1
|
Rosenstein JM, More NS, Mani N, Krum JM. Developmental Expression of Calcium-Binding Protein-Containing Neurons in Neocortical Transplants. Cell Transplant 2017; 7:121-9. [PMID: 9588594 DOI: 10.1177/096368979800700207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study examined the development of calcium binding protein-containing neurons in a timed series of fetal neocortical transplants. The immunoexpression of parvalbumin and calbindin, which are subpopulations of GABAergic neurons, have been widely studied in normal development and in disease and injury states. Because of their purported resistance to oxidative injury by their ability to buffer Ca++ influx, these neurons have been particularly studied following ischemia. Because it is likely that oxidative stress is associated with the grafting procedure, we sought to determine if these neurons displayed enhanced survival characteristics. Normally, parvalbumin and calbindin represent about 5-10% of cortical neurons. Within 2-4 wk after grafting the expression of both proteins increased markedly in that a relatively larger number of neurons (27% for parvalbumin) were immunopositive. This increase was transitory, however, and by 4 mo and beyond, confocal microscopic data showed a reduction of over 50% of parvalbumin (+) neurons and processes. Calbindin (+) processes showed a qualitative change in that they were smaller with less terminal branching. Electron microscopy confirmed a substantial reduction in parvalbumin synaptic contacts. Interestingly, in older grafts, remaining parvalbumin neurons were those that were strongly NSE (+) suggesting a link between normal metabolism and Ca++ buffering in grafted neurons. It is possible that in early grafts certain neuronal populations transiently upregulated calcium binding proteins as a defensive mechanism against Ca++ influx associated with oxidative stress. Over time, however, following physiological normalization within grafts, the calcium binding protein (+) neurons are diminished, possibly due to lack of appropriate afferent input to the interneuronal pool.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20027, USA
| | | | | | | |
Collapse
|
2
|
Short- and long-term unilateral 6-hydroxydopamine lesions in rats show different changes in characteristics of spontaneous firing of substantia nigra pars reticulata neurons. Exp Brain Res 2012; 224:15-24. [PMID: 23283416 DOI: 10.1007/s00221-012-3285-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
The unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle induces hemiparkinsonism in rats and is a well established animal model of Parkinson's disease. In this study, we assessed the spontaneous activity of substantia nigra pars reticulata (SNr) neurons in unilateral 6-OHDA- or sham-treated rats. Extracellular single cell recordings revealed a bilaterally decreased firing rate in short-term 6-OHDA-lesioned rats (8-10 weeks post lesion) while no rate differences were evident in long-term lesioned animals (5-8 months post lesion) in vivo under chloral hydrate anaesthesia. However, firing pattern of the SNr neurons (indicated by interspike interval (ISI) histogram parameters: coefficient of variation, skewness and kurtosis) was significantly altered only after long-term lesion: 53.8 % of the recorded cells in the ipsilateral 6-OHDA-lesioned SNr fired in a bursting pattern (compared to 5.9-16.7 % in contralateral SNr or sham controls). Additionally, behavioural effects of the lesion were assessed 4 weeks post lesion by the forelimb adjusting stepping test. A decreased number of adjusting steps with the contralateral forepaw, as well as an increased performance with the ipsilateral paw was found for the 6-OHDA-lesioned rats as compared to sham controls. Furthermore, stepping values were negatively correlated with the ISI parameters after long-term lesion, while there were no correlations with the short-term groups. Firing rate was not correlated regardless of the time frame. In conclusion, long-term changes in firing pattern may represent a neuronal correlate of the 6-OHDA-induced hemiparkinsonism and may be useful for the interpretation of 6-OHDA-induced motor deficits and compensatory mechanisms as well.
