1
|
Nelson T, Vargas-Hernández S, Freire M, Cheng S, Gustavsson AK. Multimodal illumination platform for 3D single-molecule super-resolution imaging throughout mammalian cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:3050-3063. [PMID: 38855669 PMCID: PMC11161355 DOI: 10.1364/boe.521362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 06/11/2024]
Abstract
Single-molecule super-resolution imaging is instrumental in investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise 3D nanoscale studies of a wide range of cellular structures. Here, we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi- and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin - a protein located in the focal adhesion complex - and actin in human osteosarcoma cells.
Collapse
Affiliation(s)
- Tyler Nelson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Margareth Freire
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Siyang Cheng
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Center for Nanoscale Imaging Sciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
2
|
Nguyen TD, Chen YI, Chen LH, Yeh HC. Recent Advances in Single-Molecule Tracking and Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:253-284. [PMID: 37314878 PMCID: PMC11729782 DOI: 10.1146/annurev-anchem-091922-073057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Limin H Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Texas Materials Institute, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Qiao W, Li Y, Ning K, Luo Q, Gong H, Yuan J. Differential synthetic illumination based on multi-line detection for resolution and contrast enhancement of line confocal microscopy. OPTICS EXPRESS 2023; 31:16093-16106. [PMID: 37157695 DOI: 10.1364/oe.491422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Line confocal (LC) microscopy is a fast 3D imaging technique, but its asymmetric detection slit limits resolution and optical sectioning. To address this, we propose the differential synthetic illumination (DSI) method based on multi-line detection to enhance the spatial resolution and optical sectioning capability of the LC system. The DSI method allows the imaging process to simultaneously accomplish on a single camera, which ensures the rapidity and stability of the imaging process. DSI-LC improves X- and Z-axis resolution by 1.28 and 1.26 times, respectively, and optical sectioning by 2.6 times compared to LC. Furthermore, the spatially resolved power and contrast are also demonstrated by imaging pollen, microtubule, and the fiber of the GFP fluorescence-labeled mouse brain. Finally, Video-rate imaging of zebrafish larval heart beating in a 665.6 × 332.8 µm2 field-of-view is achieved. DSI-LC provides a promising approach for 3D large-scale and functional imaging in vivo with improved resolution, contrast, and robustness.
Collapse
|
4
|
Qin X, Gao J, Jin HJ, Li ZQ, Xia XH. Closed Bipolar Electrode Array for Optical Reporting Reaction-Coupled Electrochemical Sensing and Imaging. Chemistry 2023; 29:e202202687. [PMID: 36316589 DOI: 10.1002/chem.202202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
This review centers on a closed bipolar electrode (BPE) array using an electro-fluorochromism (EFC) or electro-chemiluminescence (ECL) reaction as the reporting reaction. Electrochemical signals at one pole of the closed BPE array can be transduced into the EFC or ECL signals at the opposite pole. Therefore, the current signal of a redox reaction can be easily detected and imaged by monitoring the luminescence signal. Recent developments in closed BPE array-based EFC and ECL sensing and imaging are summarized and discussed in detail. Finally, we consider the challenges and opportunities for improving the spatial resolution of closed BPE array-based electrochemical imaging, and emphasize the important application of this technique to the imaging of cellular activities at the single-cell level.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jiao Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Jiang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Torres-García E, Pinto-Cámara R, Linares A, Martínez D, Abonza V, Brito-Alarcón E, Calcines-Cruz C, Valdés-Galindo G, Torres D, Jabloñski M, Torres-Martínez HH, Martínez JL, Hernández HO, Ocelotl-Oviedo JP, Garcés Y, Barchi M, D’Antuono R, Bošković A, Dubrovsky JG, Darszon A, Buffone MG, Morales RR, Rendon-Mancha JM, Wood CD, Hernández-García A, Krapf D, Crevenna ÁH, Guerrero A. Extending resolution within a single imaging frame. Nat Commun 2022; 13:7452. [PMID: 36460648 PMCID: PMC9718789 DOI: 10.1038/s41467-022-34693-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.
