1
|
Chen R, Lei F, Jin D, Peng K, Liu Q, Zhong Y, Hong L, Li X, Zeng Z, Lu T. Unraveling the Strength and Nature of Se∙∙∙O Chalcogen Bonds: A Comparative Study of SeF 2 and SeF 4 Interactions with Oxygen-Bearing Lewis Bases. Molecules 2024; 29:5739. [PMID: 39683896 DOI: 10.3390/molecules29235739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Chalcogen bonds (ChBs) involving selenium have attracted substantial scholarly interest in past years owing to their fundamental roles in various chemical and biological fields. However, the effect of the valency state of the electron-deficient selenium atom on the characteristics of such ChBs remains unexplored. Herein, we comparatively studied the σ-hole-type Se∙∙∙O ChBs between SeF2/SeF4 and a series of oxygen-bearing Lewis bases, including water, methanol, dimethyl ether, ethylene oxide, formaldehyde, acetaldehyde, acetone, and formic acid, using ab initio computations. The interaction energies of these chalcogen-bonded heterodimers vary from -5.25 to -11.16 kcal/mol. SeF2 participates in a shorter and stronger ChB than SeF4 for all the examined heterodimers. Such Se∙∙∙O ChBs are closed-shell interactions, exhibiting some covalent character for all the examined heterodimers, except for SeF4∙∙∙water. Most of these chalcogen-bonded heterodimers are predominantly stabilized through orbital interactions between the lone pair of the O atom in Lewis bases and the σ*(Se-F) antibonding orbitals of Lewis acids. The back-transfer of charge from the lone pair of selenium into the σ* or π* antibonding orbitals of Lewis bases is also observed for all systems. Energy decomposition analysis reveals that the electrostatic component significantly stabilizes the targeted heterodimers, while the induction and dispersion contributions cannot be ignored.
Collapse
Affiliation(s)
- Renhua Chen
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Deze Jin
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Ke Peng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Qingyu Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yeshuang Zhong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Liang Hong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Tao Lu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
2
|
Zeppilli D, Madabeni A, Nogara PA, Rocha JBT, Orian L. Reactivity of Zinc Fingers in Oxidizing Environments: Insight from Molecular Models Through Activation Strain Analysis. Chempluschem 2024; 89:e202400252. [PMID: 38842473 DOI: 10.1002/cplu.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
The reactivity of Zn2+ tetrahedral complexes with H2O2 was investigated in silico, as a first step in their disruption process. The substrates were chosen to represent the cores of three different zinc finger protein motifs, i. e., a Zn2+ ion coordinated to four cysteines (CCCC), to three cysteines and one histidine (CCCH), and to two cysteines and two histidines (CCHH). The cysteine and histidine ligands were further simplified to methyl thiolate and imidazole, respectively. H2O2 was chosen as an oxidizing agent due to its biological role as a metabolic product and species involved in signaling processes. The mechanism of oxidation of a coordinated cysteinate to sulfenate-κS and the trends for the different substrates were rationalized through activation strain analysis and energy decomposition analysis in the framework of scalar relativistic Density Functional Theory (DFT) calculations at ZORA-M06/TZ2P ae // ZORA-BLYP-D3(BJ)/TZ2P. CCCC is oxidized most easily, an outcome explained considering both electrostatic and orbital interactions. The isomerization to sulfenate-κO was attempted to assess whether this step may affect the ligand dissociation; however, it was found to introduce a kinetic barrier without improving the energetics of the dissociation. Lastly, ligand exchange with free thiolates and selenolates was investigated as a trigger for ligand dissociation, possibly leading to metal ejection; molecular docking simulations also support this hypothesis.
