1
|
Nakayama H, Miyazaki T, Abe M, Yamazaki M, Kawamura Y, Choo M, Konno K, Kawata S, Uesaka N, Hashimoto K, Miyata M, Sakimura K, Watanabe M, Kano M. Direct and indirect pathways for heterosynaptic interaction underlying developmental synapse elimination in the mouse cerebellum. Commun Biol 2024; 7:806. [PMID: 38961250 PMCID: PMC11222442 DOI: 10.1038/s42003-024-06447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.
Collapse
Affiliation(s)
- Hisako Nakayama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshinobu Kawamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Kawata
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan.
| |
Collapse
|
2
|
Gold MP, Ong W, Masteller AM, Ghasemi DR, Galindo JA, Park NR, Huynh NC, Donde A, Pister V, Saurez RA, Vladoiu MC, Hwang GH, Eisemann T, Donovan LK, Walker AD, Benetatos J, Dufour C, Garzia L, Segal RA, Wechsler-Reya RJ, Mesirov JP, Korshunov A, Pajtler KW, Pomeroy SL, Ayrault O, Davidson SM, Cotter JA, Taylor MD, Fraenkel E. Developmental basis of SHH medulloblastoma heterogeneity. Nat Commun 2024; 15:270. [PMID: 38191555 PMCID: PMC10774283 DOI: 10.1038/s41467-023-44300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.
Collapse
Grants
- R35 NS122339 NINDS NIH HHS
- U01 CA253547 NCI NIH HHS
- U24 CA220341 NCI NIH HHS
- R01 NS089076 NINDS NIH HHS
- R01 CA255369 NCI NIH HHS
- P50 HD105351 NICHD NIH HHS
- R01 NS106155 NINDS NIH HHS
- R01 CA159859 NCI NIH HHS
- P30 CA014089 NCI NIH HHS
- U01 CA184898 NCI NIH HHS
- EIF | Stand Up To Cancer (SU2C)
- The Pediatric Brain Tumour Foundation, The Terry Fox Research Institute, The Canadian Institutes of Health Research, The Cure Search Foundation, Matthew Larson Foundation (IronMatt), b.r.a.i.n.child, Meagan’s Walk, SWIFTY Foundation, The Brain Tumour Charity, Genome Canada, Genome BC, Genome Quebec, the Ontario Research Fund, Worldwide Cancer Research, V-Foundation for Cancer Research, and the Ontario Institute for Cancer Research through funding provided by the Government of Ontario, Canadian Cancer Society Research Institute Impact grant, a Cancer Research UK Brain Tumour Award, and the Garron Family Chair in Childhood Cancer Research at the Hospital for Sick Children and the University of Toronto. We also thank Yoon-Jae Cho, John Michaels, Koei Chin, Joe Gray, Connie New, and Ali Abdullatif for their help with the manuscript. Additionally, we appreciate support from the USC Norris Comprehensive Cancer Center Translational Pathology Core (P30CA014089), the Pediatric Research Biorepository at CHLA, and the Histology Core at the Koch Institute at MIT.
Collapse
Affiliation(s)
- Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Winnie Ong
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Andrew M Masteller
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julie Anne Galindo
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
| | - Noel R Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Nhan C Huynh
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Veronika Pister
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Raul A Saurez
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria C Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Grace H Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tanja Eisemann
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura K Donovan
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam D Walker
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
| | - Joseph Benetatos
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Christelle Dufour
- Department of Child and Adolescent Oncology, Gustave Roussy, Villejuif, France
- INSERM U981, Molecular Predictors and New Targets in Oncology, University Paris-Saclay, Villejuif, France
| | - Livia Garzia
- Cancer Research Program, McGill University, Montreal, QC, Canada
- MUHC Research Institute, McGill University, Montreal, QC, Canada
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Robert J Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jill P Mesirov
- Department of Medicine, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Andrey Korshunov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Quantitative analysis of NMDA receptor subunits proteins in mouse brain. Neurochem Int 2023; 165:105517. [PMID: 36913980 DOI: 10.1016/j.neuint.2023.105517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) are tetrameric channel complex composed of two subunits of GluN1, which is encoded by a single gene and diversified by alternative splicing, and two subunits from four subtypes of GluN2, leading to various combinations of subunits and channel specificities. However, there is no comprehensive quantitative analysis of GluN subunit proteins for relative comparison, and their compositional ratios at various regions and developmental stages have not been clarified. Here we prepared six chimeric subunits, by fusing an N-terminal side of the GluA1 subunit with a C-terminal side of each of two splicing isoforms of GluN1 subunit and four GluN2 subunits, with which titers of respective NMDAR subunit antibodies could be standardized using common GluA1 antibody, thus enabling quantification of relative protein levels of each NMDAR subunit by western blotting. We determined relative protein amounts of NMDAR subunits in crude, membrane (P2) and microsomal fractions prepared from the cerebral cortex, hippocampus and cerebellum in adult mice. We also examined amount changes in the three brain regions during developmental stages. Their relative amounts in the cortical crude fraction were almost parallel to those of mRNA expression, except for some subunits. Interestingly, a considerable amount of GluN2D protein existed in adult brains, although its transcription level declines after early postnatal stages. GluN1 was larger in quantity than GluN2 in the crude fraction, whereas GluN2 increased in the membrane component-enriched P2 fraction, except in the cerebellum. These data will provide the basic spatio-temporal information on the amount and composition of NMDARs.
Collapse
|
4
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
5
|
Gale JR, Kosobucki GJ, Hartnett-Scott KA, Aizenman E. Imprecision in Precision Medicine: Differential Response of a Disease-Linked GluN2A Mutant to NMDA Channel Blockers. Front Pharmacol 2021; 12:773455. [PMID: 34776984 PMCID: PMC8581401 DOI: 10.3389/fphar.2021.773455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in N-methyl-d-aspartate receptors (NMDAR) subunits have been implicated in a growing number of human neurodevelopmental disorders. Previously, a de novo mutation in GRIN2A, encoding the GluN2A subunit, was identified in a patient with severe epilepsy and developmental delay. This missense mutation, which leads to GluN2A-P552R, produces significant dendrotoxicity in transfected rodent cortical neurons, as evidenced by pronounced dendritic blebbing. This injurious process can be prevented by treatment with the NMDA antagonist memantine. Given the increasing use of FDA approved NMDA antagonists to treat patients with GRIN mutations, who may have seizures refractory to traditional anti-epileptic drugs, we investigated whether additional NMDA antagonists were effective in attenuating neurotoxicity associated with GluN2A-P552R expression. Intriguingly, we found that while treatment with memantine can effectively block GluN2A-P552R-mediated dendrotoxicity, treatment with ketamine does not, despite the fact that both drugs work as open NMDAR channel blockers. Interestingly, we found that neurons expressing GluN2A-P552R were more vulnerable to an excitotoxic insult-an effect that, in this case, could be equally rescued by both memantine and ketamine. These findings suggest that GluN2A-P552R induced dendrotoxicity and increased vulnerability to excitotoxic stress are mediated through two distinct mechanisms. The differences between memantine and ketamine in halting GluN2A-P552R dendrotoxicity could not be explained by NMDA antagonist induced changes in MAP or Src kinase activation, previously shown to participate in NMDA-induced excitotoxicity. Our findings strongly suggest that not all NMDA antagonists may be of equal clinical utility in treating GRIN2A-mediated neurological disorders, despite a shared mechanism of action.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gabrielle J Kosobucki
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Karen A Hartnett-Scott
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
NMDARs in granule cells contribute to parallel fiber-Purkinje cell synaptic plasticity and motor learning. Proc Natl Acad Sci U S A 2021; 118:2102635118. [PMID: 34507990 PMCID: PMC8449340 DOI: 10.1073/pnas.2102635118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Long-term synaptic plasticity is believed to be the cellular substrate of learning and memory. Synaptic plasticity rules are defined by the specific complement of receptors at the synapse and the associated downstream signaling mechanisms. In young rodents, at the cerebellar synapse between granule cells (GC) and Purkinje cells (PC), bidirectional plasticity is shaped by the balance between transcellular nitric oxide (NO) driven by presynaptic N-methyl-D-aspartate receptor (NMDAR) activation and postsynaptic calcium dynamics. However, the role and the location of NMDAR activation in these pathways is still debated in mature animals. Here, we show in adult rodents that NMDARs are present and functional in presynaptic terminals where their activation triggers NO signaling. In addition, we find that selective genetic deletion of presynaptic, but not postsynaptic, NMDARs prevents synaptic plasticity at parallel fiber-PC (PF-PC) synapses. Consistent with this finding, the selective deletion of GC NMDARs affects adaptation of the vestibulo-ocular reflex. Thus, NMDARs presynaptic to PCs are required for bidirectional synaptic plasticity and cerebellar motor learning.