Collapse
Affiliation(s)
- Esley Torres-García
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Raúl Pinto-Cámara
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alejandro Linares
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.144532.5000000012169920XAnalytical and Quantitative Light Microscopy, Marine Biological Laboratory, Woods Hole, MA USA
| | - Damián Martínez
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Víctor Abonza
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Eduardo Brito-Alarcón
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Carlos Calcines-Cruz
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gustavo Valdés-Galindo
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Torres
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Martina Jabloñski
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Héctor H. Torres-Martínez
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - José L. Martínez
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Haydee O. Hernández
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José P. Ocelotl-Oviedo
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Yasel Garcés
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Marco Barchi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ana Bošković
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Joseph G. Dubrovsky
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alberto Darszon
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Mariano G. Buffone
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Roberto Rodríguez Morales
- grid.472559.80000 0004 0498 8706Instituto de Cibernética, Matemática y Física, Ciudad de la Habana, Cuba
| | - Juan Manuel Rendon-Mancha
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| | - Christopher D. Wood
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Armando Hernández-García
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diego Krapf
- grid.47894.360000 0004 1936 8083Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Álvaro H. Crevenna
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Adán Guerrero
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| |
Collapse
|
6
|
Chen B, Chang BJ, Roudot P, Zhou F, Sapoznik E, Marlar-Pavey M, Hayes JB, Brown PT, Zeng CW, Lambert T, Friedman JR, Zhang CL, Burnette DT, Shepherd DP, Dean KM, Fiolka RP. Resolution doubling in light-sheet microscopy via oblique plane structured illumination. Nat Methods 2022; 19:1419-1426. [PMID: 36280718 PMCID: PMC10182454 DOI: 10.1038/s41592-022-01635-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Structured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning. Combining SIM with LSFM would enable gentle three-dimensional (3D) imaging at doubled resolution. However, multiple orientations of the illumination pattern, which are needed for isotropic resolution doubling in SIM, are challenging to implement in a light-sheet format. Here we show that multidirectional structured illumination can be implemented in oblique plane microscopy, an LSFM technique that uses a single objective for excitation and detection, in a straightforward manner. We demonstrate isotropic lateral resolution below 150 nm, combined with lower phototoxicity compared to traditional SIM systems and volumetric acquisition speed exceeding 1 Hz.
Collapse
Affiliation(s)
- Bingying Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philippe Roudot
- Aix-Marseille University, CNRS, Centrale Marseille, I2M, Turing Centre for Living Systems, Marseille, France
| | - Felix Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Genentech, San Francisco, USA
| | - Madeleine Marlar-Pavey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James B Hayes
- Department of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, TN, USA
| | - Peter T Brown
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talley Lambert
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, TN, USA
| | - Douglas P Shepherd
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto P Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Teranikar T, Lim J, Ijaseun T, Lee J. Development of Planar Illumination Strategies for Solving Mysteries in the Sub-Cellular Realm. Int J Mol Sci 2022; 23:1643. [PMID: 35163562 PMCID: PMC8835835 DOI: 10.3390/ijms23031643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Optical microscopy has vastly expanded the frontiers of structural and functional biology, due to the non-invasive probing of dynamic volumes in vivo. However, traditional widefield microscopy illuminating the entire field of view (FOV) is adversely affected by out-of-focus light scatter. Consequently, standard upright or inverted microscopes are inept in sampling diffraction-limited volumes smaller than the optical system's point spread function (PSF). Over the last few decades, several planar and structured (sinusoidal) illumination modalities have offered unprecedented access to sub-cellular organelles and 4D (3D + time) image acquisition. Furthermore, these optical sectioning systems remain unaffected by the size of biological samples, providing high signal-to-noise (SNR) ratios for objective lenses (OLs) with long working distances (WDs). This review aims to guide biologists regarding planar illumination strategies, capable of harnessing sub-micron spatial resolution with a millimeter depth of penetration.