Collapse
Affiliation(s)
- Davide Zeppilli
- Dipartimento di Scienze Chimiche Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Andrea Madabeni
- Dipartimento di Scienze Chimiche Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecolar, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Av. Leonel de Moura Brizola, 2501, 96418-400, Bagé, RS, Brasil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecolar, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
3
|
Lu T, Chen R, Liu Q, Zhong Y, Lei F, Zeng Z. Unveiling the Nature and Strength of Selenium-Centered Chalcogen Bonds in Binary Complexes of SeO 2 with Oxygen-/Sulfur-Containing Lewis Bases: Insights from Theoretical Calculations. Int J Mol Sci 2024; 25:5609. [PMID: 38891796 PMCID: PMC11171880 DOI: 10.3390/ijms25115609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π-hole-type Se∙∙∙O/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from -4.68 kcal/mol to -10.83 kcal/mol for the Se∙∙∙O chalcogen-bonded complexes and vary between -3.53 kcal/mol and -13.77 kcal/mol for the Se∙∙∙S chalcogen-bonded complexes. The Se∙∙∙O/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The Se∙∙∙O/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these Se∙∙∙O/S ChBs generally surpasses that of the C/O-H∙∙∙O hydrogen bonds within the same complex. It should be noted that additional C/O-H∙∙∙O interactions have a large effect on the geometric structures and strength of Se∙∙∙O/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2∙∙∙HCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well.
Collapse
Affiliation(s)
| | | | | | | | - Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (T.L.); (R.C.); (Q.L.); (Y.Z.)
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (T.L.); (R.C.); (Q.L.); (Y.Z.)
| |
Collapse
|
4
|
Ibrahim MA, Mahmoud AM, Shehata MN, Saeed RR, Moussa NA, Sayed SR, Abd El-Rahman MK, Shoeib T. σ-Hole Site-Based Interactions within Hypervalent Pnicogen, Halogen, and Aerogen-Bearing Molecules with Lewis Bases: A Comparative Study. ACS OMEGA 2024; 9:10391-10399. [PMID: 38463322 PMCID: PMC10918780 DOI: 10.1021/acsomega.3c08178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
σ-Hole site-based interactions in the trigonal bipyramidal geometrical structure of hypervalent pnicogen, halogen, and aerogen-bearing molecules with pyridine and NCH Lewis bases (LBs) were comparatively examined. In this respect, the ZF5···, XF3O2···, and AeF2O3···LB complexes (where Z = As, Sb; X = Br, I; Ae = Kr, Xe; and LB = pyridine and NCH) were investigated. The electrostatic potential (EP) analysis affirmations outlined the occurrence of σ-holes on the systems under consideration with disparate magnitudes that increased according to the following order: AeF2O3 < XF3O2 < ZF5. In line with EP outcomes, the proficiency of σ-hole site-based interactions increased as the atomic size of the central atom increased with a higher favorability for the pyridine-based complexes over NCH-based ones. The interaction energy showed the most favorable negative values of -35.97, -44.53, and -56.06 kcal/mol for the XeF2O3···, IF3O2···, and SbF5···pyridine complexes, respectively. The preferentiality pattern of the studied interactions could be explained as a consequence of (i) the dramatic rearrangement of ZF5 molecules from the trigonal bipyramid geometry to the square pyramidal one, (ii) the significant and tiny deformation energy in the case of the interaction of XF3O2 molecules with pyridine and NCH, respectively, and (iii) the absence of geometrical deformation within the AeF2O3···pyridine and ···NCH complexes other than the XeF2O3···pyridine one. Quantum theory of atoms in molecules and noncovalent interaction index findings reveal the partially covalent nature of most of the investigated interactions. Symmetry-adapted perturbation theory affirmations declared that the electrostatic component was the driving force beyond the occurrence of the considered interactions. The obtained findings will help in improving our understanding of the effect of geometrical deformation on intermolecular interactions.