Collapse
|
7
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
8
|
Gurma M, Yang YM, Wang LY. Developmental plasticity of NMDA receptors at the calyx of Held synapse. Neuropharmacology 2021; 196:108697. [PMID: 34242682 DOI: 10.1016/j.neuropharm.2021.108697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Excitatory synaptic transmission is largely mediated by glutamate receptors in central synapses, such as the calyx of Held synapse in the auditory brainstem. This synapse is best known for undergoing extensive morphological and functional changes throughout early development and thereby has served as a prominent model system to study presynaptic mechanisms of neurotransmitter release. However, the pivotal roles of N-methyl-d-aspartate receptors (NMDARs) in gating acute forms of activity-dependent, persistent plasticity in vitro and chronic developmental remodeling in vivo are hardly noted. This article will provide a retrospective review of key experimental evidence to conceptualize the impact of a transient abundance of NMDARs during the early postnatal stage on the functionality of fast-spiking central synapses while raising a series of outstanding questions that are of general significance for understanding the developing brain in health and diseases. This article is part of the special Issue on "Glutamate Receptors - NMDA receptors".
Collapse
Affiliation(s)
- Maria Gurma
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota, Duluth MN, 55812, USA
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
9
|
N-terminal alternative splicing of GluN1 regulates the maturation of excitatory synapses and seizure susceptibility. Proc Natl Acad Sci U S A 2019; 116:21207-21212. [PMID: 31570583 DOI: 10.1073/pnas.1905721116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of NMDA receptors (NMDARs) in the brain are composed of 2 GluN1 and 2 GluN2 subunits. The inclusion or exclusion of 1 N-terminal and 2 C-terminal domains of GluN1 results in 8 splicing variants that exhibit distinct temporal and spatial patterns of expression and functional properties. However, previous functional analyses of Grin1 variants have been done using heterologous expression and the in vivo function of Grin1 splicing is unknown. Here we show that N-terminal splicing of GluN1 has important functions in the maturation of excitatory synapses. The inclusion of exon 5 of Grin1 is up-regulated in several brain regions such as the thalamus and neocortex. We find that deletion of Grin1 exon 5 disrupts the developmental remodeling of NMDARs in thalamic neurons and the effect is distinct from that of Grin2a (GluN2A) deletion. Deletion of Grin2a or exon 5 of Grin1 alone partially attenuates the shortening of NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs) during early life, whereas deletion of both Grin2a and exon 5 of Grin1 completely abolishes the developmental change in NMDAR-EPSC decay time. Deletion of exon 5 of Grin1 leads to an overproduction of excitatory synapses in layer 5 pyramidal neurons in the cortex and increases seizure susceptibility in adult mice. Our findings demonstrate that N-terminal splicing of GluN1 has important functions in synaptic maturation and neuronal network excitability.
Collapse
|
10
|
Shen L, Yang Q, He Y, Zou X, Cao Z. BmK NT1-induced neurotoxicity is mediated by PKC/CaMKⅡ-dependent ERK1/2 and p38 activation in primary cultured cerebellar granule cells. Toxicology 2019; 421:22-29. [PMID: 30940546 DOI: 10.1016/j.tox.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 01/08/2023]
Abstract
Voltage-gated sodium channels (VGSCs) represent molecular targets for a number of potent neurotoxins that affect the ion permeation or gating kinetics. BmK NT1, an α-scorpion toxin purified from Buthus martensii Karch (BMK), induces excitatory neurotoxicity by activation of VGSCs with subsequent overloading of intracellular Ca2+ in cerebellar granule cells (CGCs). In the current study, we further investigated signaling pathways responsible for BmK NT1-induced neurotoxicity in CGCs. BmK NT1 exposure induced neuronal death in different development stages of CGCs with similar potencies ranging from 0.21-0.48 μM. The maximal neuronal death induced by BmK NT1 gradually increased from 25.6% at 7 days in vitro (DIVs) to 42.1%, 47.8%, and 67.2% at 10, 13, and 16 DIVs, respectively, suggesting that mature CGCs are more vulnerable to BmK NT1 exposure. Application of Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) inhibitors, KN-62 or KN-93, but not Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609, completely abolished BmK NT1-induced neuronal death. Moreover, BmK NT1 exposure stimulated CaMKⅡ phosphorylation. BmK NT1 also stimulated extracellular regulated protein kinases 1/2 (ERK1/2) and p38 phosphorylation which was abolished by tetrodotoxin demonstrating the role of VGSCs on BmK NT1-induced ERK1/2 and p38 phosphorylation. However, BmK NT1 didn't affect c-Jun N-terminal kinase (JNK) phosphorylation. In addition, both ERK1/2 inhibitor, U0126 and p38 inhibitor, SB203580 attenuated BmK NT1-induced neuronal death. Both PKC inhibitor, Gö 6983 and CaMKⅡ inhibitor, KN-62 abolished BmK NT1-induced ERK1/2 and p38 phosphorylation. Considered together, these data demonstrate that BmK NT1-induced neurotoxicity is through PKC/CaMKⅡ mediated ERK1/2 and p38 activation.