Collapse
|
3
|
Puentes S, Kurachi M, Shibasaki K, Naruse M, Yoshimoto Y, Mikuni M, Imai H, Ishizaki Y. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage. Brain Res 2012; 1469:43-53. [DOI: 10.1016/j.brainres.2012.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
|
4
|
Yoshioka N, Hisanaga SI, Kawano H. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury. J Comp Neurol 2010; 518:3867-81. [PMID: 20653039 DOI: 10.1002/cne.22431] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fibrotic scar containing type IV collagen (Col IV) formed in a lesion site is considered as an obstacle to axonal regeneration, because intracerebral injection of 2,2'-dipyridyl (DPY), an inhibitor of Col IV triple-helix formation, suppresses fibrotic scar formation in the lesion site and promotes axonal regeneration. To determine the role of the fibrotic scar on the healing process of injured central nervous system (CNS), the restoration of blood-brain barrier (BBB) and withdrawal of inflammatory leukocytes were examined in mice subjected to unilateral transection of the nigrostriatal dopaminergic pathway and intracerebral DPY injection. At 5 days after injury, destruction of BBB represented by leakage of Evans blue (EB) and widespread infiltration of CD45-immunoreactive leukocytes was observed around the lesion site, whereas reactive astrocytes increased surrounding the BBB-destroyed area. By 2 weeks after injury, the region of EB leakage and the diffusion of leukocytes were restricted to the inside of the fibrotic scar, and reactive astrocytes gathered around the fibrotic scar. In the DPY-treated lesion site, formation of the fibrotic scar was suppressed (84% decrease in Col IV-deposited area), reactive astrocytes occupied the lesion center, and areas of both EB leakage and leukocyte infiltration decreased by 86%. DPY treatment increased the number of regenerated dopaminergic axons by 2.53-fold. These results indicate that suppression of fibrotic scar formation does not disturb the healing process in damaged CNS, and suggest that this strategy is a reliable tool to promote axonal regeneration after traumatic injury in the CNS.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
5
|
Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. J Neurotrauma 2009; 26:1281-93. [DOI: 10.1089/neu.2008.0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Sven Sihver
- Department of Neuroscience, Unit of Pharmacology, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - David A. Hovda
- UCLA Brain Injury Research Center, Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California–Los Angeles, Los Angeles, California
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Yasuyoshi Watanabe
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan
- Department of Physiology, Osaka City University, Osaka, Japan
| | - Gunnar Ronquist
- Department of Medical Sciences, Biochemical Structure And Function, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Mats Bergström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| |
Collapse
|
6
|
Marklund N, Sihver S, Hovda D, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. INCREASED CEREBRAL UPTAKE OF [18F]FLUORO-DEOXYGLUCOSE BUT NOT [1-14C]GLUCOSE EARLY FOLLOWING TRAUMATIC BRAIN INJURY IN RATS. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Vadivelu S, Platik MM, Choi L, Lacy ML, Shah AR, Qu Y, Holekamp TF, Becker D, Gottlieb DI, Gidday JM, McDonald JW. Multi-germ layer lineage central nervous system repair: nerve and vascular cell generation by embryonic stem cells transplanted in the injured brain. J Neurosurg 2005; 103:124-35. [PMID: 16121983 DOI: 10.3171/jns.2005.103.1.0124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECT To restore proper function to a damaged central nervous system (CNS) through transplantation, it is necessary to replace both neural and nonneural elements that arise from different germ layers in the embryo. Mounting evidence indicates the importance of signals related to vasculogenesis in governing neural proliferation and differentiation in early CNS development. Here, the authors examined whether embryonic stem cell (ESC)-derived progenitors can selectively generate both neural and endothelial cells after transplantation in the damaged CNS. METHODS Injections of 20 nmol N-methyl-D-aspartate created a unilateral striatal injury in 7-day-old rats. One week postinjury, murine ESCs, neural-induced with retinoic acid, were transplanted into the injured striatum. Histological staining, laser confocal microscopy, and transmission electron microscopy of grafted ESCs were performed 1 week posttransplantation. CONCLUSIONS Transplanted ESCs differentiated into neural cells, which segregated into multiple pools and formed neurons that conformed to host cytoarchitecture. The ESCs also generated endothelial cells, which integrated with host cells to form chimeric vasculature. The combination of ESC pluripotentiality and multiple germ layer differentiation provides a new conceptual framework for CNS repair.
