length in younger animals.
Collapse
Affiliation(s)
- Debara Tucci
- Division of Otolaryngology-Head and Neck Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
14
|
Lurie DI, Durham D. Neuronal death, not axonal degeneration, results in significant gliosis within the cochlear nucleus of adult chickens. Hear Res 2000; 149:178-88. [PMID: 11033257 DOI: 10.1016/s0378-5955(00)00181-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Injury to the central nervous system initiates a series of events that leads to neuronal cell death and glial activation. Astrocytes respond to damage and disease by becoming hyperplastic and hypertrophied. This 'reactive gliosis' is also accompanied by the upregulation of the intermediate filament protein glial fibrillary acidic protein, the release of growth factors and the formation of the glial scar. However, the signaling cascades which regulate these events, and the molecular mechanisms that give rise to this diverse response, have not been fully elucidated. For example, the role played by degenerating neurons vs. degenerating axons in the activation of astrocytes remains to be determined. To investigate the influence of neuronal cell death vs. axonal degeneration on gliosis, the current study examines the astrocyte response to cochlea removal in two different breeds of adult chickens, one of which exhibits neuronal cell death within the brainstem nucleus magnocellularis (NM) following the lesion and one which does not. Our results indicate that degeneration of NM neurons leads to large increases in both glial proliferation and hypertrophy, while eighth nerve degeneration without NM cell death results in very small increases in glial proliferation.
Collapse
Affiliation(s)
- D I Lurie
- Department of Pharmaceutical Sciences, The University of Montana, Missoula, MT 58912, USA.
| | | |
Collapse
|
15
|
Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 2000; 426:561-71. [PMID: 11027399 DOI: 10.1002/1096-9861(20001030)426:4<561::aid-cne5>3.0.co;2-g] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Developmental changes that influence the results of removal of afferent input on the survival of neurons of the anteroventral cochlear nucleus (AVCN) of mice were examined with the hope of providing a suitable model for understanding the cellular and molecular basis for these developmental changes in susceptibility. We performed unilateral cochlear ablation on wild-type mice at a variety of ages around the time of hearing onset to determine developmental changes in the sensitivity of AVCN neurons to afferent deprivation. In postnatal day 5 (P5) mice, cochlea removal resulted in 61% neuronal loss in the AVCN. By age P14, fewer than 1% of AVCN neurons were lost after this manipulation. This reveals a rather abrupt change in the sensitivity to disruption of afferent input, a critical period. We next investigated the temporal events associated with neuron loss after cochlea removal in susceptible animals. We demonstrate that significant cell loss occurs within 48 hours of cochlea removal in P7 animals. Furthermore, evidence of apoptosis was observed within 12 hours of cochlea removal, suggesting that the molecular events leading to cell loss after afferent deprivation begin to occur within hours of cochlea removal. Finally, we began to examine the role of the bcl-2 gene family in regulating afferent deprivation-induced cell death in the mouse AVCN. AVCN neurons in mature bcl-2 knockout mice demonstrate susceptibility to removal of afferent input comparable to neonatal sensitivity of wild-type controls. These data suggest that bcl-2 is one effector of cell survival as these cells switch from afferent-dependent to -independent survival mechanisms.
Collapse
Affiliation(s)
- S P Mostafapour
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Following cochlear ablation, auditory neurons in the central nervous system (CNS) undergo alterations in morphology and function, including neuronal cell death. The trigger for these CNS changes is the abrupt cessation of afferent input via eighth nerve fiber activity. Gentamicin can cause ototoxic damage to cochlear hair cells responsible for high frequency hearing, which seems likely to cause a frequency-specific loss of input into the CNS. In birds, these hair cells can regenerate, presumably restoring input into the CNS. This review summarizes current knowledge of how CNS auditory neurons respond to this transient, frequency-specific loss of cochlear function. A single systemic injection of a high dose of gentamicin results in the complete loss of high frequency hair cells by 5 days, followed by the regeneration of new hair cells. Both hair cell-specific functional measures and estimates of CNS afferent activity suggest that newly regenerated hair cells restore afferent input to brainstem auditory neurons. Frequency-specific neuronal cell death and shrinkage occur following gentamicin damage to hair cells, with an unexpected recovery of neuronal cell number at longer survival times. A newly-developed method for topical, unilateral gentamicin application will allow future studies to compare neuronal changes within a given animal.
