1
|
González-Llera L, Santos-Durán GN, Sobrido-Cameán D, Núñez-González C, Pérez-Fernández J, Barreiro-Iglesias A. Spontaneous regeneration of cholecystokinergic reticulospinal axons after a complete spinal cord injury in sea lampreys. Comput Struct Biotechnol J 2024; 23:347-357. [PMID: 38205155 PMCID: PMC10776906 DOI: 10.1016/j.csbj.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to humans, lampreys spontaneously recover their swimming capacity after a complete spinal cord injury (SCI). This recovery process involves the regeneration of descending axons. Spontaneous axon regeneration in lampreys has been mainly studied in giant descending neurons. However, the regeneration of neurochemically distinct descending neuronal populations with small-caliber axons, as those found in mammals, has been less studied. Cholecystokinin (CCK) is a regulatory neuropeptide found in the brain and spinal cord that modulates several processes such as satiety, or locomotion. CCK shows high evolutionary conservation and is present in all vertebrate species. Work in lampreys has shown that all CCKergic spinal cord axons originate in a single neuronal population located in the caudal rhombencephalon. Here, we investigate the spontaneous regeneration of CCKergic descending axons in larval lampreys following a complete SCI. Using anti-CCK-8 immunofluorescence, confocal microscopy and lightning adaptive deconvolution, we demonstrate the partial regeneration of CCKergic axons (81% of the number of axonal profiles seen in controls) 10 weeks after the injury. Our data also revealed a preference for regeneration of CCKergic axons in lateral spinal cord regions. Regenerated CCKergic axons exhibit colocalization with synaptic vesicle marker SV2, indicative of functional synaptic connections. We also extracted swimming dynamics in injured animals by using DeepLabCut. Interestingly, the degree of CCKergic reinnervation correlated with improved swimming performance in injured animals, suggesting a potential role in locomotor recovery. These findings open avenues for further exploration into the role of specific neuropeptidergic systems in post-SCI spinal locomotor networks.
Collapse
Affiliation(s)
- Laura González-Llera
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gabriel N. Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Núñez-González
- CINBIO, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan Pérez-Fernández
- CINBIO, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Zhang G, Jin LQ, Rodemer W, Hu J, Root ZD, Medeiros DM, Selzer ME. The Composition and Cellular Sources of CSPGs in the Glial Scar After Spinal Cord Injury in the Lamprey. Front Mol Neurosci 2022; 15:918871. [PMID: 35832392 PMCID: PMC9271930 DOI: 10.3389/fnmol.2022.918871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Axon regrowth after spinal cord injury (SCI) is inhibited by several types of inhibitory extracellular molecules in the central nervous system (CNS), including chondroitin sulfate proteoglycans (CSPGs), which also are components of perineuronal nets (PNNs). The axons of lampreys regenerate following SCI, even though their spinal cords contain CSPGs, and their neurons are enwrapped by PNNs. Previously, we showed that by 2 weeks after spinal cord transection in the lamprey, expression of CSPGs increased in the lesion site, and thereafter, decreased to pre-injury levels by 10 weeks. Enzymatic digestion of CSPGs in the lesion site with chondroitinase ABC (ChABC) enhanced axonal regeneration after SCI and reduced retrograde neuronal death. Lecticans (aggrecan, versican, neurocan, and brevican) are the major CSPG family in the CNS. Previously, we cloned a cDNA fragment that lies in the most conserved link-domain of the lamprey lecticans and found that lectican mRNAs are expressed widely in lamprey glia and neurons. Because of the lack of strict one-to-one orthology with the jawed vertebrate lecticans, the four lamprey lecticans were named simply A, B, C, and D. Using probes that distinguish these four lecticans, we now show that they all are expressed in glia and neurons but at different levels. Expression levels are relatively high in embryonic and early larval stages, gradually decrease, and are upregulated again in adults. Reductions of lecticans B and D are greater than those of A and C. Levels of mRNAs for lecticans B and D increased dramatically after SCI. Lectican D remained upregulated for at least 10 weeks. Multiple cells, including glia, neurons, ependymal cells and microglia/macrophages, expressed lectican mRNAs in the peripheral zone and lesion center after SCI. Thus, as in mammals, lamprey lecticans may be involved in axon guidance and neuroplasticity early in development. Moreover, neurons, glia, ependymal cells, and microglia/macrophages, are responsible for the increase in CSPGs during the formation of the glial scar after SCI.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Li-Qing Jin
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
- Department of Neurology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- *Correspondence: Michael E. Selzer
| |
Collapse
|
3
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Zhang G, Rodemer W, Sinitsa I, Hu J, Selzer ME. Source of Early Regenerating Axons in Lamprey Spinal Cord Revealed by Wholemount Optical Clearing with BABB. Cells 2020; 9:cells9112427. [PMID: 33172031 PMCID: PMC7694618 DOI: 10.3390/cells9112427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Many studies of axon regeneration in the lamprey focus on 18 pairs of large identified reticulospinal (RS) neurons, whose regenerative abilities have been individually quantified. Their axons retract during the first 2 weeks after transection (TX), and many grow back to the site of injury by 4 weeks. However, locomotor movements begin before 4 weeks and the lesion is invaded by axons as early as 2 weeks post-TX. The origins of these early regenerating axons are unknown. Their identification could be facilitated by studies in central nervous system (CNS) wholemounts, particularly if spatial resolution and examination by confocal microscopy were not limited by light scattering. We have used benzyl alcohol/benzyl benzoate (BABB) clearing to enhance the resolution of neuronal perikarya and regenerated axons by confocal microscopy in lamprey CNS wholemounts, and to assess axon regeneration by retrograde and anterograde labeling with fluorescent dye applied to a second TX caudal or rostral to the original lesion, respectively. We found that over 50% of the early regenerating axons belonged to small neurons in the brainstem. Some propriospinal neurons located close to the TX also contributed to early regeneration. The number of early regenerating propriospinal neurons decreased with distance from the original lesion. Descending axons from the brainstem were labeled anterogradely by application of tracer to a second TX close to the spinal-medullary junction. This limited contamination of the data by regenerating spinal axons whose cell bodies are located rostral or caudal to the TX and confirmed the regeneration of many small RS axons as early as 2 weeks post-TX. Compared with the behavior of axotomized giant axons, the early regenerating axons were of small caliber and showed little retraction, probably because they resealed rapidly after injury.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
| | - Isabelle Sinitsa
- College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; (G.Z.); (W.R.); (J.H.)
- Department of Neurology, the Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
- Correspondence:
| |
Collapse
|
5
|
Rodemer W, Gallo G, Selzer ME. Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip? Front Cell Neurosci 2020; 14:177. [PMID: 32719586 PMCID: PMC7347967 DOI: 10.3389/fncel.2020.00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
After an injury to the central nervous system (CNS), functional recovery is limited by the inability of severed axons to regenerate and form functional connections with appropriate target neurons beyond the injury. Despite tremendous advances in our understanding of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS that prevent it, disappointingly little progress has been made in restoring function to human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is the distances human axons would have to regenerate to reach some threshold number of target neurons, e.g., those that occupy one complete spinal segment, compared to the distances required in most experimental models, such as mice and rats. However, the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS in vivo have caused researchers to rely heavily on extrapolation from studies of axon regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro and in vivo. Unfortunately, evidence from several animal models, including the transected lamprey spinal cord, has suggested important differences between regeneration of mature CNS axons and growth of axons in peripheral nerve, or during embryonic development. Specifically, long-distance regeneration of severed axons may not involve the actin-myosin molecular motors that guide embryonic growth cones in developing axons. Rather, non-growth cone-mediated axon elongation may be required to propel injured axons in the mature CNS. If so, it may be necessary to use other experimental models to promote regeneration that is sufficient to contact a critical number of target neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons respond to injury, and how this might affect the development of regenerative therapies for SCI and other CNS injuries.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Hecker A, Anger P, Braaker PN, Schulze W, Schuster S. High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish. Commun Biol 2020; 3:307. [PMID: 32533058 PMCID: PMC7293241 DOI: 10.1038/s42003-020-1034-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/26/2020] [Indexed: 01/09/2023] Open
Abstract
In non-mammalian vertebrates, some neurons can regenerate after spinal cord injury. One of these, the giant Mauthner (M-) neuron shows a uniquely direct link to a robust survival-critical escape behavior but appears to regenerate poorly. Here we use two-photon microscopy in parallel with behavioral assays in zebrafish to show that the M-axon can regenerate very rapidly and that the recovery of functionality lags by just days. However, we also find that the site of the injury is critical: While regeneration is poor both close and far from the soma, rapid regeneration and recovery of function occurs for injuries between 10% and 50% of total axon length. Our findings show that rapid regeneration and the recovery of function can be studied at remarkable temporal resolution after targeted injury of one single M-axon and that the decision between poor and rapid regeneration can be studied in this one axon. Alexander Hecker et al. study the regeneration potential of the axon of the giant Mauthner (M) neuron in zebrafish. Using two-photon microscopy and behavioral assays, they show that the M-axon can recover rapidly days after injury. They also characterize the optimal injury site that enables rapid regeneration and functional recovery.