Collapse
Affiliation(s)
| | | | | | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 75022, USA; (T.T.); (J.L.); (T.I.)
| |
Collapse
|
8
|
Jannasch A, Szilagyi SA, Burmeister M, Davis QT, Hermsdorf GL, De S, Schäffer E. Fast 3D imaging of giant unilamellar vesicles using reflected light-sheet microscopy with single molecule sensitivity. J Microsc 2021; 285:40-51. [PMID: 34786705 DOI: 10.1111/jmi.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Observation of highly dynamic processes inside living cells at the single molecule level is key for a better understanding of biological systems. However, imaging of single molecules in living cells is usually limited by the spatial and temporal resolution, photobleaching and the signal-to-background ratio. To overcome these limitations, light-sheet microscopes with thin selective plane illumination, for example, in a reflected geometry with a high numerical aperture imaging objective, have been developed. Here, we developed a reflected light-sheet microscope with active optics for fast, high contrast, two-colour acquisition of z -stacks. We demonstrate fast volume scanning by imaging a two-colour giant unilamellar vesicle (GUV) hemisphere. In addition, the high contrast enabled the imaging and tracking of single lipids in the GUV cap. The enhanced reflected scanning light-sheet microscope enables fast 3D scanning of artificial membrane systems and potentially live cells with single-molecule sensitivity and thereby could provide quantitative and molecular insight into the operation of cells.
Collapse
Affiliation(s)
- Anita Jannasch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Sven A Szilagyi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany.,Max Planck Institute for Solid State Physics, Heisenbergstrasse 1, Stuttgart, Germany
| | - Moritz Burmeister
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Q Tyrell Davis
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany.,School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland, UK
| | - Gero L Hermsdorf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Suman De
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Broomhall, Sheffield, UK
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| |
Collapse
|
9
|
Single-Molecule Imaging in Living Plant Cells: A Methodological Review. Int J Mol Sci 2021; 22:ijms22105071. [PMID: 34064786 PMCID: PMC8151321 DOI: 10.3390/ijms22105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging is emerging as a revolutionary approach to studying fundamental questions in plants. However, compared with its use in animals, the application of single-molecule imaging in plants is still underexplored. Here, we review the applications, advantages, and challenges of single-molecule fluorescence imaging in plant systems from the perspective of methodology. Firstly, we provide a general overview of single-molecule imaging methods and their principles. Next, we summarize the unprecedented quantitative details that can be obtained using single-molecule techniques compared to bulk assays. Finally, we discuss the main problems encountered at this stage and provide possible solutions.
Collapse
|
10
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Papagiakoumou E, Ronzitti E, Emiliani V. Scanless two-photon excitation with temporal focusing. Nat Methods 2020; 17:571-581. [PMID: 32284609 DOI: 10.1038/s41592-020-0795-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
Temporal focusing, with its ability to focus light in time, enables scanless illumination of large surface areas at the sample with micrometer axial confinement and robust propagation through scattering tissue. In conventional two-photon microscopy, widely used for the investigation of intact tissue in live animals, images are formed by point scanning of a spatially focused pulsed laser beam, resulting in limited temporal resolution of the excitation. Replacing point scanning with temporally focused widefield illumination removes this limitation and represents an important milestone in two-photon microscopy. Temporal focusing uses a diffusive or dispersive optical element placed in a plane conjugate to the objective focal plane to generate position-dependent temporal pulse broadening that enables axially confined multiphoton absorption, without the need for tight spatial focusing. Many techniques have benefitted from temporal focusing, including scanless imaging, super-resolution imaging, photolithography, uncaging of caged neurotransmitters and control of neuronal activity via optogenetics.
Collapse
Affiliation(s)
- Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France.
| |
Collapse
|
12
|
Hirvonen LM, Nedbal J, Almutairi N, Phillips TA, Becker W, Conneely T, Milnes J, Cox S, Stürzenbaum S, Suhling K. Lightsheet fluorescence lifetime imaging microscopy with wide-field time-correlated single photon counting. JOURNAL OF BIOPHOTONICS 2020; 13:e201960099. [PMID: 31661595 PMCID: PMC7065631 DOI: 10.1002/jbio.201960099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 05/22/2023]
Abstract
We report on wide-field time-correlated single photon counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single-photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide-field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.