Collapse
Affiliation(s)
- D Durham
- Department of Otolaryngology and the Smith Mental Retardation and Human Development Research Center, University of Kansas Medical Center, Kansas City 66160-7380, USA.
| | | | | |
Collapse
|
17
|
Edmonds JL, Hoover LA, Durham D. Breed differences in deafferentation-induced neuronal cell death and shrinkage in chick cochlear nucleus. Hear Res 1999; 127:62-76. [PMID: 9925017 DOI: 10.1016/s0378-5955(98)00180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Removal of functional presynaptic input can result in a variety of changes in postsynaptic neurons in the central nervous system, including altered metabolism, changes in neuronal cell size, and even death of the postsynaptic cell. Age-dependent neuronal cell death and shrinkage has been documented in second order auditory neurons in the chick brainstem (nucleus magnocellularis, NM) following cochlea removal (Born and Rubel, 1985. J. Comp. Neurol. 231, 435-445). Here we examined whether the extent of neuronal cell death and shrinkage is also breed-dependent. We performed unilateral cochlea removal on both hatchling and adult birds of either a broiler breed (Arbor Acres Cross) or egg layer breed (Hy-Line, H and N) and killed birds one week later. Changes in neuronal cell number and cross sectional area were determined from Nissl-stained sections. We observed 25% neuronal cell loss and a 15-20% decrease in neuronal cross sectional area after cochlea removal in either broiler or egg layer hatchling birds. In adult birds, however, neuronal cell loss is breed-dependent. Adult egg layer birds lose an average of 37% of NM neurons after cochlea removal, while adult broiler birds show no cell loss. In both breeds of adult birds, cochlea removal results in a 20% decrease in neuronal cross sectional area. These results suggest that analysis of differences between breeds as well as ages of birds will prove fruitful in determining how afferent input controls neuronal survival and metabolism.
Collapse
Affiliation(s)
- J L Edmonds
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City 66160-7380, USA
| | | | | |
Collapse
|
18
|
Park DL, Girod DA, Durham D. Evidence for loss and recovery of chick brainstem auditory neurons during gentamicin-induced cochlear damage and regeneration. Hear Res 1998; 126:84-98. [PMID: 9872137 DOI: 10.1016/s0378-5955(98)00157-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is well documented that damage to the chick cochlea caused by acoustic overstimulation or ototoxic drugs is reversible. Second-order auditory neurons in nucleus magnocellularis (NM) are sensitive to changes in input from the cochlea. However, few experiments studying changes in NM during cochlear hair cell loss and regeneration have been reported. Chicks were given a single systemic dose of gentamicin, which results in maximal hair cell loss in the base of the cochlea after 5 days. Many new hair cells are present by 9 days. These new hair cells are mature but not completely recovered in organization by 70 days. We counted neurons in Nissl-stained sections of the brainstem within specific tonotopic regions of NM, comparing absolute cell number between gentamicin- and saline-treated animals at both short and long survival times. Our data suggest that neuronal number in rostral NM parallels hair cell number in the base of the cochlea. That is, after a single dose of gentamicin, we see a loss of both cochlear hair cells and NM neurons early, followed by a recovery of both cochlear hair cells and NM neurons later. These results suggest that neurons, like cochlear hair cells, can recover following gentamicin-induced damage.
Collapse
Affiliation(s)
- D L Park
- Department of Otolaryngology and the Smith Mental Retardation Research Center, University of Kansas Medical Center, Kansas City, 66160-7380, USA
| | | | | |
Collapse
|
19
|
Husmann KR, Morgan AS, Girod DA, Durham D. Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells. Hear Res 1998; 125:109-19. [PMID: 9833965 DOI: 10.1016/s0378-5955(98)00137-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Damage to inner ear sensory hair cells after systemic administration of ototoxic drugs has been documented in humans and animals. Birds have the ability to regenerate new hair cells to replace those damaged by drugs or noise. Unfortunately, the systemic administration of gentamicin damages both ears in a variable fashion with potentially confounding systemic drug effects. We developed a method of direct application of gentamicin to one cochlea of hatchling chickens, allowing the other ear to serve as a within-animal control. We tested variables including the vehicle for application, location of application, dosage, and duration of gentamicin exposure. After 5 or 28 days survival, the percent length damage to the cochlea and regeneration of hair cells was evaluated using scanning electron microscopy. Controls consisted of the opposite unexposed cochlea and additional animals which received saline instead of gentamicin. Excellent damage was achieved using gentamicin-soaked Gelfoam pledgets applied to the round window membrane. The percent length damage could be varied from 15 to 100% by changing the dosage of gentamicin, with exposures as short as 30 min. No damage was observed in control animals. Regeneration of hair cells was observed in both the base and apex by 28 days survival.