Collapse
Affiliation(s)
- Alexander Hecker
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Pamela Anger
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Philipp N Braaker
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Wolfram Schulze
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
7
|
Rodemer W, Zhang G, Sinitsa I, Hu J, Jin LQ, Li S, Selzer ME. PTPσ Knockdown in Lampreys Impairs Reticulospinal Axon Regeneration and Neuronal Survival After Spinal Cord Injury. Front Cell Neurosci 2020; 14:61. [PMID: 32265663 PMCID: PMC7096546 DOI: 10.3389/fncel.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in persistent functional deficits due to the lack of axon regeneration within the mammalian CNS. After SCI, chondroitin sulfate proteoglycans (CSPGs) inhibit axon regrowth via putative interactions with the LAR-family protein tyrosine phosphatases, PTPσ and LAR, localized on the injured axon tips. Unlike mammals, the sea lamprey, Petromyzon marinus, robustly recovers locomotion after complete spinal cord transection (TX). Behavioral recovery is accompanied by heterogeneous yet predictable anatomical regeneration of the lamprey's reticulospinal (RS) system. The identified RS neurons can be categorized as "good" or "bad" regenerators based on the likelihood that their axons will regenerate. Those neurons that fail to regenerate their axons undergo a delayed form of caspase-mediated cell death. Previously, this lab reported that lamprey PTPσ mRNA is selectively expressed in "bad regenerator" RS neurons, preceding SCI-induced caspase activation. Consequently, we hypothesized that PTPσ deletion would reduce retrograde cell death and promote axon regeneration. Using antisense morpholino oligomers (MOs), we knocked down PTPσ expression after TX and assessed the effects on axon regeneration, caspase activation, intracellular signaling, and behavioral recovery. Unexpectedly, PTPσ knockdown significantly impaired RS axon regeneration at 10 weeks post-TX, primarily due to reduced long-term neuron survival. Interestingly, cell loss was not preceded by an increase in caspase or p53 activation. Behavioral recovery was largely unaffected, although PTPσ knockdowns showed mild deficits in the recovery of swimming distance and latency to immobility during open field swim assays. Although the mechanism underlying the cell death following TX and PTPσ knockdown remains unknown, this study suggests that PTPσ is not a net negative regulator of long tract axon regeneration in lampreys.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Isabelle Sinitsa
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Li-qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Rodemer W, Hu J, Selzer ME, Shifman MI. Heterogeneity in the regenerative abilities of central nervous system axons within species: why do some neurons regenerate better than others? Neural Regen Res 2020; 15:996-1005. [PMID: 31823869 PMCID: PMC7034288 DOI: 10.4103/1673-5374.270298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some neurons, especially in mammalian peripheral nervous system or in lower vertebrate or in vertebrate central nervous system (CNS) regenerate after axotomy, while most mammalian CNS neurons fail to regenerate. There is an emerging consensus that neurons have different intrinsic regenerative capabilities, which theoretically could be manipulated therapeutically to improve regeneration. Population-based comparisons between “good regenerating” and “bad regenerating” neurons in the CNS and peripheral nervous system of most vertebrates yield results that are inconclusive or difficult to interpret. At least in part, this reflects the great diversity of cells in the mammalian CNS. Using mammalian nervous system imposes several methodical limitations. First, the small sizes and large numbers of neurons in the CNS make it very difficult to distinguish regenerating neurons from non-regenerating ones. Second, the lack of identifiable neurons makes it impossible to correlate biochemical changes in a neuron with axonal damage of the same neuron, and therefore, to dissect the molecular mechanisms of regeneration on the level of single neurons. This review will survey the reported responses to axon injury and the determinants of axon regeneration, emphasizing non-mammalian model organisms, which are often under-utilized, but in which the data are especially easy to interpret.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Koganti L, Liu J, DeMajewski A, Agostini MA, Wong TW, Faber DS, Zottoli SJ. Invasion of microglia/macrophages and granulocytes into the Mauthner axon myelin sheath following spinal cord injury of the adult goldfish, Carassius auratus. J Morphol 2019; 281:135-152. [PMID: 31774588 DOI: 10.1002/jmor.21086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/23/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022]
Abstract
Rapid activation of resident glia occurs after spinal cord injury. Somewhat later, innate and adaptive immune responses occur with the invasion of peripheral immune cells into the wound site. The activation of resident and peripheral immune cells has been postulated to play harmful as well as beneficial roles in the regenerative process. Mauthner cells, large identifiable neurons located in the hindbrain of most fish and amphibians, provided the opportunity to study the morphological relationship between reactive cells and Mauthner axons (M-axons) severed by spinal cord crush or by selective axotomy. After crossing in the hindbrain, the M-axons of adult goldfish, Carassius auratus, extend the length of the spinal cord. Following injury, the M-axon undergoes retrograde degeneration within its myelin sheath creating an axon-free zone (proximal dieback zone). Reactive cells invade the wound site, enter the axon-free dieback zone and are observed in the vicinity of the retracted M-axon tip as early as 3 hr postinjury. Transmission electron microscopy allowed the detection of microglia/macrophages and granulocytes, some of which appear to be neutrophil-like, at each of these locations. We believe that this is the first report of the invasion of such cells within the myelin sheath of an identifiable axon in the vertebrate central nervous system (CNS). We speculate that microglia/macrophages and granulocytes that are attracted within a few hours to the damaged M-axon are part of an inflammatory response that allows phagocytosis of debris and plays a role in the regenerative process. Our results provide the baseline from which to utilize immunohistochemical and genetic approaches to elucidate the role of non-neuronal cells in the regenerative process of a single axon in the vertebrate CNS.
Collapse
Affiliation(s)
- Lahari Koganti
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Jun Liu
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Andrea DeMajewski
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Mark A Agostini
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Tina W Wong
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Donald S Faber
- Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, New York
| | - Steven J Zottoli
- Department of Biology, Williams College, Williamstown, Massachusetts.,Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
10
|
Hanslik KL, Allen SR, Harkenrider TL, Fogerson SM, Guadarrama E, Morgan JR. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection. PLoS One 2019; 14:e0204193. [PMID: 30699109 PMCID: PMC6353069 DOI: 10.1371/journal.pone.0204193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
The resilience of regeneration in vertebrates is not very well understood. Yet understanding if tissues can regenerate after repeated insults, and identifying limitations, is important for elucidating the underlying mechanisms of tissue plasticity. This is particularly challenging in tissues, such as the nervous system, which possess a large number of terminally differentiated cells and often exhibit limited regeneration in the first place. However, unlike mammals, which exhibit very limited regeneration of spinal cord tissues, many non-mammalian vertebrates, including lampreys, bony fishes, amphibians, and reptiles, regenerate their spinal cords and functionally recover even after a complete spinal cord transection. It is well established that lampreys undergo full functional recovery of swimming behaviors after a single spinal cord transection, which is accompanied by tissue repair at the lesion site, as well as axon and synapse regeneration. Here we begin to explore the resilience of spinal cord regeneration in lampreys after a second spinal transection (re-transection). We report that by all functional and anatomical measures tested, lampreys regenerate after spinal re-transection just as robustly as after single transections. Recovery of swimming, synapse and cytoskeletal distributions, axon regeneration, and neuronal survival were nearly identical after spinal transection or re-transection. Only minor differences in tissue repair at the lesion site were observed in re-transected spinal cords. Thus, regenerative potential in the lamprey spinal cord is largely unaffected by spinal re-transection, indicating a greater persistent regenerative potential than exists in some other highly regenerative models. These findings establish a new path for uncovering pro-regenerative targets that could be deployed in non-regenerative conditions.
Collapse
Affiliation(s)
- Kendra L Hanslik
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Scott R Allen
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Tessa L Harkenrider
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Stephanie M Fogerson
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Eduardo Guadarrama
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
11
|
Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. J Neurosci 2018; 38:6586-6596. [PMID: 29941446 DOI: 10.1523/jneurosci.1034-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata) because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus By quantitative assessment of the spinal cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves, all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 μm, individually. The ensheathing glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes, similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh1l1 Specimens were of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.SIGNIFICANCE STATEMENT We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates.
Collapse
|
12
|
Zhang G, Hu J, Rodemer W, Li S, Selzer ME. RhoA activation in axotomy-induced neuronal death. Exp Neurol 2018; 306:76-91. [PMID: 29715475 DOI: 10.1016/j.expneurol.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
After spinal cord injury (SCI) in mammals, severed axons fail to regenerate, due to both extrinsic inhibitory factors, e.g., the chondroitin sulfate proteoglycans (CSPGs) and myelin-associated growth inhibitors (MAIs), and a developmental loss of intrinsic growth capacity. The latter is suggested by findings in lamprey that the 18 pairs of individually identified reticulospinal neurons vary greatly in their ability to regenerate their axons through the same spinal cord environment. Moreover, those neurons that are poor regenerators undergo very delayed apoptosis, and express common molecular markers after SCI. Thus the signaling pathways for retrograde cell death might converge with those inhibiting axon regeneration. Many extrinsic growth-inhibitory molecules activate RhoA, whereas inhibiting RhoA enhances axon growth. Whether RhoA also is involved in retrograde neuronal death after axotomy is less clear. Therefore, we cloned lamprey RhoA and correlated its mRNA expression and activation state with apoptosis signaling in identified reticulospinal neurons. RhoA mRNA was expressed widely in normal lamprey brain, and only slightly more in poorly-regenerating neurons than in good regenerators. However, within a day after spinal cord transection, RhoA mRNA was found in severed axon tips. Beginning at 5 days post-SCI RhoA mRNA was upregulated selectively in pre-apoptotic neuronal perikarya, as indicated by labelling with fluorescently labeled inhibitors of caspase activation (FLICA). After 2 weeks post-transection, RhoA expression decreased in the perikarya, and was translocated anterogradely into the axons. More striking than changes in RhoA mRNA levels, RhoA was continuously active selectively in FLICA-positive neurons through 9 weeks post-SCI. At that time, almost no neurons whose axons had regenerated were FLICA-positive. These findings are consistent with a role for RhoA activation in triggering retrograde neuronal death after SCI, and suggest that RhoA may be a point of convergence for inhibition of both axon regeneration and neuronal survival after axotomy.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. Anatomy and Cell Biology, The Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. of Neurology, USA.