Collapse
Affiliation(s)
- Liping Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qundi Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yuwei He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
11
|
Esposito S, Principi N, Calabresi P, Rigante D. An evolving redefinition of autoimmune encephalitis. Autoimmun Rev 2018; 18:155-163. [PMID: 30572142 DOI: 10.1016/j.autrev.2018.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
Abstract
Autoimmune encephalitis encompasses a wide variety of protean pathologic processes associated with the presence of antibodies against neuronal intracellular proteins, synaptic receptors, ion channels and/or neuronal surface proteins. This type of encephalitis can also involve children with complex patterns of seizures and unexpected behavioural changes, which jeopardize their prompt recognition and treatment. Many epidemiological studies have shown that numerous immune-based forms of encephalitis can be encountered, almost surpassing the rate of postinfectious encephalitides. However, the overall exact prevalence of autoimmune encephalopathies remains underestimated, and the definition of diagnostic algorithms results muddled. The spectrum of neuropsychiatric manifestations in the pediatric population with autoimmune encephalitis is less clear than in adults, but the integration of clinical, immunological, electrophysiological and neuroradiological data is essential for a general approach to patients. In this review we report the most relevant data about both immunologic and clinical characteristics of the main autoimmune encephalitides recognized so far, with the aim of assisting clinicians in the differential diagnosis and favouring an early effective treatment. Correlations between phenotype and autoantibodies involved in the neurological damage of autoimmune encephalitis are largely unknown in the first years of life, because of the relatively small number of pediatric patients adequately studied. Future multicenter collaborative studies are needed to improve the diagnostic approach and tailor personalized therapies in the long-term.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy.
| | | | - Paolo Calabresi
- Neurology Clinic, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
12
|
Berntsen HF, Bjørklund CG, Strandabø R, Haug TM, Moldes-Anaya A, Fuentes-Lazaro J, Verhaegen S, Paulsen RE, Tasker RA, Ropstad E. PFOS-induced excitotoxicity is dependent on Ca2+ influx via NMDA receptors in rat cerebellar granule neurons. Toxicol Appl Pharmacol 2018; 357:19-32. [DOI: 10.1016/j.taap.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
|
13
|
Xu YH, Zhang GJ, Zhao JT, Chu CP, Li YZ, Qiu DL. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer. Neurosci Lett 2017; 660:135-139. [PMID: 28919538 DOI: 10.1016/j.neulet.2017.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/28/2023]
Abstract
The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice.
Collapse
Affiliation(s)
- Yin-Hua Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Guang-Jian Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Pain, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Jing-Tong Zhao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Yu-Zi Li
- Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China.
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China.
| |
Collapse
|
14
|
Colnaghi S, Colagiorgio P, Versino M, Koch G, D'Angelo E, Ramat S. A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans. Brain Stimul 2017; 10:817-827. [PMID: 28501325 DOI: 10.1016/j.brs.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Saccade pulse amplitude adaptation is mediated by the dorsal cerebellar vermis and fastigial nucleus. Long-term depression at the parallel fibre-Purkinjie cell synapses has been suggested to provide a cellular mechanism for the corresponding learning process. The mechanisms and sites of this plasticity, however, are still debated. OBJECTIVE To test the role of cerebellar plasticity phenomena on adaptive saccade control. METHODS We evaluated the effect of continuous theta burst stimulation (cTBS) over the posterior vermis on saccade amplitude adaptation and spontaneous recovery of the initial response. To further identify the substrate of synaptic plasticity responsible for the observed adaptation impairment, subjects were pre-treated with memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist. RESULTS Amplitude adaptation was altered by cTBS, suggesting that cTBS interferes with cerebellar plasticity involved in saccade adaptation. Amplitude adaptation and spontaneous recovery were not affected by cTBS when recordings were preceded by memantine administration. CONCLUSION The effects of cTBS are NMDAR-dependent and are likely to involve long-term potentiation or long-term depression at specific synaptic connections of the granular and molecular layer, which could effectively take part in cerebellar motor learning.
Collapse
Affiliation(s)
- S Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy; Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy.
| | - P Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - M Versino
- Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - G Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy; Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
| | - E D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
| | - S Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
15
|
Hackos DH, Hanson JE. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology 2016; 112:34-45. [PMID: 27484578 DOI: 10.1016/j.neuropharm.2016.07.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
NMDA Receptors (NMDARs) play key roles in synaptic physiology and NMDAR hypofunction has been implicated in various neurological conditions. In recent years an increasing number of positive allosteric modulators (PAMs) of NMDARs have been discovered and characterized. These diverse PAM classes vary not only in their binding sites and GluN2 subunit selectivity profiles, but also in the nature of their impacts on channel function. Major differences exist in the degree of slowing of channel deactivation and shifting of apparent agonist affinity between different classes of PAMs. Here we review the diverse modes of potentiation by the currently known classes of NMDAR PAMs and discuss the potential consequences of different types of potentiation in terms of desirable and undesirable effects on brain function. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- David H Hackos
- Department of Neuroscience, 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Jesse E Hanson
- Department of Neuroscience, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
16
|
Curtice KJ, Leavitt LS, Chase K, Raghuraman S, Horvath MP, Olivera BM, Teichert RW. Classifying neuronal subclasses of the cerebellum through constellation pharmacology. J Neurophysiol 2015; 115:1031-42. [PMID: 26581874 DOI: 10.1152/jn.00894.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022] Open
Abstract
A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.
Collapse
Affiliation(s)
- Kigen J Curtice
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Lee S Leavitt
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin Chase
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | | | | | | |
Collapse
|
17
|
Bidoret C, Bouvier G, Ayon A, Szapiro G, Casado M. Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons. Front Synaptic Neurosci 2015; 7:1. [PMID: 25750623 PMCID: PMC4335256 DOI: 10.3389/fnsyn.2015.00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 12/18/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) in cerebellar molecular layer interneurons (MLIs) are expressed and activated in unusual ways: at parallel fibre (PF) synapses they are only recruited by repetitive stimuli, suggesting an extrasynaptic location, whereas their activation by climbing fibre is purely mediated by spillover. NMDARs are thought to play an important role in plasticity at different levels of the cerebellar circuitry. Evaluation of the location, functional properties and physiological roles of NMDARs will be facilitated by knowledge of the NMDAR isoforms recruited. Here we show that MLI-NMDARs activated by both PF and climbing fibre inputs have similar kinetics and contain GluN2B but not GluN2A subunits. On the other hand, no evidence was found of functional NMDARs in the axons of MLIs. At the PF-Purkinje cell (PF-PC) synapse, the activation of GluN2A-containing NMDARs has been shown to be necessary for the induction of long-term depression (LTD). Our results therefore provide a clear distinction between the NMDARs located on MLIs and those involved in plasticity at PF-PC synapses.
Collapse
Affiliation(s)
- Céline Bidoret
- Département de Biologie, Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197 Paris, France
| | - Guy Bouvier
- Département de Biologie, Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197 Paris, France
| | - Annick Ayon
- Département de Biologie, Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197 Paris, France
| | - Germán Szapiro
- Département de Biologie, Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197 Paris, France
| | - Mariano Casado
- Département de Biologie, Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197 Paris, France
| |
Collapse
|
18
|
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2(nd) postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognitive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats.