Collapse
Affiliation(s)
- Liisa M. Hirvonen
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Jakub Nedbal
- Department of PhysicsKing's College LondonLondonUK
| | - Norah Almutairi
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Thomas A. Phillips
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | | | | | | | - Susan Cox
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Stephen Stürzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
13
|
Ponjavic A, Ye Y, Laue E, Lee SF, Klenerman D. Sensitive light-sheet microscopy in multiwell plates using an AFM cantilever. BIOMEDICAL OPTICS EXPRESS 2018; 9:5863-5880. [PMID: 31065399 PMCID: PMC6490997 DOI: 10.1364/boe.9.005863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 06/01/2023]
Abstract
We present a sensitive inverted light sheet microscope, capable of single-molecule fluorescence imaging of cells in 96-well plates. Light sheet microscope designs are often complex and costly, requiring custom-made sample chambers that are incompatible with standard cell culture samples. To overcome this limitation, we have developed single-objective cantilever selective plane illumination microscopy (socSPIM), which introduces a light sheet through the objective lens of an inverted microscope using an AFM tip. We demonstrate the effectiveness of this setup by performing 3D imaging of nuclear pore complexes, as well as live whole-cell 3D imaging of lysosomes and super-resolution imaging of the T-cell membrane. The unique advantage offered by socSPIM is the minimal footprint of the cantilever, which allowed us to perform super-resolution reflected light-sheet microscopy by PAINT in 96-well plates, paving the way for high-throughput studies.
Collapse
Affiliation(s)
- Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Cell Biology, Harvard Medical School, Longwood Avenue, Boston, 02115 MA, USA
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J. Multiscale imaging of plant development by light-sheet fluorescence microscopy. NATURE PLANTS 2018; 4:639-650. [PMID: 30185982 DOI: 10.1038/s41477-018-0238-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Daniel von Wangenheim
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Elisa Z, Toon B, De Smedt SC, Katrien R, Kristiaan N, Kevin B. Technical implementations of light sheet microscopy. Microsc Res Tech 2018; 81:941-958. [PMID: 29322581 DOI: 10.1002/jemt.22981] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Fluorescence-based microscopy is among the most successful methods in biological studies. It played a critical role in the visualization of subcellular structures and in the analysis of complex cellular processes, and it is nowadays commonly employed in genetic and drug screenings. Among the fluorescence-based microscopy techniques, light sheet fluorescence microscopy (LSFM) has shown a quite interesting set of benefits. The technique combines the speed of epi-fluorescence acquisition with the optical sectioning capability typical of confocal microscopes. Its unique configuration allows the excitation of only a thin plane of the sample, thus fast, high resolution imaging deep inside tissues is nowadays achievable. The low peak intensity with which the sample is illuminated diminishes phototoxic effects and decreases photobleaching of fluorophores, ensuring data collection for days with minimal adverse consequences on the sample. It is no surprise that LSFM applications have raised in just few years and the technique has been applied to study a wide variety of samples, from whole organism, to tissues, to cell clusters, and single cells. As a consequence, in recent years numerous set-ups have been developed, each one optimized for the type of sample in use and the requirements of the question at hand. Hereby, we aim to review the most advanced LSFM implementations to assist new LSFM users in the choice of the LSFM set-up that suits their needs best. We also focus on new commercial microscopes and "do-it-yourself" strategies; likewise we review recent designs that allow a swift integration of LSFM on existing microscopes.
Collapse
Affiliation(s)
- Zagato Elisa
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Brans Toon
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Remaut Katrien
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium
| | - Neyts Kristiaan
- Liquid Crystals and Photonics Group, Center for Nano- and Biophotonics, Ghent University, Belgium
| | - Braeckmans Kevin
- Laboratory of General Biochemistry and Physical Pharmacy, Center for Nano- and Biophotonics, Ghent University, Belgium
| |
Collapse
|
16
|
Gustavsson AK, Petrov PN, Lee MY, Shechtman Y, Moerner WE. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat Commun 2018; 9:123. [PMID: 29317629 PMCID: PMC5760554 DOI: 10.1038/s41467-017-02563-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 12/24/2022] Open
Abstract
Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.
Collapse
Affiliation(s)
- Anna-Karin Gustavsson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Petar N Petrov
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Maurice Y Lee
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.,Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Yoav Shechtman
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.,Biomedical Engineering Department, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA. .,Biophysics Program, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
von Diezmann A, Shechtman Y, Moerner WE. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chem Rev 2017; 117:7244-7275. [PMID: 28151646 PMCID: PMC5471132 DOI: 10.1021/acs.chemrev.6b00629] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.