| |
Collapse
|
13
|
Learning to swim, again: Axon regeneration in fish. Exp Neurol 2017; 287:318-330. [DOI: 10.1016/j.expneurol.2016.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
|
14
|
Jin LQ, Pennise CR, Rodemer W, Jahn KS, Selzer ME. Protein synthetic machinery and mRNA in regenerating tips of spinal cord axons in lamprey. J Comp Neurol 2016; 524:3614-3640. [PMID: 27120118 DOI: 10.1002/cne.24020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
Polyribosomes, mRNA, and other elements of translational machinery have been reported in peripheral nerves and in elongating injured axons of sensory neurons in vitro, primarily in growth cones. Evidence for involvement of local protein synthesis in regenerating central nervous system (CNS) axons is less extensive. We monitored regeneration of back-labeled lamprey spinal axons after spinal cord transection and detected mRNA in axon tips by in situ hybridization and microaspiration of their axoplasm. Poly(A)+mRNA was present in the axon tips, and was more abundant in actively regenerating tips than in static or retracting ones. Target-specific polymerase chain reaction (PCR) and in situ hybridization revealed plentiful mRNA for the low molecular neurofilament subunit and β-tubulin, but very little for β-actin, consistent with the morphology of their tips, which lack filopodia and lamellipodia. Electron microscopy showed ribosomes/polyribosomes in the distal parts of axon tips and in association with vesicle-like membranes, primarily in the tip. In one instance, there were structures with the appearance of rough endoplasmic reticulum. Immunohistochemistry showed patches of ribosomal protein S6 positivity in a similar distribution. The results suggest that local protein synthesis might be involved in the mechanism of axon regeneration in the lamprey spinal cord. J. Comp. Neurol. 524:3614-3640, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140.
| | - Cynthia R Pennise
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140
| | - Kristen S Jahn
- The Children's Hospital of Philadelphia, 1108 Pine Street, Philadelphia, PA, 19107
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140. .,Department of Neurology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140.
| |
Collapse
|
15
|
Fernández-López B, Romaus-Sanjurjo D, Senra-Martínez P, Anadón R, Barreiro-Iglesias A, Rodicio MC. Spatiotemporal Pattern of Doublecortin Expression in the Retina of the Sea Lamprey. Front Neuroanat 2016; 10:5. [PMID: 26858609 PMCID: PMC4731500 DOI: 10.3389/fnana.2016.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/12/2016] [Indexed: 12/30/2022] Open
Abstract
Despite the importance of doublecortin (DCX) for the development of the nervous system, its expression in the retina of most vertebrates is still unknown. The key phylogenetic position of lampreys, together with their complex life cycle, with a long blind larval stage and an active predator adult stage, makes them an interesting model to study retinal development. Here, we studied the spatiotemporal pattern of expression of DCX in the retina of the sea lamprey. In order to characterize the DCX expressing structures, the expression of acetylated α-tubulin (a neuronal marker) and cytokeratins (glial marker) was also analyzed. Tract-tracing methods were used to label ganglion cells. DCX immunoreactivity appeared initially in photoreceptors, ganglion cells and in fibers of the prolarval retina. In larvae smaller than 100 mm, DCX expression was observed in photoreceptors, in cells located in the inner nuclear and inner plexiform layers (IPLs) and in fibers coursing in the nuclear and IPLs, and in the optic nerve (ON). In retinas of premetamorphic and metamorphic larvae, DCX immunoreactivity was also observed in radially oriented cells and fibers and in a layer of cells located in the outer part of the inner neuroblastic layer (INbL) of the lateral retina. Photoreceptors and fibers ending in the outer limitans membrane (OLM) showed DCX expression in adults. Some retinal pigment epithelium cells were also DCX immunoreactive. Immunofluorescence for α-tubulin in premetamorphic larvae showed coexpression in most of the DCX immunoreactive structures. No cells/fibers were found showing DCX and cytokeratins colocalization. The perikaryon of mature ganglion cells is DCX negative. The expression of DCX in sea lamprey retinas suggests that it could play roles in the migration of cells that differentiate in the metamorphosis, in the establishment of connections of ganglion cells and in the development of photoreceptors. Our results also suggest that the radial glia and retinal pigment epithelium cells of lampreys are neurogenic. Comparison of our observations with those reported in gnathostomes reveals similarities and interesting differences probably due to the peculiar development of the sea lamprey retina.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Faculty of Biology, Department of Cell Biology and Ecology, CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- Faculty of Biology, Department of Cell Biology and Ecology, CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Pablo Senra-Martínez
- Faculty of Biology, Department of Cell Biology and Ecology, CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Ramón Anadón
- Faculty of Biology, Department of Cell Biology and Ecology, CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Faculty of Biology, Department of Cell Biology and Ecology, CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - María Celina Rodicio
- Faculty of Biology, Department of Cell Biology and Ecology, CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| |
Collapse
|
16
|
Baer ML, Henderson SC, Colello RJ. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System. PLoS One 2015; 10:e0142740. [PMID: 26562295 PMCID: PMC4643040 DOI: 10.1371/journal.pone.0142740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/25/2015] [Indexed: 12/22/2022] Open
Abstract
Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.
Collapse
Affiliation(s)
- Matthew L. Baer
- Department of Anatomy & Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Scott C. Henderson
- Department of Anatomy & Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Raymond J. Colello
- Department of Anatomy & Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zhang G, Jin LQ, Hu J, Rodemer W, Selzer ME. Antisense Morpholino Oligonucleotides Reduce Neurofilament Synthesis and Inhibit Axon Regeneration in Lamprey Reticulospinal Neurons. PLoS One 2015; 10:e0137670. [PMID: 26366578 PMCID: PMC4569278 DOI: 10.1371/journal.pone.0137670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022] Open
Abstract
The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, United States of America
| | - Li-qing Jin
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, United States of America
| | - Jianli Hu
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, United States of America
| | - William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, United States of America
| | - Michael E. Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, United States of America
- Department of Neurology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Neuroscience 2015; 284:134-152. [DOI: 10.1016/j.neuroscience.2014.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022]
|
19
|
Zhang G, Vidal Pizarro I, Swain GP, Kang SH, Selzer ME. Neurogenesis in the lamprey central nervous system following spinal cord transection. J Comp Neurol 2014; 522:1316-32. [PMID: 24151158 DOI: 10.1002/cne.23485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/23/2022]
Abstract
After spinal cord transection, lampreys recover functionally and axons regenerate. It is not known whether this is accompanied by neurogenesis. Previous studies suggested a baseline level of nonneuronal cell proliferation in the spinal cord and rhombencephalon (where most supraspinal projecting neurons are located). To determine whether cell proliferation increases after injury and whether this includes neurogenesis, larval lampreys were spinally transected and injected with 5-bromo-2&prime-deoxyuridine (BrdU) at 0-3 weeks posttransection. Labeled cells were counted in the lesion site, within 0.5 mm rostral and caudal to the lesion, and in the rhombencephalon. One group of animals was processed in the winter and a second group was processed in the summer. The number of labeled cells was greater in winter than in summer. The lesion site had the most BrdU labeling at all times, correlating with an increase in the number of cells. In the adjacent spinal cord, the percentage of BrdU labeling was higher in the ependymal than in nonependymal regions. This was also true in the rhombencephalon but only in summer. In winter, BrdU labeling was seen primarily in the subventricular and peripheral zones. Some BrdU-labeled cells were also double labeled by antibodies to glial-specific (antikeratin) as well as neuron-specific (anti-Hu) antigens, indicating that both gliogenesis and neurogenesis occurred after spinal cord transection. However, the new neurons were restricted to the ependymal zone, were never labeled by antineurofilament antibodies, and never migrated away from the ependyma even at 5 weeks after BrdU injection. They would appear to be cerebrospinal fluid-contacting neurons.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Penhnsylvania, 19140; Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
20
|
Bloom O. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury. Exp Neurol 2014; 258:130-40. [PMID: 25017894 PMCID: PMC4099969 DOI: 10.1016/j.expneurol.2013.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 01/09/2023]
Abstract
Mammals exhibit poor recovery after injury to the spinal cord, where the loss of neurons and neuronal connections can be functionally devastating. In contrast, it has long been appreciated that many non-mammalian vertebrate species exhibit significant spontaneous functional recovery after spinal cord injury (SCI). Identifying the biological responses that support an organism's inability or ability to recover function after SCI is an important scientific and medical question. While recent advances have been made in understanding the responses to SCI in mammals, we remain without an effective clinical therapy for SCI. A comparative biological approach to understanding responses to SCI in non-mammalian vertebrates will yield important insights into mechanisms that promote recovery after SCI. Presently, mechanistic studies aimed at elucidating responses, both intrinsic and extrinsic to neurons, that result in different regenerative capacities after SCI across vertebrates are just in their early stages. There are several inhibitory mechanisms proposed to impede recovery from SCI in mammals, including reactive gliosis and scarring, myelin associated proteins, and a suboptimal immune response. One hypothesis to explain the robust regenerative capacity of several non-mammalian vertebrates is a lack of some or all of these inhibitory signals. This review presents the current knowledge of immune responses to SCI in several non-mammalian species that achieve anatomical and functional recovery after SCI. This subject is of growing interest, as studies increasingly show both beneficial and detrimental roles of the immune response following SCI in mammals. A long-term goal of biomedical research in all experimental models of SCI is to understand how to promote functional recovery after SCI in humans. Therefore, understanding immune responses to SCI in non-mammalian vertebrates that achieve functional recovery spontaneously may identify novel strategies to modulate immune responses in less regenerative species and promote recovery after SCI.