Collapse
Affiliation(s)
- E Szczurowska
- Institute of Physiology AS CR, Prague, Czech Republic.
| | | |
Collapse
|
19
|
Tavassoli E, Saboory E, Teshfam M, Rasmi Y, Roshan‐Milani S, Ilkhanizadeh B, Hesari AK. Effect of prenatal stress on density of NMDA receptors in rat brain. Int J Dev Neurosci 2013; 31:790-5. [DOI: 10.1016/j.ijdevneu.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elham Tavassoli
- Faculty of Veterinary SciencesIslamic Azad University, Science and Research CampusTehranIran
| | - Ehsan Saboory
- Neurophysiology Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Masood Teshfam
- Department of Physiology, Faculty of Veterinary SciencesIslamic Azad University, Science and Research CampusTehranIran
| | - Yusef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Shiva Roshan‐Milani
- Neurophysiology Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Behrooz Ilkhanizadeh
- Department of PathologyFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Ali Kalantari Hesari
- Department of Histology, Faculty of Veterinary SciencesUrmia UniversityUrmiaIran
| |
Collapse
|
20
|
Chandrasekar R. Alcohol and NMDA receptor: current research and future direction. Front Mol Neurosci 2013; 6:14. [PMID: 23754976 PMCID: PMC3664776 DOI: 10.3389/fnmol.2013.00014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.
Collapse
Affiliation(s)
- Raman Chandrasekar
- Department of Biochemistry and Biotechnology Core Facility, Kansas State University Manhattan, KS, USA
| |
Collapse
|
21
|
Sanders EM, Nguyen MA, Zhou KC, Hanks ME, Yusuf KA, Cox DN, Dumas TC. Developmental modification of synaptic NMDAR composition and maturation of glutamatergic synapses: matching postsynaptic slots with receptor pegs. THE BIOLOGICAL BULLETIN 2013; 224:1-13. [PMID: 23493503 DOI: 10.1086/bblv224n1p1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The numbers and types of ionotropic glutamate receptors at most vertebrate central excitatory synapses are altered as a function of changes in input activity patterns that occur during postnatal development. Activity-dependent developmental alterations in glutamate receptors underlie lasting changes in synaptic efficacy (plasticity) and metaplasticity (the plasticity of synaptic plasticity), which are critical elements of normal brain maturation. Understanding the specific involvement of glutamate receptors in synaptic development and function is made multiplicatively complex by the existence of a large number of glutamate receptor subunits, numerous subunit-specific amino acid sequences that regulate receptor function, and subunit-specific synaptic insertion restrictions imposed by associated anchoring proteins. Many receptor properties are altered when subunits are switched, so it is unclear which individual receptor property or properties underlie changes in synaptic function and plasticity during postnatal development. As a result, a more detailed understanding of the factors that regulate synaptic and cognitive development will involve mutations in glutamate receptor subunits that separate individual receptor properties and permit synaptic insertion at both immature and mature synapses in genetically modified organisms. This position paper focuses on structural modifications in N-methyl-d-aspartate receptors (NMDARs) that occur during postnatal forebrain development and attempts to provide a method for pursuing a more complete understanding of the functional ramifications of developmental alterations in NMDAR subunit composition.
Collapse
Affiliation(s)
- Erin M Sanders
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Fan X, Hughes KE, Jinnah HA, Hess EJ. Selective and sustained α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice. J Pharmacol Exp Ther 2011; 340:733-41. [PMID: 22171094 DOI: 10.1124/jpet.111.190082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dystonia is a neurological disorder characterized by involuntary muscle contractions that cause twisting movements and abnormal postures. Functional imaging consistently reveals cerebellar overactivity in dystonic patients regardless of the type or etiology of the disorder. To explore mechanisms that might explain the basis for the cerebellar overactivity in dystonia, normal mice were challenged with intracerebellar application of a variety of agents that induce hyperexcitability. A nonspecific increase in cerebellar excitability, such as that produced by picrotoxin, was not associated with dystonia. Instead, glutamate receptor activation, specifically AMPA receptor activation, was necessary to evoke dystonia. AMPA receptor agonists induced dystonia, and AMPA receptor antagonists reduced the dystonia induced by glutamate receptor agonists. AMPA receptor antagonists also ameliorated the dystonia exhibited by the dystonic mouse mutant tottering, suggesting that AMPA receptors may play a role in some other genetic models of dystonia. Furthermore, AMPA receptor desensitization mediated the expression of dystonia. Preventing AMPA receptor desensitization with cyclothiazide or the nondesensitizing agonist kainic acid exacerbated the dystonic response. These results suggest the novel hypothesis that the cerebellar overactivity observed in neuroimaging studies of patients with dystonia may be an indirect reflection of abnormal glutamate signaling. In addition, these results imply that reducing AMPA receptor activation by blocking AMPA receptors and promoting AMPA receptor desensitization or negative allosteric modulators may prove to be beneficial for treating dystonia.
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
23
|
VEGF modulates NMDA receptors activity in cerebellar granule cells through Src-family kinases before synapse formation. Proc Natl Acad Sci U S A 2011; 108:13782-7. [PMID: 21804034 DOI: 10.1073/pnas.1100341108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NMDA type glutamate receptors (NMDARs) are best known for their role in synaptogenesis and synaptic plasticity. Much less is known about their developmental role before neurons form synapses. We report here that VEGF, which promotes migration of granule cells (GCs) during postnatal cerebellar development, enhances NMDAR-mediated currents and Ca(2+) influx in immature GCs before synapse formation. The VEGF receptor Flk1 forms a complex with the NMDAR subunits NR1 and NR2B. In response to VEGF, the number of Flk1/NR2B coclusters on the cell surface increases. Stimulation of Flk1 by VEGF activates Src-family kinases, which increases tyrosine phosphorylation of NR2B. Inhibition of Src-family kinases abolishes the VEGF-dependent NR2B phosphorylation and amplification of NMDAR-mediated currents and Ca(2+) influx in GCs. These findings identify VEGF as a modulator of NMDARs before synapse formation and highlight a link between an activity-independent neurovascular guidance cue (VEGF) and an activity-regulated neurotransmitter receptor (NMDAR).
Collapse
|
24
|
Idrus NM, McGough NN, Spinetta MJ, Thomas JD, Riley EP. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats. Neurotoxicol Teratol 2011; 33:444-50. [PMID: 21565269 PMCID: PMC3144286 DOI: 10.1016/j.ntt.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. METHODS On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. RESULTS Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. CONCLUSION These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat.
Collapse
Affiliation(s)
- Nirelia M. Idrus
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Nancy N.H. McGough
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Michael J. Spinetta
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Edward P. Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| |
Collapse
|
25
|
Oligodendrocytes as regulators of neuronal networks during early postnatal development. PLoS One 2011; 6:e19849. [PMID: 21589880 PMCID: PMC3093406 DOI: 10.1371/journal.pone.0019849] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/18/2011] [Indexed: 11/30/2022] Open
Abstract
Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development.