Collapse
Affiliation(s)
- Sudhakar Vadivelu
- Center for the Study of Nervous System Injury and the Restorative Treatment and Research Program, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Phongkitkarun S, Kobayashi S, Kan Z, Lee TY, Charnsangavej C. Quantification of angiogenesis by functional computed tomography in a Matrigel model in rats. Acad Radiol 2004; 11:573-82. [PMID: 15147622 DOI: 10.1016/s1076-6332(03)00728-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/10/2003] [Accepted: 11/06/2003] [Indexed: 01/12/2023]
Abstract
RATIONALE AND OBJECTIVES The aim was to evaluate functional computed tomography (fCT) in the quantification of angiogenesis by comparing the tissue perfusion parameters measured by CT perfusion (CTP) software with histologic vascular parameters in a Matrigel model in rats. It was hypothesized that tissue perfusion parameters and histologic vascular parameters are related. MATERIALS AND METHODS In vivo angiogenesis assays were performed using Matrigel supplemented with escalating doses (0 ng [control group], 250 ng, and 1,000 ng) of recombinant rat vascular endothelial growth factor (VEGF164) subcutaneously injected into the backs of Sprague Dawley rats. On day 7, rats with Matrigel plug underwent fCT following a bolus injection of iodinated contrast medium. Using CTP software, fCT parameters were generated (blood flow [BF], blood volume [BV], mean transit time, and permeability-surface area product) and functional maps on the basis of a distributed parameter tracer kinetic model, the adiabatic approximation to the tissue homogeneity model. The animals were then sacrificed. Matrigel plug was sectioned into slices corresponding to the CT scan plane and stained with CD31 immunohistochemical stain. Histologic vascular parameters, including microvascular density (MVD), vessel number (VN), vascular area, and vascular perimeter, were measured. CTP and histologic parameters were correlated. RESULTS The Matrigel plugs with the 1,000-ng VEGF group exhibited a higher MVD than the 250-ng VEGF and control groups (P < .05). VN differed significantly between the control versus the 250-ng VEGF groups and 250-ng versus 1,000-ng VEGF groups (P < .05), with the highest VN in the 250-ng VEGF group. BF, mean transit time, and permeability-surface area product each differed significantly to VEGF levels. Changes in BF and BV did not correspond with increases in MVD or VN; however, in the 250-ng VEGF group, there was a strong positive correlation (r = 0.9) between BV and VN, vascular area, and vascular perimeter, which was not seen in the control or 1,000-ng VEGF group. All fCT parameters significantly correlated with each other (P < .05), with strong correlations between BF and mean transit time (r = -0.7) and between BF and permeability-surface area product (r = 0.7) and a weak correlation between BF and BV (r = 0.3). CONCLUSION These results validate the VEGF-induced endothelial cell in a rat Matrigel model. In addition, histologic vascular parameter MVD does not correlate with fCT parameters measured by CTP software.
Collapse
Affiliation(s)
- Sith Phongkitkarun
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Unit 57, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | | | | | | | | |
Collapse
|
10
|
Klepper J, De Vivo DC, Webb DW, Klinge L, Voit T. Reversible infantile hypoglycorrhachia: possible transient disturbance in glucose transport? Pediatr Neurol 2003; 29:321-5. [PMID: 14643395 DOI: 10.1016/s0887-8994(03)00268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Facilitated glucose transporter isoform 1 deficiency syndrome (GLUT1 DS), caused by impaired GLUT1-mediated glucose transport into the brain, is characterized by hypoglycorrhachia. The defect in the facilitative glucose transporter isoform 1 (GLUT1) can be confirmed by functional, quantitative, and molecular analyses. Diagnostic difficulties arise when these analyses are normal and hypoglycorrhachia remains unexplained. Three infants presenting with seizures and hypoglycorrhachia at 2, 4, and 6 weeks of age, which suggests GLUT1 deficiency syndrome, are reported. The seizures responded to a ketogenic diet in Patients 1 and 3 and phenobarbitone in Patient 2. Repeated GLUT1 analyses were normal. When treatment was discontinued, all patients remained seizure-free and developed normally. Subsequent lumbar punctures showed the return to normoglycorrhachia. We conclude that these cases might represent a transient disturbance in GLUT1-mediated glucose transport. The biomolecular basis for this clinical observation remains unknown. Though no treatment is required, clinical follow-up and repeated lumbar punctures are necessary to distinguish this benign condition from the original GLUT1 deficiency syndrome.