Collapse
Affiliation(s)
- Ona Bloom
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; The Hofstra North Shore-LIJ School of Medicine, Hempstead Turnpike, Hempstead, NY 11549, USA.
| |
Collapse
|
21
|
Zhang G, Hu J, Li S, Huang L, Selzer ME. Selective expression of CSPG receptors PTPσ and LAR in poorly regenerating reticulospinal neurons of lamprey. J Comp Neurol 2014; 522:2209-29. [DOI: 10.1002/cne.23529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Guixin Zhang
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Jianli Hu
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Shuxin Li
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Lisa Huang
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation; Shriners Hospitals Pediatric Research Center; Philadelphia Pennsylvania 19140
- Department of Neurology; Temple University School of Medicine; 3500 North Broad Street Philadelphia Pennsylvania 19140
| |
Collapse
|
22
|
Fernández-López B, Valle-Maroto SM, Barreiro-Iglesias A, Rodicio MC. Neuronal release and successful astrocyte uptake of aminoacidergic neurotransmitters after spinal cord injury in lampreys. Glia 2014; 62:1254-69. [PMID: 24733772 DOI: 10.1002/glia.22678] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/13/2014] [Accepted: 04/03/2014] [Indexed: 12/27/2022]
Abstract
In contrast to mammals, the spinal cord of lampreys spontaneously recovers from a complete spinal cord injury (SCI). Understanding the differences between lampreys and mammals in their response to SCI could provide valuable information to propose new therapies. Unique properties of the astrocytes of lampreys probably contribute to the success of spinal cord regeneration. The main aim of our study was to investigate, in the sea lamprey, the release of aminoacidergic neurotransmitters and the subsequent astrocyte uptake of these neurotransmitters during the first week following a complete SCI by detecting glutamate, GABA, glycine, Hu and cytokeratin immunoreactivities. This is the first time that aminoacidergic neurotransmitter release from neurons and the subsequent astrocytic response after SCI are analysed by immunocytochemistry in any vertebrate. Spinal injury caused the immediate loss of glutamate, GABA and glycine immunoreactivities in neurons close to the lesion site (except for the cerebrospinal fluid-contacting GABA cells). Only after SCI, astrocytes showed glutamate, GABA and glycine immunoreactivity. Treatment with an inhibitor of glutamate transporters (DL-TBOA) showed that neuronal glutamate was actively transported into astrocytes after SCI. Moreover, after SCI, a massive accumulation of inhibitory neurotransmitters around some reticulospinal axons was observed. Presence of GABA accumulation significantly correlated with a higher survival ability of these neurons. Our data show that, in contrast to mammals, astrocytes of lampreys have a high capacity to actively uptake glutamate after SCI. GABA may play a protective role that could explain the higher regenerative and survival ability of specific descending neurons of lampreys.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Department of Cell Biology and Ecology, CIBUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
23
|
Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol 2013; 250:31-42. [PMID: 24041988 DOI: 10.1016/j.expneurol.2013.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023]
Abstract
Axon regeneration after spinal cord injury in mammals is inadequate to restore function, illustrating the need to design better strategies for improving outcomes. Increasing the levels of the second messenger cyclic adenosine monophosphate (cAMP) after spinal cord injury enhances axon regeneration across a wide variety of species, making it an excellent candidate molecule that has therapeutic potential. However, several important aspects of the cellular and molecular mechanisms by which cAMP enhances axon regeneration are still unclear, such as how cAMP affects axon growth patterns, the molecular components within growing axon tips, the lesion scar, and neuronal survival. To address these points, we took advantage of the large, identified reticulospinal (RS) neurons in lamprey, a vertebrate that exhibits robust axon regeneration after a complete spinal cord transection. Application of a cAMP analog, db-cAMP, at the time of spinal cord transection increased the number of axons that regenerated across the lesion site. Db-cAMP also promoted axons to regenerate in straighter paths, prevented abnormal axonal growth patterns, increased the levels of synaptotagmin within axon tips, and increased the number of axotomized neurons that survived after spinal cord injury, thereby increasing the pool of neurons available for regeneration. There was also a transient increase in the number of microglia/macrophages and improved repair of the lesion site. Taken together, these data reveal several new features of the cellular and molecular mechanisms underlying cAMP-mediated enhancement of axon regeneration, further emphasizing the positive roles for this conserved pathway.
Collapse
|
24
|
Zhang G, Jin L, Selzer ME. Assembly properties of lamprey neurofilament subunits and their expression after spinal cord transection. J Comp Neurol 2012; 519:3657-71. [PMID: 21618230 DOI: 10.1002/cne.22673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammals neurofilaments (NF) are formed by coassembly of three subunits: NFL, NFM, and NFH (light, medium, and heavy). It had been believed that lampreys have only one subunit, NF180. However, a previous study showed that NF180 could not self-assemble but could coassemble with rat NFL, suggesting the existence of additional NF subunits in lamprey. More recently, we cloned three additional NF subunits. These new subunits and NF180 have now been transfected in combinations into SW13cl.2Vim(-) cells, which lack endogenous cytoplasmic intermediate filaments. None of the subunits could self-assemble. No combination of NF subunits could form filaments in the absence of lamprey NFL (L-NFL). Assembly occurred at 28°C, but not at 37°C. L-NFL could form thick NF bundles with NF180 but not with NF132 and NF95, which formed only fine filamentous arrays. To determine which parts of the NF subunits are required for filament or bundle formation, we constructed deletion mutants of NF180 and cotransfected them with L-NFL. As with mammalian NF, only constructs with intact head and core domains could form filaments with L-NFL. However, the full length of NF180 was required to form NF bundles. As with NF180, in situ hybridization indicated that mRNA for L-NFL and NF132 was downregulated in identified reticulospinal neurons by 5 weeks after spinal cord transection, but was reexpressed at 10 weeks selectively in those neurons whose axons have a high probability of regenerating. This is consistent with a possible role of NFs in the mechanism of axon regeneration.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
25
|
Smith J, Morgan JR, Zottoli SJ, Smith PJ, Buxbaum JD, Bloom OE. Regeneration in the era of functional genomics and gene network analysis. THE BIOLOGICAL BULLETIN 2011; 221:18-34. [PMID: 21876108 PMCID: PMC4109899 DOI: 10.1086/bblv221n1p18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
What gives an organism the ability to regrow tissues and to recover function where another organism fails is the central problem of regenerative biology. The challenge is to describe the mechanisms of regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated. In other words, a broad, yet deep dissection of the system-wide network of molecular interactions is needed. Functional genomics has been used to elucidate gene regulatory networks (GRNs) in developing tissues, which, like regeneration, are complex systems. Therefore, we reason that the GRN approach, aided by next generation technologies, can also be applied to study the molecular mechanisms underlying the complex functions of regeneration. We ask what characteristics a model system must have to support a GRN analysis. Our discussion focuses on regeneration in the central nervous system, where loss of function has particularly devastating consequences for an organism. We examine a cohort of cells conserved across all vertebrates, the reticulospinal (RS) neurons, which lend themselves well to experimental manipulations. In the lamprey, a jawless vertebrate, there are giant RS neurons whose large size and ability to regenerate make them particularly suited for a GRN analysis. Adding to their value, a distinct subset of lamprey RS neurons reproducibly fail to regenerate, presenting an opportunity for side-by-side comparison of gene networks that promote or inhibit regeneration. Thus, determining the GRN for regeneration in RS neurons will provide a mechanistic understanding of the fundamental cues that lead to success or failure to regenerate.
