1
|
Xu L, Li S, Wu W, Cheng Z, Xie F. Sample Size Determination and Study Design Impact on Dose-Scale Pharmacodynamic Bioequivalence: a Case Study Using Orlistat. AAPS J 2024; 26:77. [PMID: 38960976 DOI: 10.1208/s12248-024-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Dose-scale pharmacodynamic bioequivalence is recommended for evaluating the consistency of generic and innovator formulations of certain locally acting drugs, such as orlistat. This study aimed to investigate the standard methodology for sample size determination and the impact of study design on dose-scale pharmacodynamic bioequivalence using orlistat as the model drug. A population pharmacodynamic model of orlistat was developed using NONMEM 7.5.1 and utilized for subsequent simulations. Three different study designs were evaluated across various predefined relative bioavailability ratios of test/reference (T/R) formulations. These designs included Study Design 1 (2×1 crossover with T1 60 mg, R1 60 mg, and R2 120 mg), Study Design 2 (2×1 crossover with T2 120 mg, R1 60 mg, and R2 120 mg), and Study Design 3 (2×2 crossover with T1 60 mg, T2 120 mg, R1 60 mg, and R2 120 mg). Sample sizes were determined using a stochastic simulation and estimation approach. Under the same T/R ratio and power, Study Design 3 required the minimum sample size for bioequivalence, followed by Study Design 1, while Study Design 2 performed the worst. For Study Designs 1 and 3, a larger sample size was needed on the T/R ratio < 1.0 side for the same power compared to that on the T/R ratio > 1.0 side. The opposite asymmetry was observed for Study Design 2. We demonstrated that Study Design 3 is most effective for reducing the sample size for orlistat bioequivalence studies, and the impact of T/R ratio on sample size shows asymmetry.
Collapse
Affiliation(s)
- Lian Xu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, 410013, China
| | - Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei Wu
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Zeneng Cheng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, 410013, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, 410013, China.
| |
Collapse
|
2
|
Abdalla Ahmed MA, Ssemmondo E, Mark-Wagstaff C, Sathyapalan T. Advancements in the management of obesity: a review of current evidence and emerging therapies. Expert Rev Endocrinol Metab 2024; 19:257-268. [PMID: 38685693 DOI: 10.1080/17446651.2024.2347258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Obesity is the modern world's current epidemic, with substantial health and economic impact. This study aimed to provide a narrative overview of the past, currently available, and future treatment options that offer therapeutic and preventive advantages for obesity management. AREAS COVERED Historically, rimonabant, and lorcaserin, were approved and used for managing non-syndromic obesity. Currently, orlistat, naltrexone/bupropion, glucagon-like peptide-1 receptor agonist (GLP-1 RA), and a few promising therapeutic agents are under investigation, including retatrutide, cagrilintide and orforglipron, which show promising weight reduction effects. We have developed a search string of the Medical Subject Headings (MeSH), including the terms GLP-1 RAs, obesity, and weight loss. This string was then used to perform a systematic literature search in the database including PubMed, EMBASE, MEDLINE, and Scopus up to January 31st, 2024. EXPERT OPINION Managing obesity often requires medical interventions, particularly in cases of severe obesity or obesity-related comorbidities. Thus, it is important to approach obesity management holistically, considering individual needs and circumstances. In our opinion, consulting with healthcare professionals is crucial to developing a personalized plan that addresses both weight loss and overall health improvement.
Collapse
Affiliation(s)
- Mohammed Altigani Abdalla Ahmed
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
- Hull York Medical School, University of Hull, Hull, UK
| | - Emmanuel Ssemmondo
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| | - Charlotte Mark-Wagstaff
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| |
Collapse
|
3
|
Roomy MA, Hussain K, Behbehani HM, Abu-Farha J, Al-Harris R, Ambi AM, Abdalla MA, Al-Mulla F, Abu-Farha M, Abubaker J. Therapeutic advances in obesity management: an overview of the therapeutic interventions. Front Endocrinol (Lausanne) 2024; 15:1364503. [PMID: 38715796 PMCID: PMC11074390 DOI: 10.3389/fendo.2024.1364503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024] Open
Abstract
Obesity has become a global epidemic in the modern world, significantly impacting the global healthcare economy. Lifestyle interventions remain the primary approach to managing obesity, with medical therapy considered a secondary option, often used in conjunction with lifestyle modifications. In recent years, there has been a proliferation of newer therapeutic agents, revolutionizing the treatment landscape for obesity. Notably, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as semaglutide, liraglutide, and the recently approved dual GLP-1/GIP RAs agonist tirzepatide, have emerged as effective medications for managing obesity, resulting in significant weight loss. These agents not only promote weight reduction but also improve metabolic parameters, including lipid profiles, glucose levels, and central adiposity. On the other hand, bariatric surgery has demonstrated superior efficacy in achieving weight reduction and addressing overall metabolic imbalances. However, with ongoing technological advancements, there is an ongoing debate regarding whether personalized medicine, targeting specific components, will shape the future of developing novel therapeutic agents for obesity management.