Collapse
Affiliation(s)
- Jörg Klepper
- Department of Pediatric Neurology, University of Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
11
|
Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 2002; 110:589-604. [PMID: 11934468 DOI: 10.1016/s0306-4522(01)00615-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of exogenous vascular endothelial growth factor (VEGF) on angiogenesis, blood-brain barrier permeability and astroglial proliferation in the adult rat CNS in situ were investigated. Recombinant human VEGF(165) (25 or 50 ng/ml) was delivered for up to 1 week using either intracerebral osmotic minipumps or less traumatic subdural gelatin sponge placement. By 3 days, VEGF delivery caused significantly increased cerebral angiogenesis (25 ng/ml was most effective) in both experimental models when compared to saline controls; VEGF infusion resulted in a 100% increase in an index of vascular proliferation, and gelatin sponge delivery produced a 65% increase. The blood-brain barrier hallmark endothelial glucose transporter-1 was not present in nascent vascular sprouts. Infusion of VEGF produced extensive protein leakage that persisted after saline-induced permeability was mostly resolved, while gelatin sponge administration caused milder barrier dysfunction. Administration of the angiogenic factor had unexpected proliferative effects on astroglia in both models, resulting in an 80-85% increase in mitotically active astroglia when compared to controls. Immunohistochemical results and semi-quantitative reverse transcriptase-polymerase chain reaction indicated that the VEGF receptors flk-1 and flt-1 were up-regulated in response to the infusion trauma; flt-1 was localized to reactive astroglia, while flk-1 was expressed in vascular endothelium but predominantly in neuronal somata and processes adjacent to the delivery site. mRNA for the VEGF(121), VEGF(165) and VEGF(188) isoforms was also increased after delivery of the recombinant protein. These data show that VEGF application has substantial proliferative effects on CNS endothelium and astroglia and causes up-regulation of its own message. Flt-1 and flk-1 receptor mRNAs and proteins are up-regulated in both vascular and non-vascular cell types following infusion trauma. From these results we suggest that administered VEGF has heretofore unanticipated pleiotrophic effects in the adult CNS.
Collapse
Affiliation(s)
- J M Krum
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | |
Collapse
|
12
|
Rosenstein JM, Silverman WF. Protein synthesis inhibition in neocortical grafts evaluated by systemic amino acid uptake autoradiography. Exp Neurol 2000; 162:268-77. [PMID: 10739633 DOI: 10.1006/exnr.1999.7328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The temporal pattern of protein synthesis inhibition was examined in grafted neocortical neurons using [(3)H]valine in vivo autoradiography. Neuronal uptake levels of systemically administered (3)H-labeled amino acids which cross the blood-brain barrier (BBB) via endothelial cell neutral carriers have long been a hallmark in studies of experimental ischemic pathology; there is likely a strong correlation between persistent protein synthesis inhibition and the progression of cell damage. Because the grafting procedure involves the loss of blood flow and the subsequent reperfusion of the donor tissue there are, mechanistically, important similarities to reversible ischemia models. The effects of ischemic injury on grafted CNS neurons are not fully understood. Quantitative analysis of grain distribution in individual graft or control (adjacent host cortex) neurons indicated an initial breakdown of the amino acid barrier system, subsequent recovery, and progressive reduction of amino acid uptake by 1 year. Up to 3 weeks after surgery grafts were flooded with the [(3)H]valine tracer but individual neurons