Collapse
Affiliation(s)
- Joel Smith
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering and The Josephine Bay Pau Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543
- Co-corresponding authors: and obloom@ nshs.edu
| | - Jennifer R. Morgan
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Steven J. Zottoli
- Department of Biology, 59 Lab Campus Drive, Williams College, Williamstown, Massachusetts 01267 and Cellular Dynamics Program, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02453
| | - Peter J. Smith
- The Biocurrents Research Center, Cellular Dynamics Program, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543
| | - Joseph D. Buxbaum
- Department of Psychiatry and the Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L Levy Plc, Box 1668, New York, New York 10029
| | - Ona E. Bloom
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030
- Co-corresponding authors: and obloom@ nshs.edu
| |
Collapse
|
26
|
Bloom OE, Morgan JR. Membrane trafficking events underlying axon repair, growth, and regeneration. Mol Cell Neurosci 2011; 48:339-48. [PMID: 21539917 DOI: 10.1016/j.mcn.2011.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022] Open
Abstract
Two central challenges for the field of neurobiology are to understand how axons grow and make proper synaptic connections under normal conditions and how they repair their membranes and mount regenerative responses after injury. At the most reductionist level, the first step toward addressing these challenges is to delineate the cellular and molecular processes by which an axon extends from its cell body. Underlying axon extension are questions of appropriate timing and mechanisms that establish or maintain the axon's polarity, initiate growth cone formation, and promote axon outgrowth and synapse formation. After injury, the problem is even more complicated because the neuron must also repair its damaged membrane, redistribute or manufacture what it needs in order to survive, and grow and form new synapses within a more mature, complex environment. While other reviews have focused extensively on the signaling events and cytoskeletal rearrangements that support axon outgrowth and regeneration, we focus this review instead on the underlying membrane trafficking events underlying these processes. Though the mechanisms are still under active investigation, the key roles played by membrane trafficking events during axon repair, growth, and regeneration have been elucidated through elegant comparative studies in both invertebrate and vertebrate organisms. Taken together, a model emerges indicating that the critical requirements for ensuring proper membrane sealing and axon extension include iterative bouts of SNARE mediated exocytosis, endocytosis, and functional links between vesicles and the actin cytoskeleton, similar to the mechanisms utilized during synaptic transmission. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Ona E Bloom
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | |
Collapse
|
27
|
Laramore C, Maymind E, Shifman MI. Expression of neurotrophin and its tropomyosin-related kinase receptors (Trks) during axonal regeneration following spinal cord injury in larval lamprey. Neuroscience 2011; 183:265-77. [PMID: 21421025 DOI: 10.1016/j.neuroscience.2011.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022]
Abstract
Exogenous neurotrophins reduce neuronal atrophy and promote regeneration following spinal cord injury but little is known about the endogenous expression of neurotrophins and their tropomyosin-related kinase (Trk) receptors in the injured spinal cord. For this purpose, we used the larval lamprey because it recovers from complete spinal transection and axons regenerate selectively in their correct paths. We cloned lamprey neurotrophin (NT) and its two Trk receptors and assessed their mRNA expression by in situ hybridization and QRT-PCR in control animals and after spinal cord transection. Control lampreys showed a longitudinal array of NT-expressing neurons along length of the spinal cord. At 2 weeks post-transection, NT expression was downregulated in neurons close to the transection, but was little affected remote from the lesion. By 4 weeks, NT expression returned to control levels in spinal cord neurons rostral and caudal to the lesion, although it was upregulated in reactive microglia at 14 and 30 days post-transection. Double-label in situ hybridization for Trk1 and Trk2 showed that Trk transcripts were expressed in several giant reticulospinal neurons, including the Mauthner neurons. After spinal cord transection, Trk1 mRNA expression was downregulated, but Trk2 mRNA expression was not changed or was increased. Thus, our data suggest that spinal cord injury in larval lampreys modulate expression of endogenous neurotrophin and induces proliferation of macrophage/microglial cells that express neurotrophin.
Collapse
Affiliation(s)
- C Laramore
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
28
|
Jin LQ, Zhang G, Pennicooke B, Laramore C, Selzer ME. Multiple neurofilament subunits are present in lamprey CNS. Brain Res 2010; 1370:16-33. [PMID: 21081119 DOI: 10.1016/j.brainres.2010.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/07/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
In mammals, there are three neurofilament (NF) subunits (NF-L, NF-M, and NF-H), but it was thought that only a single NF, NF180, exists in lamprey. However, NF180 lacked the ability to self-assemble, suggesting that like mammalian NFs, lamprey NFs are heteropolymers, and that additional NF subunits may exist. The present study provides evidence for the existence of a lamprey NF-L homolog (L-NFL). Genes encoding two new NF-M isoforms (NF132 and NF95) also have been isolated and characterized. With NF180, this makes three NF-M-like isoforms. In situ hybridization showed that all three newly cloned NFs are expressed in spinal cord neurons and in spinal-projecting neurons of the brainstem. Like NF180, there were no KSP multiphosphorylation repeat motifs in the tail regions of NF132 or NF95. NF95 was highly identical to homologous parts of NF180, sharing 2 common pieces of DNA with it. Northern blots suggested that NF95 may be expressed at very low levels in older larvae. The presence of L-NFL in lamprey CNS may support the hypothesis that as in mammals, NFs in lamprey are obligate heteropolymers, in which NF-L is a required subunit.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140-5104, USA.
| | | | | | | | | |
Collapse
|
29
|
Oliphint PA, Alieva N, Foldes AE, Tytell ED, Lau BYB, Pariseau JS, Cohen AH, Morgan JR. Regenerated synapses in lamprey spinal cord are sparse and small even after functional recovery from injury. J Comp Neurol 2010; 518:2854-72. [PMID: 20506479 DOI: 10.1002/cne.22368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the potential importance that synapse regeneration plays in restoring neuronal function after spinal cord injury (SCI), even the most basic questions about the morphology of regenerated synapses remain unanswered. Therefore, we set out to gain a better understanding of central synapse regeneration by examining the number, distribution, molecular composition, and ultrastructure of regenerated synapses under conditions in which behavioral recovery from SCI was robust. To do so, we used the giant reticulospinal (RS) neurons of lamprey spinal cord because they readily regenerate, are easily identifiable, and contain large synapses that serve as a classic model for vertebrate excitatory neurotransmission. Using a combination of light and electron microscopy, we found that regenerated giant RS synapses regained the basic structures and presynaptic organization observed at control giant RS synapses at a time when behavioral recovery was nearly complete. However, several obvious differences remained. Most strikingly, regenerated giant RS axons produced very few synapses. In addition, presynaptic sites within regenerated axons were less complex, had fewer vesicles, and had smaller active zones than normal. In contrast, the densities of presynapses and docked vesicles were nearly restored to control values. Thus, robust functional recovery from SCI can occur even when the structures of regenerated synapses are sparse and small, suggesting that functional recovery is due to a more complex set of compensatory changes throughout the spinal network.
Collapse
Affiliation(s)
- Paul A Oliphint
- Section of Molecular Cell and Developmental Biology; Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Blizzard CA, Haas MA, Vickers JC, Dickson TC. Cellular dynamics underlying regeneration of damaged axons differs from initial axon development. Eur J Neurosci 2007; 26:1100-8. [PMID: 17767489 DOI: 10.1111/j.1460-9568.2007.05750.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
While long-distance regeneration may be limited in mammalian species, it is becoming apparent that damaged mature neurons retain some capacity for attempted regeneration and that the adult CNS is not entirely inhibitory to axon growth. Our investigations show that there are critical intrinsic features of postinjury axonal regeneration that differ from initial axon development, and that these distinct differences may account for the limited and inappropriate regenerative response that currently characterizes the mature CNS. We compared the neurochemical and dynamic characteristics of developing axons to relatively mature regenerating axons, utilizing an in vitro model of axonal transection to long-term cultured rat cortical neurons. Immunolabelling studies revealed that regenerating and developing axons have a similar localization of cytoskeletal proteins, but the tips of regenerating axons, although morphologically similar, were smaller with reduced fillopodial extension, relative to developmental growth cones. Live imaging demonstrated that regenerating axons exhibited significantly less outgrowth than developmental neurites. Furthermore, growth cones of regenerating axons had a significant reduction in pausing, considered vital for interstitial branching and pathfinding, than did developmental growth cones. In addition, unlike developing axons, the regenerating axons were unresponsive to the growth factors BDNF and GDNF. Thus, although similar in their cytoskeletal composition, the growth cones of regenerative sprouts differed from their developmental counterparts in their size, their dynamic behaviour and their ability to respond to critical growth factors. These intrinsic differences may account for the inability of post-traumatic locally sprouting axons to make accurate pathway decisions and successfully respond to trauma.
Collapse
Affiliation(s)
- C A Blizzard
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Private Bag 29, Hobart, Tasmania, Australia 7000
| | | | | | | |
Collapse
|
31
|
Ryan SK, Shotts LR, Hong SK, Nehra D, Groat CR, Armstrong JR, McClellan AD. Glutamate regulates neurite outgrowth of cultured descending brain neurons from larval lamprey. Dev Neurobiol 2007; 67:173-88. [PMID: 17443781 DOI: 10.1002/dneu.20335] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.
Collapse
Affiliation(s)
- Sarah K Ryan
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Jones SL, Selzer ME, Gallo G. Developmental regulation of sensory axon regeneration in the absence of growth cones. ACTA ACUST UNITED AC 2007; 66:1630-45. [PMID: 17058187 PMCID: PMC2664685 DOI: 10.1002/neu.20309] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The actin filament (F-actin) cytoskeleton is thought to be required for normal axon extension during embryonic development. Whether this is true of axon regeneration in the mature nervous system is not known, but a progressive simplification of growth cones during development has been described and where specifically investigated, mature spinal cord axons appear to regenerate without growth cones. We have studied the cytoskeletal mechanisms of axon regeneration in developmentally early and late chicken sensory neurons, at embryonic day (E) 7 and 14 respectively. Depletion of F-actin blocked the regeneration of E7 but not E14 sensory axons in vitro. The differential sensitivity of axon regeneration to the loss of F-actin and growth cones correlated with endogenous levels of F-actin and growth cone morphology. The growth cones of E7 axons contained more F-actin and were more elaborate than those of E14 axons. The ability of E14 axons to regenerate in the absence of F-actin and growth cones was dependent on microtubule tip polymerization. Importantly, while the regeneration of E7 axons was strictly dependent on F-actin, regeneration of E14 axons was more dependent on microtubule tip polymerization. Furthermore, E14 axons exhibited altered microtubule polymerization relative to E7, as determined by imaging of microtubule tip polymerization in living neurons. These data indicate that the mechanism of axon regeneration undergoes a developmental switch between E7 and E14 from strict dependence on F-actin to a greater dependence on microtubule polymerization. Collectively, these experiments indicate that microtubule polymerization may be a therapeutic target for promoting regeneration of mature neurons.