Collapse
|
26
|
NR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience 2011; 176:274-83. [DOI: 10.1016/j.neuroscience.2010.12.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 01/28/2023]
|
27
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
28
|
Development of an anatomical technique for visualizing the mode of climbing fiber innervation in Purkinje cells and its application to mutant mice lacking GluRδ2 and Ca(v)2.1. Anat Sci Int 2010; 86:10-8. [PMID: 21153457 DOI: 10.1007/s12565-010-0095-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/27/2010] [Indexed: 02/07/2023]
Abstract
In the adult cerebellum, a single climbing fiber (CF) innervates proximal dendrites of Purkinje cells (PCs). This monoinnervation is established by the developmental elimination of surplus CFs through homosynaptic competition among multiply innervating CFs and heterosynaptic competition between CFs and parallel fibers, i.e., granule cell axons innervating distal PC dendrites. Although the developmental process of CF monoinnervation and defects in it in mutant and experimental animal models have been extensively studied by electrophysiological techniques, for quite some time this subject was poorly understood from a morphological perspective due to a lack of neuroanatomical methods that could distinguish CFs with different neuronal origins. Soon after the identification of type 2 vesicular glutamate transporter (VGluT2) that selectively detects CF terminals in the molecular layer, we developed a novel method of combined anterograde tracer labeling and VGluT2 immunohistochemistry. This method enables us to identify the mode (mono vs. multiple) of CF innervation and the site of multiple innervation. Since then, we have applied this method to various kinds of gene-manipulated mice manifesting ataxia and other cerebellar phenotypes. In this review, we summarize experimental procedures for the combined tracer/VGluT2 labeling method, and then introduce what we have learned by applying this method in studies on the role of GluRδ2 and Ca(v)2.1 in CF monoinnervation. This method has provided informative anatomical correlates to electrophysiological data and vice versa, and will extend our knowledge of the molecular and cellular mechanisms for the development, plasticity, degeneration, and repair of the CF-PC projection system.
Collapse
|
29
|
Idrus NM, McGough NNH, Riley EP, Thomas JD. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss. Alcohol Clin Exp Res 2010; 35:355-64. [PMID: 21070252 DOI: 10.1111/j.1530-0277.2010.01351.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. METHODS Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. RESULTS Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. CONCLUSIONS Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, California 92120, USA
| | | | | | | |
Collapse
|
30
|
Dumas TC. Postnatal alterations in induction threshold and expression magnitude of long-term potentiation and long-term depression at hippocampal synapses. Hippocampus 2010; 22:188-99. [PMID: 21069779 DOI: 10.1002/hipo.20881] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2010] [Indexed: 11/05/2022]
Abstract
Activity-dependent synaptic plasticity refines neural networks during development and subserves information processing in adulthood. Previous research has revealed postnatal alterations in synaptic plasticity at nearly all forebrain synapses, suggesting different forms of synaptic plasticity may contribute to network development and information processing. To assess possible relationships between modifications in synaptic plasticity and maturation of cognitive ability, we examined excitatory synaptic function in area CA1 of the mouse hippocampus ∼3 weeks of age, when hippocampal-dependent learning and memory abilities first emerge. Long-term potentiation (LTP) and depression (LTD) of synaptic efficacy were observed in slices from juvenile animals younger than 3 weeks of age. Both pre- and postsynaptic mechanisms supported LTP and LTD in juveniles. After the third postnatal week, the magnitude of LTP was reduced and the threshold for postsynaptic induction was reduced, but the threshold for presynaptic induction was increased. The reduced threshold for postsynaptic LTP appeared to be due, partly, to an increase in baseline excitatory synaptic strength, which likely permitted greater postsynaptic depolarization during induction. Low frequency stimulation did not induce LTD at this more mature stage, but it blocked subsequent induction of LTP, suggesting metaplastic differences across age groups. Late postnatal modifications in activity-dependent synaptic plasticity might reflect attenuation of mechanisms more closely tied to network formation (presynaptic potentiation and pre- and postsynaptic depression) and unmasking of mechanisms underlying information processing and storage (associative postsynaptic potentiation), which likely impact the integrative capacity of the network and regulate the emergence of adult-like cognitive abilities.
Collapse
Affiliation(s)
- Theodore C Dumas
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.
| |
Collapse
|
31
|
Cell Death as a Regulator of Cerebellar Histogenesis and Compartmentation. THE CEREBELLUM 2010; 10:373-92. [DOI: 10.1007/s12311-010-0222-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Stoneham ET, Sanders EM, Sanyal M, Dumas TC. Rules of engagement: factors that regulate activity-dependent synaptic plasticity during neural network development. THE BIOLOGICAL BULLETIN 2010; 219:81-99. [PMID: 20972254 DOI: 10.1086/bblv219n2p81] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.
Collapse
Affiliation(s)
- Emily T Stoneham
- Molecular Neuroscience Department, George MasonUniversity, Fairfax, Virginia 22030, USA
| | | | | | | |
Collapse
|
33
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2612] [Impact Index Per Article: 186.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gerber AM, Beaman-Hall CM, Mathur A, Vallano ML. Reduced blockade by extracellular Mg(2+) is permissive to NMDA receptor activation in cerebellar granule neurons that model a migratory phenotype. J Neurochem 2010; 114:191-202. [PMID: 20403073 DOI: 10.1111/j.1471-4159.2010.06746.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NMDA receptors (NMDAR) contribute to neuronal development throughout the CNS. However, their mode(s) of activation preceding synaptic maturation is unclear, as they are not co-localized with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) which normally provide sufficient depolarization to relieve voltage-dependent blockade by Mg(2+). We used cerebellar granule neurons (CGNs) cultured at a near-physiological KCl concentration to examine maturation-dependent changes in NMDAR responses. In contrast, most studies use KCl-supplemented medium to promote survival. At 2-4 days in vitro CGNs: (i) express developmental markers resembling the in vivo migratory phenotype; (ii) maintain a basal amount of calcium responsive element-binding protein phosphorylation that requires NMDARs and calcium/calmodulin-dependent kinases, but not AMPARs; (iii) exhibit NMDA-mediated Ca(2+) influx not effectively blocked by ambient Mg(2+) (0.75 mM) or AMPARs; (iv) maintain a more depolarized resting membrane potential and increased resistance compared to synaptically-connected CGNs. Moreover, migrating CGNs in explant cultures demonstrate NMDA-mediated Ca(2+) influx not effectively blocked by 0.75 mM Mg(2+), and NMDAR but not AMPAR antagonists slow migration. These data suggest the biophysical properties of immature CGNs render NMDARs less sensitive to Mg(2+) blockade, enhancing the likelihood of activation in the absence of AMPAR depolarization.
Collapse
Affiliation(s)
- Adam M Gerber
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
35
|
Ma YY, Cepeda C, Cui CL. The role of striatal NMDA receptors in drug addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 89:131-46. [PMID: 19900618 DOI: 10.1016/s0074-7742(09)89006-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.