Collapse
Affiliation(s)
- K R Husmann
- Department of Otolaryngology and the Smith Mental Retardation Research Center, University of Kansas Medical Center, Kansas City 66160-7380, USA
| | | | | | | |
Collapse
|
20
|
Sherrard RM, Bower AJ. Role of afferents in the development and cell survival of the vertebrate nervous system. Clin Exp Pharmacol Physiol 1998; 25:487-95. [PMID: 9673418 DOI: 10.1111/j.1440-1681.1998.tb02241.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. During normal development of the vertebrate central nervous system, a considerable number of neurons die. The factors controlling which neurons die and which survive are not fully understood. 2. Target populations are known to maintain their innervating neurons. However, the role of afferents in maintaining their targets is still under review. 3. In the developing nervous system, deafferentation of a neuron population is difficult to achieve because plasticity (structural re-organization) can cause re-innervation of the area. Re-innervation alters, rather than removes, the afferent supply. 4. Afferent input is important for neuronal survival during development because deafferentation increases neuronal death by 20-30% and increasing input diminishes neuronal death. 5. Deafferented neurons die at the normal time for cell death for any given population. This occurs after the arrival of afferent axons but before the completion of connectivity and the onset of function. 6. Neuronal survival is maintained by any input, such as reinnervation by inappropriate fibres, but for optimal survival, morphological maturation and the acquisition of normal physiology, the correct input is required. 7. Afferents maintain their target neurons via a combination of electrical activity and delivery of trophic agents, which adjust intracellular calcium, thereby facilitating protein synthesis, mitochondrial function and suppressing apoptosis. 8. Evidence from animal and in vitro experiments indicates that afferents play an extremely important role in the survival of developing neurons in the immature vertebrate nervous system.
Collapse
Affiliation(s)
- R M Sherrard
- Neuroscience Laboratory, School of Life Sciences, Queensland University of Technology, Brisbane, Australia.
| | | |
Collapse
|
21
|
Zirpel L, Lippe WR, Rubel EW. Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: roles of protein kinases A and C and relation to cell death. J Neurophysiol 1998; 79:2288-302. [PMID: 9582205 DOI: 10.1152/jn.1998.79.5.2288] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurons of the cochlear nucleus, nucleus magnocellularis (NM), of young chicks require excitatory afferent input from the eighth nerve for maintenance and survival. One of the earliest changes seen in NM neurons after deafferentation is an increase in intracellular calcium concentration ([Ca2+]i). This increase in [Ca2+]i is due to loss of activation of metabotropic glutamate receptors (mGluR) that activate second-messenger cascades involved in [Ca2+]i regulation. Because mGluRs are known to act via the phospholipase C and adenylate cyclase signal transduction pathways, the goal of this study was to determine the roles of protein kinases A (PKA) and C (PKC) activities in the regulation of NM neuron [Ca2+]i by eighth nerve stimulation. Additionally, we sought to determine the relationship between increased [Ca2+]i and cell death as measured by propidium iodide incorporation. [Ca2+]i of individual NM neurons in brain stem slices was monitored using fura-2 ratiometric fluorescence imaging. NM field potentials were monitored in experiments in which the eighth nerve was stimulated. Five hertz orthodromic stimulation maintained NM neuron [Ca2+]i at approximately 110 nM for 180 min. In the absence of stimulation, NM neuron [Ca2+]i increased steadily to a mean of 265 nM by 120 min. This increase was attenuated by superfusion of PKC activators phorbol-12,13-myristate acetate (100 nM) or dioctanoylglycerol (50 microM) and by activators of PKA: 1 mM 8-bromoadenosine-3',5'-cyclophosphate sodium (8-Br-cAMP), 50 microM forskolin or 100 microM Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine. Inhibition of PKA (100 microM Rp-cAMPS) or PKC (50 nM bisindolymaleimide or 10 microM U73122) during continuous orthodromic stimulation resulted in an increase in NM neuron [Ca2+]i that exceeded 170 and 180 nM, respectively, by 120 min. Nonspecific kinase inhibition with 1 microM staurosporine during stimulation resulted in an [Ca2+]i increase that was greater in magnitude than that seen with either PKA or PKC inhibition alone, equal to that seen in the absence of stimulation, but much smaller than that seen with inhibition of mGluRs. In addition, manipulations that resulted in a [Ca2+]i increase >/=250 nM resulted in an increase in number and percentage of propidium iodide-labeled NM neurons. These results suggest that eighth nerve activity maintains [Ca2+]i of NM neurons at physiological levels in part via mGluR-mediated activation of PKA and PKC and that increases in [Ca2+]i due to activity deprivation or interruption of the PKA and PKC [Ca2+]i regulatory mechanisms are predictive of subsequent cell death.