contained relatively few silver grains. After this time, the tracer was normally distributed within graft neurons but at significantly lower levels than in controls. Grain density gradually decreased over time such that 12-month grafted neurons had approximately half that compared to control and only 58% of that in 2-month grafts; the 12-month levels were comparable to those observed at early (10 days) postoperative times. Autoradiography of immunostained sections for MAP-2, SMI 311 (neurofilament marker), and neuron-specific enolase showed reduced expression of these proteins in neurons coupled with weak amino acid tracer uptake. The results further suggest that grafted neurons bear intriguing similarities to neurons placed at ischemic risk, particularly "penumbral" neurons, which are affected by reduced blood flow and are metabolically weakened. The loss of BBB properties in early grafts may also extend to the endothelial cell amino acid carrier system, and the delayed revascularization process could affect neuronal uptake mechanisms.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | |
Collapse
|
13
|
Akiyama H, Kondoh T, Kokunai T, Nagashima T, Saito N, Tamaki N. Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain. Brain Res 2000; 858:172-6. [PMID: 10700611 DOI: 10.1016/s0006-8993(99)02471-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human umbilical vein endothelial cells (HUVECs) were transplanted in athymic mouse brain and neovascularization of grafted endothelial cells was studied. HUVECs were transfected by a reporter gene pEGFPE-N1 in vitro and grafted stereotactically in unilateral striatum of adult nude mice. Histological studies in 4 weeks revealed that grafted HUVECs newly formed microvessels in brain, which were migrated and fused with host vessels. Intravenous injection of Evans blue before sacrificing animals resulted in no extravasation of dye, indicating that a blood-brain barrier (BBB) was formed by the grafted HUVECs. Immunohistochemistry demonstrated that host astrocytes extended glial feet on the grafted endothelial cells and a part of the newly formed vessels was positive with glucose transporter-1. These results indicate that endothelial cells from an ectopic origin have the potential to form a BBB after grafting in the central nervous system.
Collapse
Affiliation(s)
- H Akiyama
- Department of Neurosurgery, Kobe University School of Medicine, Kusunoki-cho 7-5-1, Chuou-ku, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 1998; 154:57-65. [PMID: 9875268 DOI: 10.1006/exnr.1998.6930] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant angiogenesis occurs only after injury in the adult mammalian brain; capillaries proliferate and astrocytes are activated by presently unresolved cellular mechanisms. Because of the intimate relationship between astrocytes and brain capillaries we examined the expression of the specific endothelial mitogen vascular endothelial growth factor (VEGF) in reactive astrocytes following CNS trauma models: neural grafting, stab wounds, and glioma implantation. In situ hybridization was combined with GFAP immunohistochemistry to delineate VEGF mRNA expression in reactive astrocytes. In addition, VEGF and its receptor flt-1 protein expression were detected immunohistochemically. In all three models we found unexpectedly that only reactive astrocytes, not endothelium, expressed the VEGF receptor flt-1, VEGF mRNA, and VEGF protein in a spatiotemporal manner, suggesting that activated astroglia may have a direct role in the induction of angiogenesis or permeability in mature brain. In addition, secreted VEGF may play a part in astroglial signalling by the induction of its own receptor in reactive astroglia following injury. These findings may have significant implications with regard to growth and reparative mechanisms of the adult cerebrovasculature.