Collapse
Affiliation(s)
- Yao-Ying Ma
- Stefan & Shirley Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
36
|
Ohtsuki G, Piochon C, Hansel C. Climbing fiber signaling and cerebellar gain control. Front Cell Neurosci 2009; 3:4. [PMID: 19597563 PMCID: PMC2708967 DOI: 10.3389/neuro.03.004.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/09/2009] [Indexed: 12/02/2022] Open
Abstract
The physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje cell synapses have become hallmark features of cerebellar physiology. However, the key role of climbing fiber signaling in cerebellar motor learning has been challenged by recent reports of forms of synaptic and non-synaptic plasticity in the cerebellar cortex that do not involve climbing fiber activity, but might well play a role in cerebellar learning. Moreover, cerebellar LTD does not seem to strictly require climbing fiber activity. These observations make it necessary to re-evaluate the role of climbing fiber signaling in cerebellar function. Here, we argue that climbing fiber signaling is about adjusting relative probabilities for the induction of LTD and long-term potentiation (LTP) at parallel fiber synapses. Complex spike-associated, dendritic calcium transients control postsynaptic LTD and LTP induction. High calcium transients, provided by complex spike activity, do not only favor postsynaptic LTD induction, but simultaneously trigger retrograde cannabinoid signaling, which blocks the induction of presynaptic LTP. Plasticity of the climbing fiber input itself provides additional means to fine-tune complex spike associated calcium signaling and thus to adjust the gain of heterosynaptic climbing fiber control. In addition to dendritic calcium transients, climbing fiber activity leads to the release of the neuropeptide corticotropin-releasing factor (CRF), which facilitates LTD induction at both parallel fiber and climbing fiber synapses.
Collapse
Affiliation(s)
- Gen Ohtsuki
- Department of Neurobiology, University of Chicago Chicago, IL, USA
| | | | | |
Collapse
|
37
|
Zamalloa T, Bailey CP, Pineda J. Glutamate-induced post-activation inhibition of locus coeruleus neurons is mediated by AMPA/kainate receptors and sodium-dependent potassium currents. Br J Pharmacol 2009; 156:649-61. [PMID: 19226256 DOI: 10.1111/j.1476-5381.2008.00004.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Locus coeruleus (LC) neurons respond to sensory stimuli with a glutamate-triggered burst of spikes followed by an inhibition. The aim of our work was to characterize the inhibitory effect of glutamate in the LC. EXPERIMENTAL APPROACH Single-unit extracellular and patch-clamp recordings were performed to examine glutamate responses in rat brain slices containing the LC. KEY RESULTS Glutamate caused an initial activation followed by a late post-activation inhibition (PAI). Both effects were blocked by an AMPA/kainate receptor antagonist but not by NMDA or metabotropic glutamate receptor antagonists. All glutamate receptor agonists were able to activate neurons, but only AMPA and quisqualate caused inhibition. In neurons clamped at -60 mV, glutamate and AMPA induced inward, followed by outward, currents, with the latter reversing polarity at -110 mV. Glutamate-induced PAI was not modified by alpha(2)-adrenoceptor, micro opioid, A(1) adenosine and GABA(A/B) receptor antagonists or Ca(2+)-dependent release blockade, but it was reduced by raising the extracellular K(+) concentration. Glutamate-induced PAI was not affected by several potassium channel, Na(+)/K(+) pump, PKC and neuronal NO synthase inhibitors or lowering the extracellular Ca(2+) concentration. The Na(+)-activated K channel opener bithionol concentration-dependently potentiated glutamate-induced PAI, whereas partial (80%) Na(+) replacement reduced glutamate- and AMPA-induced PAI. Finally, reverse transcription polymerase chain reaction assays showed the presence of mRNA for the Ca(2+)-impermeable GluR2 subunit in the LC. CONCLUSIONS AND IMPLICATIONS Glutamate induces a late PAI in the LC, which may be mediated by a novel postsynaptic Na(+)-dependent K(+) current triggered by AMPA/kainate receptors.
Collapse
Affiliation(s)
- Teresa Zamalloa
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, Bizkaia, Spain
| | | | | |
Collapse
|
38
|
Dual regulation of NR2B and NR2C expression by NMDA receptor activation in mouse cerebellar granule cell cultures. Proc Natl Acad Sci U S A 2008; 105:12010-5. [PMID: 18685090 DOI: 10.1073/pnas.0805574105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the developing cerebellum, switching of the subunit composition of NMDA receptors occurs in granule cells from NR2B-containing receptors to NR2C-containing ones. We investigated the mechanisms underlying switching of NR2B and NR2C subunit composition in primary cultures of mouse granule cells at the physiological KCl concentration (5 mM). Granule cells extensively extended their neuritic processes 48 h after having been cultured in serum-free medium containing 5 mM KCl. Consistent with this morphological change, NR2B mRNA and NR2C mRNA were down- and up-regulated, respectively, in the granule cells. This dual regulation of the two mRNAs was abrogated by blocking excitation of granule cells with TTX. This neuronal activity-dependent regulation of NR2B and NR2C mRNAs was abolished by the addition of selective antagonists of AMPA receptors and NMDA receptors. Furthermore, the dual regulation of NR2B and NR2C mRNAs in TTX-treated cells was restored by the addition of NMDA in the presence of the AMPA receptor antagonist, but not by that of AMPA in the presence of the NMDA receptor antagonist. Importantly, the NMDA receptor activation drove the NR2B/NR2C switching of NMDA receptors in the cell-surface membrane of granule cells. This investigation demonstrates that stimulation of NMDA receptors in conjunction with the AMPA receptor-mediated excitation of granule cells plays a key role in functional subunit switching of NMDA receptors in maturing granule cells at the physiological KCl concentration.
Collapse
|
39
|
Expression of Rho GTPases Rho‐A and Rac1 in the adult and developing gerbil cerebellum. Int J Dev Neurosci 2008; 26:723-32. [DOI: 10.1016/j.ijdevneu.2008.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/06/2008] [Accepted: 07/07/2008] [Indexed: 12/21/2022] Open
|
40
|
Jiao J, Nakajima A, Janssen WGM, Bindokas VP, Xiong X, Morrison JH, Brorson JR, Tang YP. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning. PLoS One 2008; 3:e1684. [PMID: 18301761 PMCID: PMC2246013 DOI: 10.1371/journal.pone.0001684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 01/17/2008] [Indexed: 02/06/2023] Open
Abstract
It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.
Collapse
Affiliation(s)
- Jianwei Jiao
- Department of Psychiatry, University of Chicago, Chicago, Illinois, United States of America
| | - Akira Nakajima
- Department of Psychiatry, University of Chicago, Chicago, Illinois, United States of America
| | - William G. M. Janssen
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Vytautas P. Bindokas
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois, United States of America
| | - Xiaoli Xiong
- Department of Psychiatry, University of Chicago, Chicago, Illinois, United States of America
| | - John H. Morrison
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - James R. Brorson
- Department of Neurology, University of Chicago, Chicago, Illinois, United States of America
| | - Ya-Ping Tang
- Department of Psychiatry, University of Chicago, Chicago, Illinois, United States of America
- *E-mail:
| |
Collapse
|
41
|
Abstract
In Pavlovian delay eyeblink conditioning, the cerebellum represents the passage-of-time (POT) between onsets of conditioned and unconditioned stimuli (CS and US, respectively). To study possible computational mechanisms of the POT representation we built a large-scale spiking network model of the cerebellum. Consistent with our previous rate-coding model, we found two conditions necessary for the present model to represent the POT with a dynamic population of active granule cells: (i) long temporal integration of input signals; and (ii) random recurrent connections between granule and Golgi cells. When these conditions were satisfied, a nonrecurrent sequence of active granule cell populations was generated in response to a CS and, conversely, the POT from the CS onset was able to be read out from the sequence. Specifically, simulated N-methyl-D-aspartate (NMDA) channels with a long decay time constant at granule and Golgi cells were responsible for the long temporal integration. Thus, blocking the NMDA channels or ablating Golgi cells impaired the POT representation. Simulated glomerulus structure made POT representation robust against noise in mossy fibre inputs. Long-term potentiation induced at mossy fibre synapses on granule cells also served to enhance the robustness. We reproduced some experimental results of Pavlovian delay eyeblink conditioning using the present model. These results suggest that the recurrent network in the granular layer and NMDA channels in granule and Golgi cells play an essential role in the timing mechanisms in the cerebellum, whereas the glomerulus serves to realize a robust representation of time.