Collapse
Affiliation(s)
- L Zirpel
- The Virginia Merrill Bloedel Hearing Research Center and The Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, 98195, USA
| | | | | |
Collapse
|
22
|
Saunders JC, Adler HJ, Cohen YE, Smullen S, Kazahaya K. Morphometric changes in the chick nucleus magnocellularis following acoustic overstimulation. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980119)390:3<412::aid-cne8>3.0.co;2-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Mostafapour SP, Lachica EA, Rubel EW. Mitochondrial regulation of calcium in the avian cochlear nucleus. J Neurophysiol 1997; 78:1928-34. [PMID: 9325361 DOI: 10.1152/jn.1997.78.4.1928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of mitochondria and the endoplasmic reticulum in buffering [Ca2+]i in response to imposed calcium loads in neurons of the chick cochlear nucleus, nucleus magnocellularis (NM), was examined. Intracellular calcium concentrations were measured using fluorometric videomicroscopy. After depolarization with 125 mM KCl, NM neurons demonstrate an increase in [Ca2+]i that returns to near-basal levels within 6 min. Addition of the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) dissipated the mitochondrial membrane potential, as evidenced by increased fluorescence when cells were loaded with rhodamine-123. Two micromolar CCCP had minimal effect on baseline [Ca2+]i. However, 2 or 10 microM CCCP interfered with the ability of NM cells to buffer [Ca2+]i in response to KCl depolarization without significantly affecting peak [Ca2+]i. Oligomycin also interfered with postdepolarization regulation of [Ca2+]i, but blocked late (7-8 min postdepolarization) increases in [Ca2+]i caused by CCCP. Thapsigargin had no effect on baseline, peak, or postdepolarization [Ca2+]i in NM cells. These results suggest that normal mitochondrial membrane potential and ATP synthesis play an important role in buffering [Ca2+]i in response to imposed calcium loads in NM neurons. Furthermore, the endoplasmic reticulum does not appear to play a significant role in either of these processes. Thus increases in mitochondrial number and function noted in NM cells after deafferentation may represent an adaptive response to an increased cytosolic calcium load.
Collapse
Affiliation(s)
- S P Mostafapour
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
24
|
Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol 1997; 138:449-69. [PMID: 9230085 PMCID: PMC2138196 DOI: 10.1083/jcb.138.2.449] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Herbimycin A, a tyrosine kinase inhibitor, induces cellular differentiation and delayed apoptosis in Colo-205 cells, a poorly differentiated human colon carcinoma cell line. Cell cycle analysis in conjunction with end labeling of DNA fragments revealed that G2 arrest preceded apoptotic cell death. Ultrastructural examination of herbimycin-treated cells demonstrated morphologic features of epithelial differentiation, including formation of a microvillar apical membrane and lateral desmosome adhesions. A marked accumulation of mitochondria was also observed. Fluorometric analysis using the mitochondrial probes nonyl-acridine orange and JC-1 confirmed a progressive increase in mitochondrial mass. However these cells also demonstrated a progressive decline in unit mitochondrial transmembrane potential (DeltaPsim) as determined by the DeltaPsim-sensitive fluorescent probes rhodamine 123 and JC-1 analyzed for red fluorescence. In concert with these mitochondrial changes, Colo-205 cells treated with herbimycin A produced increased levels of reactive oxygen species as evidenced by oxidation of both dichlorodihydrofluorescein diacetate and dihydroethidium. Cell-free assays for apoptosis using rat-liver nuclei and extracts of Colo-205 cells at 24 h showed that apoptotic activity of Colo-205 lysates requires the early action of mitochondria. Morphological and functional mitochondrial changes were observed at early time points, preceding cleavage of poly (ADP-ribose) polymerase. These results suggest that apoptosis in differentiated Colo-205 cells involves unrestrained mitochondrial proliferation and progressive membrane dysfunction, a novel mechanism in apoptosis.