Collapse
Affiliation(s)
- J M Krum
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
16
|
Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 1998; 95:7086-91. [PMID: 9618543 PMCID: PMC22748 DOI: 10.1073/pnas.95.12.7086] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription-PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood-brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
17
|
Hisano S, Haga H, Li Z, Tatsumi S, Miyamoto KI, Takeda E, Fukui Y. Immunohistochemical and RT-PCR detection of Na+-dependent inorganic phosphate cotransporter (NaPi-2) in rat brain. Brain Res 1997; 772:149-55. [PMID: 9406966 DOI: 10.1016/s0006-8993(97)00884-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of a renal Na+-dependent inorganic phosphate (Pi) cotransporter (NaPi-2) was studied in rat forebrain with reverse transcription and polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis for total RNA from whole brain and sequencing of the PCR products showed expression of NaPi-2 mRNA in the brain. Immunohistochemical analysis revealed NaPi-2 staining in many nonpyramidal neurons of all six layers throughout neocortical areas and in neurons of proisocortical and periallocortical areas. NaPi-2-immunoreactive neurons were also detectable in the piriform cortex, hippocampal formation, caudate-putamen, amygdaloid nuclei and lateral geniculate nucleus. Furthermore, NaPi-2 staining was shown in ependymal cells and microvascular endothelial cells. The present results suggest that NaPi-2 is synthesized within the brain and involved in maintaining Pi homeostasis of certain neurons and/or the entire brain.
Collapse
Affiliation(s)
- S Hisano
- Department of Anatomy, School of Medicine, University of Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Boer GJ, van Esseveldt KE, Hermens WT, Liu R, Verhaagen J. Long-term transgene expression in fetal rat suprachiasmatic nucleus neurografts following ex vivo adenoviral vector-mediated gene transfer. Exp Neurol 1997; 145:536-45. [PMID: 9217089 DOI: 10.1006/exnr.1997.6489] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ex vivo gene transfer to fetal suprachiasmatic nucleus (SCN)-containing solid piece neurografts was explored using a first-generation prototype adenoviral vector containing the reporter gene LacZ (Ad-LacZ). Transgene expression was examined at different intervals following grafting in the IIIrd ventricle of rat brain and was compared to that of explant cultures. Large numbers of beta-galactosidase-positive cells were observed 8 days postgrafting. The number of stained cells had decreased considerably at 21 days but transduced cells were still present at 70 days. In vitro culturing of infected SCN tissue revealed high expression up to 21 days, indicating that the in vivo and in vitro fates of Ad-LacZ-infected cells were different. The main reason for this difference appeared to be cell loss by necrosis in the initial phase after transplantation, a phenomenon not related to the infection with Ad-LacZ since it similarly occurred in control grafts. In vivo inflammatory responses, observed after immunostaining for macrophages and T-lymphocytes, were also comparable in control and Ad-LacZ-treated transplants, except that cytotoxic T-cells were observed in the Ad-LacZ-treated transplants and not in controls. The recruitment of these cells was, however, minor and primarily observed at 8 days postgrafting, indicating that a major immunological rejection of the transduced graft did not occur. In both control and Ad-LacZ-infected transplants similar survival and intraimplant neuritic growth of SCN cells were visible. Ex vivo gene transfer of solid piece fetal SCN grafts with adenoviral vectors therefore appeared to be a nontoxic long-term gene-introducing procedure. This would in principle enable the local production of neurotrophic factors within the transplant and has the potential to improve functional SCN neurografting.