Collapse
Affiliation(s)
- Moody Al Roomy
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Kainat Hussain
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hawraa M. Behbehani
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jenna Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rayan Al-Harris
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Aishwarya Mariam Ambi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed Altigani Abdalla
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
- Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
4
|
D'Ambrosio M, Bigagli E, Cinci L, Gencarelli M, Chioccioli S, Biondi N, Rodolfi L, Niccolai A, Zambelli F, Laurino A, Raimondi L, Tredici MR, Luceri C. Tisochrysis lutea F&M-M36 Mitigates Risk Factors of Metabolic Syndrome and Promotes Visceral Fat Browning through β3-Adrenergic Receptor/UCP1 Signaling. Mar Drugs 2023; 21:md21050303. [PMID: 37233497 DOI: 10.3390/md21050303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Pre-metabolic syndrome (pre-MetS) may represent the best transition phase to start treatments aimed at reducing cardiometabolic risk factors of MetS. In this study, we investigated the effects of the marine microalga Tisochrysis lutea F&M-M36 (T. lutea) on cardiometabolic components of pre-MetS and its underlying mechanisms. Rats were fed a standard (5% fat) or a high-fat diet (20% fat) supplemented or not with 5% of T. lutea or fenofibrate (100 mg/Kg) for 3 months. Like fenofibrate, T. lutea decreased blood triglycerides (p < 0.01) and glucose levels (p < 0.01), increased fecal lipid excretion (p < 0.05) and adiponectin (p < 0.001) without affecting weight gain. Unlike fenofibrate, T. lutea did not increase liver weight and steatosis, reduced renal fat (p < 0.05), diastolic (p < 0.05) and mean arterial pressure (p < 0.05). In visceral adipose tissue (VAT), T. lutea, but not fenofibrate, increased the β3-adrenergic receptor (β3ADR) (p < 0.05) and Uncoupling protein 1 (UCP-1) (p < 0.001) while both induced glucagon-like peptide-1 receptor (GLP1R) protein expression (p < 0.001) and decreased interleukin (IL)-6 and IL-1β gene expression (p < 0.05). Pathway analysis on VAT whole-gene expression profiles showed that T. lutea up-regulated energy-metabolism-related genes and down-regulated inflammatory and autophagy pathways. The multitarget activity of T. lutea suggests that this microalga could be useful in mitigating risk factors of MetS.
Collapse
Affiliation(s)
- Mario D'Ambrosio
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- Enteric Neuroscience Program, Department of Medicine, Section of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elisabetta Bigagli
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Lorenzo Cinci
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Manuela Gencarelli
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Sofia Chioccioli
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Liliana Rodolfi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
- Fotosintetica & Microbiologica S.r.l., Via di Santo Spirito 14, 50125 Florence, Italy
| | - Alberto Niccolai
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Francesca Zambelli
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Annunziatina Laurino
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Raimondi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Mario R Tredici
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Cristina Luceri
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
5
|
Abdalla MA, Deshmukh H, Atkin S, Sathyapalan T. A review of therapeutic options for managing the metabolic aspects of polycystic ovary syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820938305. [PMID: 32670541 PMCID: PMC7338645 DOI: 10.1177/2042018820938305] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age. Metabolic sequelae associated with PCOS range from insulin resistance to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Insulin resistance plays a significant role in the pathophysiology of PCOS and it is a reliable marker for cardiometabolic risk. Although insulin sensitising agents such as metformin have been traditionally used for managing metabolic aspects of PCOS, their efficacy is low in terms of weight reduction and cardiovascular risk reduction compared with newer agents such as incretin mimetics and SGLT2 inhibitors. With current pharmaceutical advances, potential therapeutic options have increased, giving patients and clinicians more choices. Incretin mimetics are a promising therapy with a unique metabolic target that could be used widely in the management of PCOS. Likewise, bariatric procedures have become less invasive and result in effective weight loss and the reversal of metabolic morbidities in some patients. Therefore, surgical treatment targeting weight loss becomes increasingly common in the management of obese women with PCOS. Newer emerging therapies, including twincretins, triple GLP-1 agonists, glucagon receptor antagonists and imeglemin, are promising therapeutic options for treating T2DM. Given the similarity of metabolic and pathological features between PCOS and T2DM and the variety of therapeutic options, there is the potential to widen our strategy for treating metabolic disorders in PCOS in parallel with current therapeutic advances. The review was conducted in line with the recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome 2018.
Collapse
Affiliation(s)
- Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Harshal Deshmukh
- Department of Academic Diabetes, Endocrinology
and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Stephen Atkin
- School of Postgraduate Studies and Research,
RCSI Medical University of Bahrain, Kingdom of Bahrain
| | | |
Collapse
|