Collapse
Affiliation(s)
- Tadashi Yamazaki
- Laboratory for Visual Neurocomputing, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
42
|
Watanabe M. Molecular Mechanisms Governing Competitive Synaptic Wiring in Cerebellar Purkinje Cells. TOHOKU J EXP MED 2008; 214:175-90. [DOI: 10.1620/tjem.214.175] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Piochon C, Irinopoulou T, Brusciano D, Bailly Y, Mariani J, Levenes C. NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci 2007; 27:10797-809. [PMID: 17913913 PMCID: PMC6672834 DOI: 10.1523/jneurosci.2422-07.2007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among integrative neurons displaying long-term synaptic plasticity, adult Purkinje cells seemed to be an exception by lacking functional NMDA receptors (NMDA-Rs). Although numerous anatomical studies have shown both NR1 and NR2 NMDA-R subunits in adult Purkinje cells, patch-clamp studies failed to detect any NMDA currents. Using more recent pharmacological and immunodetection tools, we demonstrate here that Purkinje cells from adult mice respond to exogenous NMDA application and that postsynaptic NMDA-Rs carry part of the climbing fiber-mediated EPSC (CF-EPSC), with undetectable contribution from presynaptic or polysynaptic NMDA currents. We also detect NR2-A/B subunits in adult Purkinje cells by immunohistochemistry. The NMDA-mediated CF-EPSC is barely detectable before 3 weeks postnatal. From the end of the third week, the number of cells displaying the NMDA-mediated CF-EPSC rapidly increases. Soon, this EPSC becomes detectable in all the Purkinje cells but is still very small. Its amplitude continues to increase until 12 weeks after birth. In mature Purkinje cells, we show that the NMDA-Rs contribute to the depolarizing plateau of complex spikes and increase their number of spikelets. Together, these observations demonstrate that mature Purkinje cells express functional NMDA receptors that become detectable in CF-EPSCs at approximately 21 d after birth and control the complex spike waveform.
Collapse
Affiliation(s)
- Claire Piochon
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche (UMR) 7102, Centre National de la Recherche Scientifique (CNRS), Laboratoire Neurobiologie des Processus Adaptifs, Équipe Développement et Vieillissement du Système Nerveux, 75005 Paris, France
| | - Theano Irinopoulou
- Unité 536/Unité 706, Inserm, Institut du Fer à Moulin, F-75005 Paris, France
| | - Daniel Brusciano
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche (UMR) 7102, Centre National de la Recherche Scientifique (CNRS), Laboratoire Neurobiologie des Processus Adaptifs, Équipe Développement et Vieillissement du Système Nerveux, 75005 Paris, France
| | - Yannick Bailly
- Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives UMR 7168, CNRS, Université Louis Pasteur, 67084 Strasbourg, France, and
| | - Jean Mariani
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche (UMR) 7102, Centre National de la Recherche Scientifique (CNRS), Laboratoire Neurobiologie des Processus Adaptifs, Équipe Développement et Vieillissement du Système Nerveux, 75005 Paris, France
- Hôpital Charles Foix, Assistance Publique–Hôpitaux de Paris, 94 Ivry sur Seine, France
| | - Carole Levenes
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche (UMR) 7102, Centre National de la Recherche Scientifique (CNRS), Laboratoire Neurobiologie des Processus Adaptifs, Équipe Développement et Vieillissement du Système Nerveux, 75005 Paris, France
| |
Collapse
|
44
|
Tárnok K, Czöndör K, Jelitai M, Czirók A, Schlett K. NMDA receptor NR2B subunit over-expression increases cerebellar granule cell migratory activity. J Neurochem 2007; 104:818-29. [PMID: 18005003 DOI: 10.1111/j.1471-4159.2007.05051.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamate acting on NMDA receptors (NMDARs) is known to influence cerebellar granule cell migration. Subunit composition of NMDARs in granule cells changes characteristically during development: NR2B subunit containing receptors are abundant during migration towards the internal granule cell layer but are gradually replaced by NR2A and/or NR2C subunits once the final position is reached. Cerebellar granule cell migration was investigated using mutant mouse lines either with a deletion of the NR2C gene (NR2C(-/-) mice) or expressing NR2B instead of the NR2C subunit (NR2C-2B mice). BrdU-labeling revealed that over-expression of NR2B increased granule cell translocation in vivo, while the lack of NR2C subunit did not have any detectable effects on cell migration. Cellular composition of wild-type and mutant dissociated cerebellar granule cell cultures isolated from 10-day-old cerebella were similar, but NR2C-2B cultures had elevated level of NR2B subunits and intracellular Ca2+ imaging revealed higher sensitivity towards the addition of NR2B-selective antagonist in vitro. Time-lapse videomicroscopic observations revealed that average migratory velocity and the proportion of translocating cell bodies were significantly higher in NR2C-2B than in wild-type cultures. Our results provide evidence that NR2B-containing NMDARs can have specialized roles during granule cell migration and can increase migratory speed.
Collapse
Affiliation(s)
- Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
45
|
Renzi M, Farrant M, Cull-Candy SG. Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice. J Physiol 2007; 585:91-101. [PMID: 17901118 PMCID: PMC2327252 DOI: 10.1113/jphysiol.2007.141531] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Among principal neurons, adult Purkinje cells have long been considered unusual in lacking functional NMDA receptors. This view has emerged largely from studies on rats, where NMDA receptors are expressed in Purkinje cells of newborn animals, but are lost after 2 weeks. By contrast, immunolabelling data have shown that Purkinje cells from adult mice express multiple NMDA receptor subunits, suggesting a possible species difference. To investigate the presence of functional NMDA receptors in Purkinje cells of mice, and to explore the contribution of different receptor subunits, we made whole-cell and single-channel patch-clamp recordings from Purkinje cells of wild-type and NR2D-/- mice of different ages. Here we report that multiple NMDA receptor subtypes are indeed expressed in Purkinje cells of young and adult mice; in the adult, both NR2A- and NR2B-containing subtypes are present. Furthermore, we show that NMDA receptor-mediated EPSCs can be evoked by climbing fibre stimulation, and appear to be mediated mainly by NR2A-containing receptors.