Collapse
Affiliation(s)
- G J Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam
| | | | | | | | | |
Collapse
|
19
|
Kordower JH, Rosenstein JM, Collier TJ, Burke MA, Chen EY, Li JM, Martel L, Levey AE, Mufson EJ, Freeman TB, Olanow CW. Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol 1996; 370:203-30. [PMID: 8808731 DOI: 10.1002/(sici)1096-9861(19960624)370:2<203::aid-cne6>3.0.co;2-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A patient with Parkinson's disease received bilateral fetal human nigral implants from six donors aged 6.5 to 9 weeks post-conception. Eighteen months following a post-operative clinical course characterized by marked improvement in clinical function, this patient died from events unrelated to the grafting procedure. Post-mortem histological analyses revealed the presence of viable grafts in all 12 implant sites, each containing a heterogeneous population of neurons and glia. Approximately 210,146 implanted tyrosine hydroxylase-immunoreactive (TH-ir) neurons were found. A greater number of TH-ir grafted neurons were observed in the right (128,162) than the left (81,905) putamen. Grafted TH-ir neurons were organized in an organotypic fashion. These cells provided extensive TH-ir and dopamine transporter-ir innervation to the host striatum which occurred in a patch-matrix fashion. Quantitative evaluations revealed that fetal nigral grafts reinnervated 53% and 28% of the post-commissural putamen on the right and left side, respectively. Grafts on the left side innervated a lesser area of the striatum, but optical density measurements were similar on both sides. There was no evidence that the implants induced sprouting of host TH-ir systems. Electron microscopic analyses revealed axo-dendritic and occasional axo-axonic synapses between graft and host. In contrast, axo-somatic synapses were not observed. In situ hybridization for TH mRNA revealed intensely hybridized grafted neurons which far exceeded TH mRNA expression within residual host nigral cells. In addition, gamma-amino butyric acid (GABA)-ergic neurons were observed within the graft that formed a dense local neuropil which was confined to the implant site. Serotonergic neurons were not observed within the graft. Cytochrome oxidase activity was increased bilaterally within the grafted post-commissural putamen, suggesting increased metabolic activity. In this regard, a doubling of cytochrome oxidase activity was observed within the grafted post-commissural putamen bilaterally relative to the non-grafted anterior putamen. The grafts were hypovascular relative to the surrounding striatum and host substantia nigra. Blood vessels within the graft stained intensely for GLUT-1, suggesting that this marker of blood--brain barrier function is present within human nigral allografts. Taken together, these data indicate that fetal nigral neurons can survive transplantation, functionally reinnervate the host putamen, establish synaptic contacts with host neurons, and sustain many of the morphological and functional characteristics of normal nigral neurons following grafting into a patient with PD.
Collapse
Affiliation(s)
- J H Kordower
- Research Center for Brain Repair, Rush Presbyterian Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosenstein JM, Krum JM. Cytoskeletal Protein Immunoexpression in Fetal Neural Grafts: Distribution of Phosphorylated and Nonphosphorylated Neurofilament Protein and Microtubule-Associated Protein 2 (Map-2). Cell Transplant 1996; 5:233-41. [PMID: 8689034 DOI: 10.1177/096368979600500212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study examined the immunocytochemical expression of important cytoskeletal proteins within the neurons of an extended series of neocortical grafts and smaller group of ventral mesencephalic (nigral) grafts. Using antibodies that were directed at all three neurofilament (NF) epitopes, NF-L, NF-M, and NF-H, we attempted to determine whether these neurons would have an altered cytoskeletal profile following the stress of transplantation, because previous studies have shown such changes following ischemia or direct brain injury. We studied phosphorylated NF protein, which is found predominantly in axons, nonphosphorylated NF protein, which is found predominantly in the somata-dendritic compartment, and MAP-2, a specific microtubule marker that is localized exclusively in the somato-dendritic compartment. The results show that in all neocortical grafts examined, both phosphorylated and nonphosphorylated NF immunoexpression was significantly downregulated and appeared only in relatively few axons and somatic profiles, respectively, even though there were numerous Nissl-stained neuronal profiles in the grafts. There was no particular pattern to the immunopositive profiles. At later times occasional neuronal profiles were positive for phosphorylated NF protein, suggesting a reaction to cellular injury. In contrast to neocortical grafts, the cytoskeletal profiles of MAP-2 and phosphorylated NF protein in nigral grafts appeared very similar to age-matched control although the nonphosphorylated NF protein expression did appear somewhat lessened at 1-2 mo postoperative. Because cytoskeletal proteins play important roles in neuronal size, shape, and structural stability, they may subserve key cellular issues in neural grafting. These results show a significant loss of cytoskeletal protein expression in neocortical grafts that does not occur in nigral grafts. These results suggest that fetal neurons from different brain regions (i.e., graft source) may respond differently to the grafting procedure insofar as their cytoskeletal makeup is concerned. In addition, a potential lack of appropriate growth substrates or synaptic contacts may also produce cytoskeletal alterations. As such, the cytoskeletal protein profiles in central nervous system (CNS) grafts may be useful markers for functional performance, perhaps reflecting a degree of cellular injury.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy, George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