Collapse
Affiliation(s)
- Steven L Jones
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
33
|
Jin LQ, Zhang G, Selzer ME. Lamprey neurofilaments contain a previously unreported 50-kDa protein. J Comp Neurol 2005; 483:403-14. [PMID: 15700276 DOI: 10.1002/cne.20459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously hypothesized that regeneration of axons after spinal cord injury in the lamprey may involve assembly and transport of neurofilaments (NFs) into the growing tip. A single NF, NF-180, has been cloned in this laboratory and until now was thought to be the only NF subunit in lamprey nervous system. However, homopolymerization of NF-180 has not been observed either in experiments on transfected cells or in self-assembly tests in vitro. Forty-three monoclonal antibodies designated as LCM series were generated previously against cytoskeletal proteins of the lamprey nervous system. Seven LCMs were NF specific, and five were keratin specific, as demonstrated by immunohistochemistry. In the present study, one antibody, LCM40, selectively labeled axons in immunohistochemical sections and recognized a single 50-kDa protein in Western blots. Other neuron-specific LCMs and anti-NF antibodies, e.g., LCM39, recognized a known NF subunit, NF-180. Two-dimensional (2-D) gel electrophoresis was employed to separate otherwise indistinguishable individual cytoskeletal proteins. Western blot analysis with an antibody (IFA) that selectively labels all known intermediate filaments indicated that this 50-kDa protein is an intermediate filament (IF). The new protein was incorporated into IF polymers in vitro. Immunoelectron microscopy confirmed that neuronal IFs contain this novel protein. These results suggest that the 50-kDa protein is a previously unrecognized neuronal IF subunit in the lamprey.
Collapse
Affiliation(s)
- Li-Qing Jin
- Department of Neurology and David Mahoney Institute for Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | |
Collapse
|
34
|
Zhang G, Jin LQ, Sul JY, Haydon PG, Selzer ME. Live imaging of regenerating lamprey spinal axons. Neurorehabil Neural Repair 2005; 19:46-57. [PMID: 15673843 DOI: 10.1177/1545968305274577] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Although the growing tips of developing axons in lamprey have not been described, in all species studied, growth cones are complex in shape, consisting of a lamellipodium and filopodia, rich in F-actin and lacking neurofilaments (NF). By contrast, static immunohistochemical and electron microscopic observations of fixed tissue suggested that the tips of regenerating lamprey spinal axons are simple in shape, densely packed with NF, but contain very little F-actin. Thus, it has been proposed that regeneration of axons in the CNS of mature animals is not based on the canonical pulling mechanism of growth cones but involves an internal protrusive force, perhaps generated by the transport and assembly of NF. To eliminate the possibility that these histological features are due to fixation artifact, fluorescently labeled regenerating axon tips were imaged live. METHODS Spinal cords were transected, and after 0 to 10 weeks, the CNS was isolated in lamprey Ringer at 5 degrees C to 12 degrees C and the large reticulospinal axons were microinjected with fluorescent tracers. The proximal axon tips were imaged with a fluorescence dissecting microscope repeatedly over 2 to 5 days and photographed with confocal microscopy. Experiments were also performed through a dorsal incision in the living animal. Axon tips were microinjected as above or retrogradely labeled with tracer applied to the transection site and photographed through the fluorescence dissecting scope or with two-photon microscopy. The spinal cords were then fixed and processed for wholemount NF immunohistochemistry. RESULTS The living axon tips were simple in shape, not significantly different from those in fixed spinal cords, and filled with NF. In isolated CNS preparations, very little axon retraction and no regeneration was observed. In the living animal, rapid retraction, up to 3 mm/day, was seen during the 1st few days posttransection. At more than 2 weeks posttransection, some fibers showed regeneration of up to 35 microm/day. CONCLUSIONS 1) The tips of regenerating lamprey axons are simple in shape and filled with NF. 2) Both axon retraction and axon extension are active processes, requiring factors present in the living animal that are missing in the isolated CNS.
Collapse
Affiliation(s)
- Guixin Zhang
- Department of Neurology and the David Mahoney Institute of Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
35
|
Pfeifer K, Vroemen M, Blesch A, Weidner N. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur J Neurosci 2004; 20:1695-704. [PMID: 15379990 DOI: 10.1111/j.1460-9568.2004.03657.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adult neural progenitor cells (NPC) are an attractive source for cell transplantation and neural tissue replacement after central nervous system (CNS) injury. Following transplantation of NPC cell suspensions into the acutely injured rat spinal cord, NPC survive; however, they migrate away from the lesion site and are unable to replace the injury-induced lesion cavity. In the present study we examined (i) whether NPC can be retained within the lesion site after co-transplantation with primary fibroblasts, and (ii) whether NPC promote axonal regeneration following spinal cord injury. Co-cultivation of NPC with fibroblasts demonstrated that NPC adhere to fibroblasts and the extracellular matrix produced by fibroblasts. In the presence of fibroblasts, the differentiation pattern of co-cultivated NPC was shifted towards glial differentiation. Three weeks after transplantation of adult spinal-cord-derived NPC with primary fibroblasts as mixed cell suspensions into the acutely injured cervical spinal cord in adult rats, the lesion cavity was completely replaced. NPC survived throughout the graft and differentiated exclusively into glial cells. Quantification of neurofilament-labeled axons and anterogradely labeled corticospinal axons indicated that NPC co-grafted with fibroblasts significantly enhanced axonal regeneration. Both neurofilament-labeled axons and corticospinal axons aligned longitudinally along GFAP-expressing NPC-derived cells, which displayed a bipolar morphology reminiscent of immature astroglia. Thus, grafted astroglial differentiated NPC promote axon regrowth following spinal cord injury by means of cellular guidance.
Collapse
Affiliation(s)
- Katharina Pfeifer
- Department of Neurology, University of Regensburg, Universitaetsstr. 84, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
Neurons in the human central nervous system (CNS) are unable to regenerate, as a result of both an inhibitory environment and their inherent inability to regrow. In contrast, the CNS environment in fish is permissive for growth, yet some neurons still cannot regenerate. Fish thus offer an opportunity to study molecules that might surmount the intrinsic limitations they share with mammals, without the complication of an inhibitory environment. We show by in vivo imaging in zebrafish that post-injury application of cyclic adenosine monophosphate can transform severed CNS neurons into ones that regenerate and restore function, thus overcoming intrinsic limitations to regeneration in a vertebrate.
Collapse
Affiliation(s)
- Dimple H Bhatt
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
37
|
Zhang G, Spencer PH, Jin LQ, Cohlberg JA, Beaulieu JM, Julien JP, Selzer ME. The single neurofilament subunit of lamprey may need another element for filament assembly. J Comp Neurol 2004; 471:188-200. [PMID: 14986312 DOI: 10.1002/cne.20026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regenerating axon tips in transected lamprey spinal cord contain dense accumulations of neurofilaments (NFs), suggesting that NFs may play a role in the mechanism of axonal regeneration. Compared with heteropolymeric assemblies of NF triplet proteins in mammals, NF in lampreys has been thought to contain only a single subunit (NF180). This would imply that NF180 self-assembles, which would be important for manipulating its expression in studies of axonal regeneration. In order to study the possible role of NF in process outgrowth and to determine whether NF180 can self-assemble, its gene was transfected into mammalian and fish cell lines that either contain or lack vimentin. In transfected NIH3T3 cells, NF180 was poorly phosphorylated and its expression did not alter the length or number of cell processes. Nor did it appear to form typical intermediate filaments, suggesting that it may not self-assemble. NF180 also did not form typical filaments in SW13cl cells that either possessed or lacked vimentin, nor in transfected fish cells that were cultured at 18 degrees C. In vitro, NF180 could not self-assemble but interacted with NF-L to interrupt its self-assembly. When cotransfected with rat NF-L into SW13c1.2vim(-) cells, NF180 did form thick, rod-like filamentous structures on immunofluorescence. More typical NFs were observed when NF180 was cotransfected with both NF-L and NF-M. Thus, NF180 cannot self-assemble but appears to require one or more additional elements for incorporation into NFs.
Collapse
Affiliation(s)
- Guixin Zhang
- Department of Neurology and David Mahoney Institute for Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Vidal Pizarro I, Swain GP, Selzer ME. Cell proliferation in the lamprey central nervous system. J Comp Neurol 2004; 469:298-310. [PMID: 14694540 DOI: 10.1002/cne.11013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After spinal cord transection, axons regenerate both in larval and adult lampreys. It is not known to what degree cells proliferate, even in the uninjured animal. Therefore, we have determined the prevalence of mitosis in the lamprey central nervous system (CNS). Bromodeoxyuridine (BrdU) was injected and incorporated for 4 hours into 2- to 5-year-old larvae, animals undergoing metamorphosis, and young adults. Labeled cells were counted in the rhombencephalon (where most supraspinal projecting neurons are located) and spinal cord. A mitotic index (MI) was calculated as the percentage of nuclei that were labeled. There was a seasonal variation in mitotic activity, with higher MIs occurring in summer. Within the summer, there was an additional transient spike in mitosis, especially in the rhombencephalon. There was no correlation between age and MI within the range of developmental stages examined. Baseline MIs in the rhombencephalon and spinal cord were approximately 0.15% and 0.20%, respectively. In most animals, the highest mitotic rates in both the rhombencephalon and spinal cord were seen in the ependyma, but many labeled cells were found in nonependymal regions as well. During the summer spike, almost all of the additional mitosis in the rhombencephalon was in the ependyma, but this finding was not true in the spinal cord. Many BrdU-labeled cells in the spinal cord and rhombencephalon were also stained by monoclonal antibodies specific for lamprey glial keratin but were never labeled by anti-neurofilament antibodies. These results suggest that (1) neurogenesis is uncommon in the lamprey CNS; (2) during most of the year, baseline gliogenesis occurs mainly in the ependyma with substantial contribution by nonependymal areas. During the summer, a spike of mitotic activity occurs in the ependyma of the rhombencephalon and throughout the spinal cord.