Collapse
Affiliation(s)
| | - Yoav Shechtman
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
18
|
Carr AR, Ponjavic A, Basu S, McColl J, Santos AM, Davis S, Laue ED, Klenerman D, Lee SF. Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function. Biophys J 2017; 112:1444-1454. [PMID: 28402886 PMCID: PMC5390298 DOI: 10.1016/j.bpj.2017.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 02/02/2023] Open
Abstract
Single-molecule localization microscopy, typically based on total internal reflection illumination, has taken our understanding of protein organization and dynamics in cells beyond the diffraction limit. However, biological systems exist in a complicated three-dimensional environment, which has required the development of new techniques, including the double-helix point spread function (DHPSF), to accurately visualize biological processes. The application of the DHPSF approach has so far been limited to the study of relatively small prokaryotic cells. By matching the refractive index of the objective lens immersion liquid to that of the sample media, we demonstrate DHPSF imaging of up to 15-μm-thick whole eukaryotic cell volumes in three to five imaging planes. We illustrate the capabilities of the DHPSF by exploring large-scale membrane reorganization in human T cells after receptor triggering, and by using single-particle tracking to image several mammalian proteins, including membrane, cytoplasmic, and nuclear proteins in T cells and embryonic stem cells.
Collapse
Affiliation(s)
- Alexander R. Carr
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Davis
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F. Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom,Corresponding author
| |
Collapse
|
19
|
Affiliation(s)
- Ji Yu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030;
| |
Collapse
|
20
|
Yu B, Yu J, Li W, Cao B, Li H, Chen D, Niu H. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy. APPLIED OPTICS 2016; 55:449-53. [PMID: 26835916 DOI: 10.1364/ao.55.000449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The double-helix point spread function (DH-PSF) microscopy has become an essential tool for nanoscale three-dimensional (3D) localization and tracking of single molecules in living cells. However, its localization precision is limited by fluorescent contrast in thick samples because the signal-to-noise ratio of the system is low due to the inherent low transfer function efficiency and background fluorescence. Here we combine DH-PSF microscopy with light-sheet illumination to eliminate out-of-focus background fluorescence for high-precision 3D single particle tracking. To demonstrate the capability of the method, we obtain the single fluorescent bead image with light-sheet illumination, with three-dimensional localization accuracy better than that of epi-illumination. We also show that the single fluorescent beads in agarose solution can be tracked, which demonstrates the possibility of our method for the study of dynamic processes in complex biological specimens.
Collapse
|
21
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Booth M, Andrade D, Burke D, Patton B, Zurauskas M. Aberrations and adaptive optics in super-resolution microscopy. Microscopy (Oxf) 2015; 64:251-61. [PMID: 26124194 PMCID: PMC4711293 DOI: 10.1093/jmicro/dfv033] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/29/2015] [Indexed: 12/05/2022] Open
Abstract
As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem.
Collapse
Affiliation(s)
- Martin Booth
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Débora Andrade
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Daniel Burke
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Brian Patton
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Mantas Zurauskas
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| |
Collapse
|
23
|
Palayret M, Armes H, Basu S, Watson AT, Herbert A, Lando D, Etheridge TJ, Endesfelder U, Heilemann M, Laue E, Carr AM, Klenerman D, Lee SF. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging. PLoS One 2015; 10:e0125438. [PMID: 25884495 PMCID: PMC4401716 DOI: 10.1371/journal.pone.0125438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.
Collapse
Affiliation(s)
- Matthieu Palayret
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Helen Armes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex, BN1 9RQ, United Kingdom
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Adam T. Watson
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex, BN1 9RQ, United Kingdom
| | - Alex Herbert
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex, BN1 9RQ, United Kingdom
| | - David Lando
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Thomas J. Etheridge
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex, BN1 9RQ, United Kingdom
| | - Ulrike Endesfelder
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Antony M. Carr
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex, BN1 9RQ, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Steven F. Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Plasmon based super resolution imaging for single molecular detection: Breaking the diffraction limit. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0154-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|