21
|
Cytoskeletal protein immunoexpression in fetal neural grafts: distribution of phosphorylated and nonphosphorylated neurofilament protein and microtubule-associated protein 2 (MAP-2). Cell Transplant 1996. [PMID: 8689034 DOI: 10.1016/0963-6897(95)02031-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The present study examined the immunocytochemical expression of important cytoskeletal proteins within the neurons of an extended series of neocortical grafts and smaller group of ventral mesencephalic (nigral) grafts. Using antibodies that were directed at all three neurofilament (NF) epitopes, NF-L, NF-M, and NF-H, we attempted to determine whether these neurons would have an altered cytoskeletal profile following the stress of transplantation, because previous studies have shown such changes following ischemia or direct brain injury. We studied phosphorylated NF protein, which is found predominantly in axons, nonphosphorylated NF protein, which is found predominantly in the somata-dendritic compartment, and MAP-2, a specific microtubule marker that is localized exclusively in the somato-dendritic compartment. The results show that in all neocortical grafts examined, both phosphorylated and nonphosphorylated NF immunoexpression was significantly downregulated and appeared only in relatively few axons and somatic profiles, respectively, even though there were numerous Nissl-stained neuronal profiles in the grafts. There was no particular pattern to the immunopositive profiles. At later times occasional neuronal profiles were positive for phosphorylated NF protein, suggesting a reaction to cellular injury. In contrast to neocortical grafts, the cytoskeletal profiles of MAP-2 and phosphorylated NF protein in nigral grafts appeared very similar to age-matched control although the nonphosphorylated NF protein expression did appear somewhat lessened at 1-2 mo postoperative. Because cytoskeletal proteins play important roles in neuronal size, shape, and structural stability, they may subserve key cellular issues in neural grafting. These results show a significant loss of cytoskeletal protein expression in neocortical grafts that does not occur in nigral grafts. These results suggest that fetal neurons from different brain regions (i.e., graft source) may respond differently to the grafting procedure insofar as their cytoskeletal makeup is concerned. In addition, a potential lack of appropriate growth substrates or synaptic contacts may also produce cytoskeletal alterations. As such, the cytoskeletal protein profiles in central nervous system (CNS) grafts may be useful markers for functional performance, perhaps reflecting a degree of cellular injury.
Collapse
|
22
|
Rosenstein JM. Diminished Expression of Microtubule-Associated Protein (MAP-2) and β-Tubulin as a Putative Marker for Ischemic Injury in Neocortical Transplants. Cell Transplant 1995; 4:83-91. [PMID: 7728337 DOI: 10.1177/096368979500400112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study examined the immunoexpression of the neuronal cytoskeletal proteins, MAP-2 and β-tubulin within a timed series of rat fetal neocortical transplants. β-tubulin is a major component of microtubules and MAP-2 regulates the assembly and stability of neuronal microtubules and is a major site for the phosphorylation cAMP dependent protein kinase in neurons. Both proteins are strongly expressed in the soma and dendrites of normal neurons. MAP-2 has been shown to be a sensitive marker for ischemia in neurons and is downregulated in this form of injury. Immunoexpression of both MAP-2 and β-tubulin in grafted cortical neurons was markedly reduced when compared to age-matched or even perinatal specimens at all postoperative times. Dendritic staining was confined to random, thin processes with no laminar patterns and staining within somata was very weak. In some specimens, somatic expression was increased and dendrites were more robustly stained when a portion of the graft was juxtaposed to a fiber tract even though in other regions of the same graft there was very weak immunostaining. The present results corroborate previous studies of cortical transplants indicating an immature structure and metabolism, and it is suggested here that the primary factor is a sublethal form of ischemic injury. Another possibility for the relative paucity of cytoskeletal protein expression could be that transplanted neurons undergo a new developmental scheme (neodevelopment) that is brought about by truncated migration patterns and abnormal synaptic connections.
Collapse
Affiliation(s)
- J M Rosenstein
- Department of Anatomy, George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|