Collapse
Affiliation(s)
- Mahmoud A.A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal,
Westville Campus, Durban 4000, South Africa
| | - Asmaa M.M. Mahmoud
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohammed N.I. Shehata
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Rehab R.A. Saeed
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A.M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Shaban R.M. Sayed
- Department
of Botany and Microbiology, College of Science,
King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Khaled Abd El-Rahman
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Tamer Shoeib
- Department
of Chemistry, The American University in
Cairo, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Grisez T, Ravi NP, Froeyen M, Schols D, Van Meervelt L, De Jonghe S, Dehaen W. Synthesis of a 3,7-Disubstituted Isothiazolo[4,3- b]pyridine as a Potential Inhibitor of Cyclin G-Associated Kinase. Molecules 2024; 29:954. [PMID: 38474466 DOI: 10.3390/molecules29050954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Disubstituted isothiazolo[4,3-b]pyridines are known inhibitors of cyclin G-associated kinase. Since 3-substituted-7-aryl-isothiazolo[4,3-b]pyridines remain elusive, a strategy was established to prepare this chemotype, starting from 2,4-dichloro-3-nitropyridine. Selective C-4 arylation using ligand-free Suzuki-Miyaura coupling and palladium-catalyzed aminocarbonylation functioned as key steps in the synthesis. The 3-N-morpholinyl-7-(3,4-dimethoxyphenyl)-isothiazolo[4,3-b]pyridine was completely devoid of GAK affinity, in contrast to its 3,5- and 3,6-disubstituted congeners. Molecular modeling was applied to rationalize its inactivity as a GAK ligand.
Collapse
Affiliation(s)
- Tom Grisez
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Nitha Panikkassery Ravi
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, P.O. Box 1041, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium
| | - Luc Van Meervelt
- Department of Chemistry, Biomolecular Architecture, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Lei F, Liu Q, Zhong Y, Cui X, Yu J, Hu Z, Feng G, Zeng Z, Lu T. Computational Insight into the Nature and Strength of the π-Hole Type Chalcogen∙∙∙Chalcogen Interactions in the XO 2∙∙∙CH 3YCH 3 Complexes (X = S, Se, Te; Y = O, S, Se, Te). Int J Mol Sci 2023; 24:16193. [PMID: 38003384 PMCID: PMC10671658 DOI: 10.3390/ijms242216193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the non-covalent interactions between chalcogen centers have aroused substantial research interest because of their potential applications in organocatalysis, materials science, drug design, biological systems, crystal engineering, and molecular recognition. However, studies on π-hole-type chalcogen∙∙∙chalcogen interactions are scarcely reported in the literature. Herein, the π-hole-type intermolecular chalcogen∙∙∙chalcogen interactions in the model complexes formed between XO2 (X = S, Se, Te) and CH3YCH3 (Y = O, S, Se, Te) were systematically studied by using quantum chemical computations. The model complexes are stabilized via one primary X∙∙∙Y chalcogen bond (ChB) and the secondary C-H∙∙∙O hydrogen bonds. The binding energies of the studied complexes are in the range of -21.6~-60.4 kJ/mol. The X∙∙∙Y distances are significantly smaller than the sum of the van der Waals radii of the corresponding two atoms. The X∙∙∙Y ChBs in all the studied complexes except for the SO2∙∙∙CH3OCH3 complex are strong in strength and display a partial covalent character revealed by conducting the quantum theory of atoms in molecules (QTAIM), a non-covalent interaction plot (NCIplot), and natural bond orbital (NBO) analyses. The symmetry-adapted perturbation theory (SAPT) analysis discloses that the X∙∙∙Y ChBs are primarily dominated by the electrostatic component.
Collapse
Affiliation(s)
- Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Qingyu Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Yeshuang Zhong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Xinai Cui
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Jie Yu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Zuquan Hu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China;
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| | - Tao Lu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (F.L.); (Q.L.); (Y.Z.); (X.C.); (J.Y.); (Z.H.)