Collapse
Affiliation(s)
- M Mancini
- Department of Surgery, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hartlage-Rübsamen M, Rubel EW. Influence of mitochondrial protein synthesis inhibition on deafferentation-induced ultrastructural changes in nucleus magnocellularis of developing chicks. J Comp Neurol 1996; 371:448-60. [PMID: 8842898 DOI: 10.1002/(sici)1096-9861(19960729)371:3<448::aid-cne7>3.0.co;2-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Following cochlea removal in developing chicks, about 30% of the neurons in the ipsilateral second-order auditory nucleus, nucleus magnocellularis, undergo cell death. Administration of chloramphenicol, a mitochondrial protein synthesis inhibitor, results in a pronounced increase in deafferentation-induced cell death. In this study, we examined whether the chloramphenicol enhancement of deafferentation-induced cell death reveals the same ultrastructural characteristics that are seen in degenerating nucleus magnocellularis neurons after cochlea removal alone. Unilateral cochlea removal was performed on anaesthetized posthatch chicks. One group of animals was simultaneously treated with chloramphenicol. Six, twelve, or twenty-four hours following cochlea removal, n. magnocellularis neurons were studied by routine transmission electron microscopy. Particular attention was paid to the integrity of the polyribosomes and rough endoplasmic reticulum. Two ultrastructurally different types of neuronal degeneration were observed in the deafferented nucleus magnocellularis neurons: an early onset electron-lucent type that always involved ribosomal dissociation and a late-onset electron-dense type displaying nuclear pyknosis and severely damaged mitochondria. The percentage of nucleus magnocellularis neurons displaying ribosomal disintegration following cochlea removal was found to be markedly increased after chloramphenicol treatment. This finding suggests that mitochondrial function is important for the maintenance of a functional protein synthesis apparatus following deafferentation.
Collapse
Affiliation(s)
- M Hartlage-Rübsamen
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
26
|
Abstract
The role of mitochondrial biogenesis in hair cell survival after injury was evaluated by inhibiting mitochondrial protein synthesis with chloramphenicol and then studying the effects on hair cell survival after exposure to two different types of ototoxins, gentamicin and acoustic trauma. Seven- to 10-day-old chicks were treated with either a single injection of gentamicin (250 mg/kg) or noise (1500 Hz at 120 dB sound pressure level for 14 hours). A subset of the gentamicin- and noise-treated animals also received chloramphenicol (1200 mg/kg during a 24-hour period) through a subcutaneous osmotic pump. A control group received chloramphenicol alone (1200 mg/kg during a 24-hour period). All animals were sacrificed after 5 days, and their basilar papillae (cochleas) were prepared for scanning electron microscopy. Hair cell loss was quantified with stereologic techniques. Animals treated with chloramphenicol alone did not have any evidence of hair cell loss. Gentamicin-treated animals had characteristic hair cell loss beginning at the basal tip and tapering out along the inferior edge more distally. The addition of chloramphenicol to gentamicin treatment significantly increased hair cell loss by 30%, extending the area of hair cell loss into the superior hair cell region at the distal boundary of the lesion. Pure-tone noise exposure characteristically produced hair cell loss along the inferior edge and occasionally included hair cells along the most superior edge. Addition of chloramphenicol to noise exposure significantly increased hair cell loss by 80%, with extension of the lesion across the full width of the sensory epithelium and basally. These results demonstrate that mitochondrial biogenesis is involved in cellular responses to injury. They suggest that mitochondrial function may regulate the probability of survival after metabolic challenges to hair cell integrity.