Collapse
Affiliation(s)
- Ivonne Vidal Pizarro
- University of Pennsylvania, Institute of Neurological Sciences, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
39
|
Dervan AG, Roberts BL. Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 2003; 458:293-306. [PMID: 12619082 DOI: 10.1002/cne.10594] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After transection, the spinal cord of the eel Anguilla quickly regrows and reconnects, and function recovers. We describe here the changes in the central canal region that accompany this regeneration by using serial semithin plastic sections and immunohistochemistry. The progress of axonal regrowth was followed in material labeled with DiI. The canal of the uninjured cord is surrounded by four cell types: S-100-immunopositive ependymocytes, S-100- and glial fibrillary acidic protein (GFAP)-immunopositive tanycytes, vimentin-immunopositive dorsally located cells, and lateral and ventral liquor-contacting neurons, which label for either gamma-aminobutyric acid (GABA) or tyrosine hydroxylase (TH). After cord transection, a new central canal forms rapidly as small groups of cells at the leading edges of the transection create flat "plates" that serve as templates for subsequent formation of the lateral and dorsal walls. Profile counts and 5-bromo-2'-deoxyuridine immunohistochemistry indicate that these cells are dividing rapidly during the first 20 days of the repair process. The newly formed canal, which bridges the transection by day 10 but is not complete until about day 20, is greatly enlarged (</=100 times) and is dominated by ependymocytes that are vimentin immunopositive, but cells expressing GABA, TH, and GFAP do not appear until days 11, 13, and 16, respectively. The proliferating ependyma do not provide a supportive scaffold for the regrowing axons, inasmuch as some have crossed the bridge before the canal has formed. However, their modified phenotype suggests a role, possibly trophic, for the central canal region following injury.
Collapse
Affiliation(s)
- Adrian G Dervan
- Department of Zoology, Trinity College, University of Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
40
|
Abstract
Molecules that are found in the extracellular environment at a CNS lesion site, or that are associated with myelin, inhibit axon growth. In addition, neuronal changes--such as an age-dependent reduction in concentrations of cyclic AMP--render the neuron less able to respond to axotomy by a rapid, forward, actin-dependent movement. An alternative mechanism, based on the protrusive forces generated by microtubule elongation or the anterograde transport of cytoskeletal elements, may underlie a slower form of axon elongation that happens during regeneration in the mature CNS. Therapeutic approaches that restore the extracellular CNS environment or the neuron's characteristics back to a more embryonic state increase axon regeneration and improve functional recovery after injury. These advances in the understanding of regeneration in the CNS have major implications for neurorehabilitation and for the use of axonal regeneration as a therapeutic approach to disorders of the CNS such as spinal-cord injury.
Collapse
|
41
|
Doyle LM, Stafford PP, Roberts BL. Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel. Neuroscience 2002; 107:169-79. [PMID: 11744256 DOI: 10.1016/s0306-4522(01)00402-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This research has examined the relationship between axonal regeneration and the return of normal movement following complete transection of the spinal cord. We made measurements of tail beat frequency and amplitude of the caudal body wave from video recordings of eels (Anguilla anguilla) swimming in a water tunnel at several speeds. Each eel was then anaesthetised and the spinal cord cut caudal to the anus; in some animals the resulting gap was filled with a rubber block. All animals were kept at 25 degrees C for recovery periods ranging from 7 to 128 days, during which their swimming performance was monitored regularly. Each fish was then re-anaesthetised and perfused with fixative and the regrowing descending axons labelled with 1,1'-diotadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate. For all animals and at all speeds after surgery, tail beat frequency increased, while amplitude decreased. In non-blocked animals, an improvement in performance was first seen from 8 days following transection and thereafter tail beat frequency decreased progressively until it had returned to normal after 35 to 45 days, while amplitude remained below baseline until at least 45 days. In these animals, few axonal growth cones had penetrated the caudal stump by 7 days, but some had extended as much as 3 mm by 15 days. Many had reached as far as 6 mm between 25 and 36 days, while by 128 days they had progressed up to 10.5 mm. Contralateral crossing was never observed. Functional recovery was never witnessed in animals in which the cord had been blocked and these eels swam at all times with elevated tail beat frequency and reduced caudal amplitude. No labelled axons could be traced into the caudal spinal cord at any recovery stage in such animals. We conclude that re-innervation of only 1-2 segments caudal to the injury is necessary for functional recovery, although continued axonal growth may be important for the refinement of some aspects of movement.
Collapse
Affiliation(s)
- L M Doyle
- Department of Zoology and Trinity College Institute of Neuroscience, Trinity College, University of Dublin, 2, Dublin, Ireland.
| | | | | |
Collapse
|
42
|
Giménez y Ribotta M, Menet V, Privat A. The role of astrocytes in axonal regeneration in the mammalian CNS. PROGRESS IN BRAIN RESEARCH 2001; 132:587-610. [PMID: 11545022 DOI: 10.1016/s0079-6123(01)32105-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M Giménez y Ribotta
- INSERM U336, Université Montpellier II, Place E. Bataillon, B.P. 106, 34095 Montpellier, France
| | | | | |
Collapse
|
43
|
Becker T, Becker CG. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 2001; 433:131-47. [PMID: 11283955 DOI: 10.1002/cne.1131] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We analyzed pathway choices of regenerating, mostly supraspinal, descending axons in the spinal cord of adult zebrafish and the cellular changes in the spinal cord caudal to a lesion site after complete spinal transection. Anterograde tracing (by application of the tracer rostral to the spinal lesion site) showed that significantly more descending axons (74%) regenerated in the spinal gray matter of the caudal spinal cord than would be expected from random growth. Retrograde tracing (by application of the tracer caudal to the spinal lesion site) showed that, rostral to the lesion, most of these axons (80%) extended into the major white matter tracts. Thus, ventral descending tracts often were devoid of labeled axons caudal to a spinal lesion but contained many axons rostral to the lesion in the same animals, indicating a pathway switch of descending axons from the white matter to the gray matter. Ascending axons of spinal neurons were not observed regrowing to the rostral tracer application site; therefore, they most likely did not contribute to the axonal populations analyzed. A macrophage/microglia response within 2 days of spinal cord transection, along with phagocytosis of myelin, was observed caudal to the transection by immunohistochemistry and electron microscopy. Nevertheless, caudal to the lesion, descending tracts in the white matter were filled with myelin debris during the time of axonal regrowth, at least up to 6 weeks postlesion. We suggest that the spontaneous regeneration of axons of supraspinal origin after spinal cord transection in adult zebrafish may be due in part to the axons' ability to negotiate novel pathways in the spinal cord gray matter.
Collapse
Affiliation(s)
- T Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Martinistr. 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
44
|
Rose PK, MacDermid V, Joshi M, Neuber-Hess M. Emergence of axons from distal dendrites of adult mammalian neurons following a permanent axotomy. Eur J Neurosci 2001; 13:1166-76. [PMID: 11285014 DOI: 10.1046/j.0953-816x.2001.1490.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The distinctive features of axons and dendrites divide most neurons into two compartments. This polarity is fundamental to the ability of most neurons to integrate synaptic signals and transmit action potentials. It is not known, however, if the polarity of neurons in the adult mammalian nervous system is fixed or plastic. Following axotomy, some distal dendrites of neck motoneurons in the adult cat give rise to unusual processes that, at a light microscopic level, resemble axons (Rose, P.K. & Odlozinski, M., J. Comp. Neurol., 1998, 390, 392). The goal of the present experiments was to characterize these unusual processes using well-established ultrastructural and molecular criteria that differentiate dendrites and axons. These processes were immunoreactive for growth-associated protein-43 (GAP-43), a protein that is normally confined to axons. In contrast, immunoreactivity for a protein that is widely used as a marker for dendrites, microtubule-associated protein (MAP)-2a/b, could not be detected in the unusual distal arborizations. At the electron microscopic level, unusual distal processes contained dense collections of neurofilaments and were frequently myelinated. These molecular and structural characteristics are typical of axons and suggest that the polarity of adult neurons in the mammalian nervous system can be disrupted by axotomy. If this transformation in neuronal polarity is common to other types of neurons, axon-like processes emerging from distal dendrites may represent a mechanism for replacing connections lost due to injury. Alternatively, the connections formed by these axons may be aberrant and therefore maladaptive.
Collapse
Affiliation(s)
- P K Rose
- CIHR Group in Sensory-Motor Systems, Department of Physiology, Queen's University, Kingston, Ont., Canada.
| | | | | | | |
Collapse
|
45
|
Abstract
An understanding of the role of microglial cells in synaptic signaling is still elusive, but the neuron-microglia relationship may have important ramifications for brain plasticity and injury. This review summarizes current knowledge and theories concerning microglial-neuronal signaling, both in terms of neuron-to-microglia signals that cause activation and microglia-to-neuron signals that affect neuronal response to injury. Microglial activation in the brain involves a stereotypical pattern of changes including proliferation and migration to sites of neuronal activity or injury, increased or de novo expression of immunomodulators including cytokines and growth factors, and the full transformation into brain-resident phagocytes capable of clearing damaged cells and debris. The factors released from neurons that elicit such phenotypical and functional alterations are not well known but may include cytokines, oxidized lipids, and/or neurotransmitters. Once activated, microglia can promote neuronal injury through the release of low-molecular-weight neurotoxins and support neuronal recovery through the release of growth factors and the isolation/removal of damaged neurons and myelin debris. Because microglia respond quickly to neuronal damage and have robust effects on neurons, astrocytes, and oligodendrocytes, microglial cells could play potentially key roles in orchestrating the multicell cascade that follows synaptic plasticity and damage.