Collapse
Affiliation(s)
- Massimiliano Renzi
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
46
|
Harvey-Girard E, Dunn RJ, Maler L. Regulated expression of N-methyl-D-aspartate receptors and associated proteins in teleost electrosensory system and telencephalon. J Comp Neurol 2007; 505:644-68. [DOI: 10.1002/cne.21521] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Lu C, Fu Z, Karavanov I, Yasuda RP, Wolfe BB, Buonanno A, Vicini S. NMDA Receptor Subtypes at Autaptic Synapses of Cerebellar Granule Neurons. J Neurophysiol 2006; 96:2282-94. [PMID: 16885526 DOI: 10.1152/jn.00078.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the action potential–evoked autaptic N-methyl-d-aspartate receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) using solitary cerebellar neurons cultured in microislands from wild-type (+/+), NR2A subunit knockout (NR2A−/−), and NR2C subunit knockout (NR2C−/−) mice. The peak amplitude of autaptic NMDA-EPSCs increased for all genotypes between days in vitro 8 (DIV8) and DIV13. Compared with +/+ cells at DIV13, NR2A−/− cells had smaller and NR2C−/− cells had larger NMDA-EPSCs. The decay time of these currents were all unexpectedly fast, except in NR2A−/− neurons, and showed small but significant shortening with development. Comparison of quantal parameters during development indicated an increase in quantal content in all genotypes. The synaptic portion of NMDA receptors measured using MK-801 blockade was roughly 50% in all genotypes at DIV8, and this percentage became slightly larger in NR2A−/− and NR2C−/− neurons at DIV12. The NR2B-selective antagonists Conantokin G and CP101,606 differed in their blocking actions with development, suggesting the presence of both heterodimeric NR1/NR2B and heterotrimeric NR1/NR2A/NR2B receptors. The most striking result we obtained was the significant increase of NMDA-EPSC peak amplitude and charge transfer in NR2C−/− mice. This was mainly the result of an increase in quantal size as estimated from miniature NMDA-EPSCs. The expression of NR2C subunit containing receptors was supported by the decreased Mg2+ sensitivity of NMDA receptors at DIV13 in +/+ but not in NR2C−/− cells. Thus solitary cerebellar granule neurons provide a novel model to investigate the role of receptor subtypes in the developmental changes of synaptic NMDA receptors.
Collapse
Affiliation(s)
- Congyi Lu
- Department of Physiology and Biophysics, BSB225, Georgetown University School of Medicine, 3900 Reservoir Rd., Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Boyce-Rustay JM, Holmes A. Ethanol-related behaviors in mice lacking the NMDA receptor NR2A subunit. Psychopharmacology (Berl) 2006; 187:455-66. [PMID: 16835771 DOI: 10.1007/s00213-006-0448-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/23/2006] [Indexed: 11/24/2022]
Abstract
RATIONALE The ionotropic NMDA glutamate receptor is composed of NR1 and NR2 (NR2A-D) subunits. While there is compelling evidence that NMDA receptors modulate behavioral effects of ethanol, there is little understanding of how the subunit composition of the NMDA receptor mediates these effects. OBJECTIVES In the current study, we assessed the relative roles of NMDA subunits via phenotypic assessment of ethanol-related behaviors in NR2A knockout (KO) mice. RESULTS Results demonstrated that NR2A KO and heterozygous mice failed to show evidence of ethanol-induced conditioned place preference. As compared to wild-type (WT) controls, KO mice showed impaired motor coordination at baseline and, in some instances, following ethanol treatment on the accelerating rotarod, balance beam, and wire-hang tests. By contrast, open field locomotor-stimulant, sedative/hypnotic, and hypothermic responses to ethanol were not different between genotypes, nor was voluntary ethanol consumption and preference in a two-bottle choice paradigm. Blood ethanol concentrations were lower in KO than WT mice following intraperitoneal ethanol injection. CONCLUSIONS Results suggest that the loss of NR2A subunit-containing NMDA receptors impairs the ability to form or express learned reward-related responses to ethanol and causes deficits in motor coordination. However, the loss of NR2A does not alter other measures of acute ethanol intoxication or ethanol consumption, possibly implicating other NMDA subunits in these effects. These data provide novel insight into the role of NMDA receptors in modulating the behavioral effects of ethanol.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA.
| | | |
Collapse
|
49
|
Köhr G. NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 2006; 326:439-46. [PMID: 16862427 DOI: 10.1007/s00441-006-0273-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/08/2006] [Indexed: 11/27/2022]
Abstract
NMDA receptors (NMDARs) play a pivotal role in the regulation of neuronal communication and synaptic function in the central nervous system. The subunit composition and compartmental localization of NMDARs in neurons affect channel activity and downstream signaling. This review discusses the distinct NMDAR subtypes and their function at synaptic, perisynaptic, and extrasynaptic sites of excitatory and inhibitory neurons. Many neurons express more than one of the modulatory NR2 subunits that participate in the formation of di- and/or triheteromeric channel assemblies (e.g., NR1/NR2A, NR1/NR2B, and/or NR1/NR2A/NR2B). Depending on the subunit composition and presence or absence of intracellular binding partners along the postsynaptic membrane, these NMDAR subtypes are allocated to distinct synaptic inputs converging onto a neuron or are distributed differentially among synaptic or extrasynaptic sites. These sites can carry NR2A and NR2B subunits, supporting the hypothesis that the spatial distribution of scaffolding and signaling complexes critically determines the full spectrum of NMDAR signaling.
Collapse
Affiliation(s)
- Georg Köhr
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Sasaki H, Hozumi Y, Hasegawa H, Ito T, Takagi M, Ogino T, Watanabe M, Goto K. Gene expression and localization of diacylglycerol kinase isozymes in the rat spinal cord and dorsal root ganglia. Cell Tissue Res 2006; 326:35-42. [PMID: 16758180 DOI: 10.1007/s00441-006-0219-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Accepted: 04/11/2006] [Indexed: 01/19/2023]
Abstract
The dorsal root ganglion (DRG) and dorsal horn of the spinal cord are areas through which primary afferent information passes enroute to the brain. Previous studies have reported that, during normal neuronal activity, the regional distribution of a second messenger, diacylglycerol (DG), which is derived from phosphoinositide turnover, is diverse in these areas. However, the way that DG is regulated in these organs remains unknown. The present study was performed to investigate mRNA expression and protein localization of DG kinase (DGK) isozymes, which play a central role in DG metabolism. Gene expression for DGK isozymes was detected with variable regional distributions and intensities in the spinal cord. Among the isozymes, most intense signals were found for DGKzeta and DGKiota in the DRG. By immunohistochemical analysis, DGKzeta immunoreactivity was detected heterogeneously in the nucleus and cytoplasm of small DRG neurons with variable levels of distribution, whereas it was detected exclusively in the cytoplasm of large neurons. On the other hand, DGKiota immunoreactivity was distributed solely in the cytoplasm of most of the DRG neurons. Double-immunofluorescent imaging of these isozymes showed that they coexisted in a large population of DRG neurons at distinct subcellular sites, i.e., DGKzeta in the nucleus and DGKiota in the cytoplasm. Thus, DGK isozymes may have different functional roles at distinct subcellular sites. Furthermore, the heterogeneous subcellular localization of DGKzeta between the nucleus and cytoplasm implies the possible translocation of this isozyme in small DRG neurons under various conditions.
Collapse
Affiliation(s)
- Hayato Sasaki
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata, 990-9585, Japan
| | | | | | | | | | | | | | | |
Collapse
|