Collapse
Affiliation(s)
- G E Hyde
- Department of Otolaryngology/Head & Neck Surgery, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
27
|
Garden GA, Redeker-DeWulf V, Rubel EW. Afferent influences on brainstem auditory nuclei of the chicken: regulation of transcriptional activity following cochlea removal. J Comp Neurol 1995; 359:412-23. [PMID: 7499538 DOI: 10.1002/cne.903590305] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuronal survival in the cochlear nucleus of young animals is regulated by afferent activity. Removal or blockade of nerve VIII input results in the death of 20-40% of neurons in the cochlear nucleus, nucleus magnocellularis (NM), of the 10-14 days posthatch chick. Neuronal death in NM is preceded by complete failure of protein synthesis and degradation of ribosomes. In addition, there is a biphasic change in the immunoreactivity of ribosomes for a monoclonal antiribosomal RNA antibody, Y10B. Initially, the entire population of afferent-deprived NM neurons loses Y10B immunoreactivity, but, after 6 or 12 hours of afferent deprivation, lack of Y10B immunoreactivity specifically marks dying NM neurons. Whether RNA synthesis is also altered in afferent-deprived NM neurons has not previously been studied. To determine whether RNA synthesis in NM neurons is regulated by loss of afferent activity, we injected chicks with 3H-uridine following unilateral cochlea removal and measured the incorporation of RNA precursor with tissue autoradiography. As early as 1 hour after cochlea removal, there was a significant decrease in 3H-uridine incorporation by afferent-deprived NM neurons. After longer periods of afferent deprivation (6 or 12 hours), the majority of dying NM neurons (marked by loss of Y10B immunoreactivity) fail to incorporate RNA precursor. Six or 12 hours following cochlea removal, the subpopulation of surviving NM neurons incorporates 3H-uridine at increased levels over those observed 1 or 3 hours after cochlea removal. These findings suggest that nuclear function is regulated by afferent synaptic activity and that failure of RNA synthesis occurs early in the cell death process.
Collapse
Affiliation(s)
- G A Garden
- Virginia Merrill Bloedel Hearing Research Center, Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
28
|
Abstract
Early sensory stimulation plays a key role in shaping the structure and function of the developing olfactory system. Here, we provide the first direct evidence for apoptotic cell death in the olfactory bulbs of rat pups during normal development and we also demonstrate that olfactory deprivation by unilateral naris occlusion causes a dramatic increase in apoptotic cell death in the glomerular and granule cell layers of the deprived bulb. The accessory olfactory bulbs displayed a remarkably high basal level of apoptosis but the occluded accessory bulb did not differ in that regard from the control accessory bulb. These results suggest that apoptosis may be an important mechanism by which the olfactory system can adjust its cell numbers in response in sensory stimuli experienced in early life, thereby underlying one form of plasticity in the developing olfactory system.
Collapse
Affiliation(s)
- J Najbauer
- Department of Psychobiology, University of Califrnia at Irvine 92717-4550, USA
| | | |
Collapse
|
29
|
Gonzalez-Lima F, Jones D. Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry. Brain Res 1994; 660:34-49. [PMID: 7828000 DOI: 10.1016/0006-8993(94)90836-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objective was to obtain detailed topographic determinations of cytochrome oxidase activity in the gerbil central auditory system at the light microscopic level. Quantitative techniques were developed using (1) tissue standards calibrated to express histochemical measures as actual enzyme activity units, (2) densitometry and image analysis of histochemical reaction product formation, (3) spectrophotometry of cytochrome oxidase activity, and (4) a cobalt-intensified staining procedure compatible with autoradiography and other techniques requiring fresh-frozen brains without perfusion-fixation. Linear relationships between incubation time, section thickness, and activity of dissected brain regions, with their reaction product measured densitometrically were determined. Auditory structures with the high activities showed about 8 times the labeling intensity of the white matter or control sections inhibited with cyanide, glutaraldehyde, or heat. This indicated the high sensitivity of the method without loss of specificity. Specific activity for each of the 18 auditory structures measured were all above the units measured for whole brain homogenates, supporting the notion that basal levels of oxidative metabolism are greater for the auditory system. There was a progressive decrement in activity from brain stem to forebrain auditory structures. The more peripheral nuclei also showed a higher proportion of somatic as compared to neuropil reactivity. In contrast, auditory midbrain and thalamocortical regions were characterized primarily by neuropil reactivity. Comparison of intrinsic patterns of activity with morphological schemes to subdivide nuclei, showed a good correspondence with classical subdivisions derived from Golgi studies. The reported activities may provide a base of normative data in the gerbil for subsequent studies of central auditory functions. The method presented fulfilled established quantitative criteria and provided a more sensitive approach for regional mapping studies of brain cytochrome oxidase activity.
Collapse
Affiliation(s)
- F Gonzalez-Lima
- Institute for Neuroscience, University of Texas at Austin 78712
| | | |
Collapse
|