Collapse
Affiliation(s)
- A J Bruce-Keller
- Sanders-Brown Research Center on Aging and Department of Physiology, University of Kentucky, Lexington 40536-0230, USA.
| |
Collapse
|
46
|
Lepre M, Fernandéz J, Nicholls JG. Re-establishment of direct synaptic connections between sensory axons and motoneurons after lesions of neonatal opossum CNS (Monodelphis domestica) in culture. Eur J Neurosci 1998; 10:2500-10. [PMID: 9767381 DOI: 10.1046/j.1460-9568.1998.00263.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For functional recovery after spinal cord injury, regenerating fibres need to grow and to reform appropriate connections with their targets. The isolated central nervous system of neonatal opossums aged 1-9 days has been used to analyse the precision with which neurons become reconnected during regeneration. In culture these preparations maintain their electrical activity and show rapid outgrowth through spinal cord crushes or cuts. By recording electrically and by staining with horseradish peroxidase, we first demonstrated that direct reflex connections were already present at birth between sensory fibres in one segment and motoneurons in the same segment and in adjacent segments. As in previous experiments, 5 days after the spinal cord had been crushed, labelled sensory fibres grew across the lesion to reach the next segment (Woodward et al. (1993) J. Exp. Biol., 176, 77-88; Varga et al. (1995a) Eur. J. Neurosci., 7, 2119-2129, Varga et al. (1995b) Proc. Natl. Acad. Sci. USA, 92, 10959-10963). Beyond the lesion the labelled axons abruptly changed direction, traversed the spinal cord and terminated on labelled motoneurons in the ventral horn. In preparations that had regenerated dorsal root stimulation once again initiated ventral root reflexes. Electron micrographs revealed synapses made by labelled sensory axons on motoneurons. Double staining of growing sensory axons and radial glial fibres showed close association, suggesting guidance. These results indicate that the original pathway is re-established during repair and that appropriate connections are reformed after injury.
Collapse
Affiliation(s)
- M Lepre
- Department of Pharmacology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
47
|
McClellan AD. Spinal Cord Injury: Lessons from Locomotor Recovery and Axonal Regeneration in Lower Vertebrates. Neuroscientist 1998. [DOI: 10.1177/107385849800400414] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
After severe spinal cord injury in adult higher vertebrates (birds and mammals), there normally is little or no axonal regeneration and virtually no recovery of voluntary locomotor function below the lesion. In contrast, certain lower vertebrates, including lamprey, fish, and some amphibians, exhibit robust axonal regeneration and substantial recovery of locomotor function after spinal cord injury. The remarkable behavioral recovery of lower vertebrates with spinal cord injuries is due to at least three factors: 1) minimal hemorrhagic necrosis at the injury site and the lack of a neurite growth–inhibiting astrocytic scar, 2) an environment in the spinal cord that is permissive for axonal regeneration, and 3) mechanisms for directed axonal elongation and selection of appropriate postsynaptic targets. The latter two features probably represent developmental mechanisms for axonal guidance and synaptogenesis that persist in the nervous systems of these animals well beyond the main phase of neural development. In the injured spinal cords of higher vertebrates, the full complement of manipulations necessary to promote functional regeneration and behavioral recovery is unknown. An understanding of the mechanisms that result in repair of spinal cord injuries in lower vertebrates may provide guidelines for identifying the requirements for functional spinal cord regeneration in higher vertebrates, including humans.
Collapse
|
48
|
Abstract
During regeneration of lamprey spinal axons, growth cones lack filopodia and lamellipodia, contain little actin, and elongate much more slowly than do typical growth cones of embryonic neurons. Moreover, these regenerating growth cones are densely packed with neurofilaments (NFs). Therefore, after spinal hemisection the time course of changes in NF mRNA expression was correlated with the probability of regeneration for each of 18 identified pairs of reticulospinal neurons and 12 cytoarchitectonic groups of spinal projecting neurons. During the first 4 weeks after operation, NF message levels were reduced dramatically in all axotomized reticulospinal neurons, on the basis of semiquantitative in situ hybridization for the single lamprey NF subunit (NF-180). Thereafter, NF expression returned toward normal in neurons whose axons normally regenerate beyond the transection but remained depressed in poorly regenerating neurons. The recovery of NF expression in good regenerators was independent of axon growth across the lesion, because excision of a segment of spinal cord caudal to the transection site blocked regeneration but did not prevent the return of NF-180 mRNA. The early decrease in NF mRNA expression was not accompanied by a reduction in NF protein content. Thus the axotomy-induced loss of most of the axonal volume resulted in a reduced demand for NF rather than a reduction in volume-specific NF synthesis. We conclude that the secondary upregulation of NF message during axonal regeneration in the lamprey CNS may be part of an intrinsic growth program executed only in neurons with a strong propensity for regeneration.
Collapse
|
49
|
Pijak DS, Hall GF, Tenicki PJ, Boulos AS, Lurie DI, Selzer ME. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons. J Comp Neurol 1996; 368:569-81. [PMID: 8744444 DOI: 10.1002/(sici)1096-9861(19960513)368:4<569::aid-cne8>3.0.co;2-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been postulated that phosphorylation of the carboxy terminus sidearms of neurofilaments (NFs) increases axon diameter through repulsive electrostatic forces that increase sidearm extension and interfilament spacing. To evaluate this hypothesis, the relationships among NF phosphorylation, NF spacing, and axon diameter were examined in uninjured and spinal cord-transected larval sea lampreys (Petromyzon marinus). In untransected animals, axon diameters in the spinal cord varied from 0.5 to 50 microns. Antibodies specific for highly phosphorylated NFs labeled only large axons (> 10 microns), whereas antibodies for lightly phosphorylated NFs labeled medium-sized and small axons more darkly than large axons. For most axons in untransected animals, diameter was inversely related to NF packing density, but the interfilament distances of the largest axons were only 1.5 times those of the smallest axons. In addition, the lightly phosphorylated NFs of the small axons in the dorsal columns were widely spaced, suggesting that phosphorylation of NFs does not rigidly determine their spacing and that NF spacing does not rigidly determine axon diameter. Regenerating neurites of giant reticulospinal axons (GRAs) have diameters only 5-10% of those of their parent axons. If axon caliber is controlled by NF phosphorylation via mutual electrostatic repulsion, then NFs in the slender regenerating neurites should be lightly phosphorylated and densely packed (similar to NFs in uninjured small caliber axons), whereas NFs in the parent GRAs should be highly phosphorylated and loosely packed. However, although linear density of NFs (the number of NFs per micrometer) in these slender regenerating neurites was twice that in their parent axons, they were highly phosphorylated. Following sectioning of these same axons close to the cell body, axon-like neurites regenerated ectopically from dendritic tips. These ectopically regenerating neurites had NF linear densities 2.5 times those of uncut GRAs but were also highly phosphorylated. Thus, in the lamprey, NF phosphorylation may not control axon diameter directly through electrorepulsive charges that increase NF sidearm extension and NF spacing. It is possible that phosphorylation of NFs normally influences axon diameter through indirect mechanisms, such as the slowing of NF transport and the formation of a stationary cytoskeletal lattice, as has been proposed by others. Such a mechanism could be overridden during regeneration, when a more compact, phosphorylated NF backbone might add mechanical stiffness that promotes the advance of the neurite tip within a restricted central nervous system environment.
Collapse
Affiliation(s)
- D S Pijak
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA
| | | | | | | | | | | |
Collapse
|
50
|
Jacobs AJ, Swain GP, Selzer ME. Developmental increases in expression of neurofilament mRNA selectively in projection neurons of the lamprey CNS. J Comp Neurol 1996; 364:383-401. [PMID: 8820872 DOI: 10.1002/(sici)1096-9861(19960115)364:3<383::aid-cne1>3.0.co;2-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurofilaments of the sea lamprey are unique in being homopolymers of a single subunit (NF-180). Digoxigenin-labeled RNA probes complementary to NF-180 were used to determine the distribution and timing of expression of neurofilament message in the brain and spinal cord of the lamprey. In the brainstem, detection of NF-180 mRNA was restricted to neurons with axons projecting to the spinal cord or the periphery. The majority of brainstem neurons, whose axons project locally, did not express NF-180 within the detection limits of this technique. NF-180-positive neurons included cells with a wide range of axon diameters, suggesting neurofilament mRNA expression was linked to axon length rather than caliber. To further evaluate this hypothesis, expression was studied in animals of different developmental stages between larvae and adults. In younger (shorter) larvae, the large Mauthner and rhombencephalic Müller cells did not express NF-180 mRNA, even though their axons are among the largest caliber in the animal and extend the entire length of the spinal cord. In contrast, many other reticulospinal neurons, whose axons are smaller in diameter than those of the Müller and Mauthner cells, expressed NF-180 message throughout larval development. Furthermore, neurons of the cranial motor nuclei did not express NF-180 until later developmental stages and the extraocular motor neurons did not label until metamorphosis. Therefore, while detectable neurofilament mRNA expression in the lamprey is restricted to neurons with long axons, its expression in this population of neurons appears to be developmentally regulated by factors still not determined. It is postulated that need for NF message is determined by a balance between the volume of axon to be filled and the rate of turnover of NF in that axon.
Collapse
Affiliation(s)
- A J Jacobs
- Department of Neurology and David Mahoney Institute for Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia, 19104-4283, U
| | | | | |
Collapse
|