| |
Collapse
|
7
|
Carugo OI. Chalcogen bonds formed by protein sulfur atoms in proteins. A survey of high-resolution structures deposited in the protein data bank. J Biomol Struct Dyn 2023; 41:9576-9582. [PMID: 36342326 DOI: 10.1080/07391102.2022.2143427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The presence of chalcogen bonds in native proteins was investigated on a non-redundant and high-resolution (≤ 1 Angstrom) set of protein crystal structures deposited in the Protein Data Bank. It was observed that about one half of the sulfur atoms of methionines and disulfide bridges from chalcogen bonds with nucleophiles (oxygen and sulfur atoms, and aromatic rings). This suggests that chalcogen bonds are a non-bonding interaction important for protein stability. Quite numerous chalcogen bonds involve water molecules. Interestingly, in the case of disulfide bridges, chalcogen bonds have a marked tendency to occur along the S-S bond extension rather than along the C-S bond extension. Additionally, it has been observed that closer residues have a higher probability of being connected by a chalcogen bonds, while the secondary structure of the two residues connected by a chalcogen bond do not correlate with its formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oliviero Italo Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy
- Department of Structural and Computational Biology, Max Perutz Labs University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Weiss R, Aubert E, Groslambert L, Pale P, Mamane V. Evidence for and evaluation of fluorine-tellurium chalcogen bonding. Chem Sci 2023; 14:7221-7229. [PMID: 37416727 PMCID: PMC10321537 DOI: 10.1039/d3sc00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
In the field of noncovalent interactions, chalcogen bonding (ChB) involving the tellurium atom is currently attracting much attention in supramolecular chemistry and in catalysis. However, as a prerequisite for its application, the ChB should be studied in solution to assess its formation and, if possible, to evaluate its strength. In this context, new tellurium derivatives bearing CH2F and CF3 groups were designed to exhibit Te⋯F ChB and were synthesized in good to high yields. In both types of compounds, Te⋯F interactions were characterized in solution by combining 19F, 125Te and HOESY NMR techniques. These Te⋯F ChBs were shown to contribute to the overall JTe-F coupling constants (94-170 Hz) measured in the CH2F- and CF3-based tellurium derivatives. Finally, a variable temperature NMR study allowed us to approximate the energy of the Te⋯F ChB, from 3 kJ mol-1 for the compounds with weak Te σ-holes to 11 kJ mol-1 for Te σ-holes activated by the presence of strong electron withdrawing substituents.
Collapse
Affiliation(s)
- Robin Weiss
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | | | - Loic Groslambert
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- LASYROC, UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
9
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
10
|
Adhav VA, Shelke SS, Balanarayan P, Saikrishnan K. Sulfur-mediated chalcogen versus hydrogen bonds in proteins: a see-saw effect in the conformational space. QRB DISCOVERY 2023; 4:e5. [PMID: 37564297 PMCID: PMC10411326 DOI: 10.1017/qrd.2023.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 08/12/2023] Open
Abstract
Divalent sulfur (S) forms a chalcogen bond (Ch-bond) via its σ-holes and a hydrogen bond (H-bond) via its lone pairs. The relevance of these interactions and their interplay for protein structure and function is unclear. Based on the analyses of the crystal structures of small organic/organometallic molecules and proteins and their molecular electrostatic surface potential, we show that the reciprocity of the substituent-dependent strength of the σ-holes and lone pairs correlates with the formation of either Ch-bond or H-bond. In proteins, cystines preferentially form Ch-bonds, metal-chelated cysteines form H-bonds, while methionines form either of them with comparable frequencies. This has implications for the positioning of these residues and their role in protein structure and function. Computational analyses reveal that the S-mediated interactions stabilise protein secondary structures by mechanisms such as helix capping and protecting free β-sheet edges by negative design. The study highlights the importance of S-mediated Ch-bond and H-bond for understanding protein folding and function, the development of improved strategies for protein/peptide structure prediction and design and structure-based drug discovery.
Collapse
Affiliation(s)
| | - Sanket Satish Shelke
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Pananghat Balanarayan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
11
|
Farka D, Kříž K, Fanfrlík J. Strategies for the Design of PEDOT Analogues Unraveled: the Use of Chalcogen Bonds and σ-Holes. J Phys Chem A 2023; 127:3779-3787. [PMID: 37075228 PMCID: PMC10165655 DOI: 10.1021/acs.jpca.2c08965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In this theoretical study, we set out to demonstrate the substitution effect of PEDOT analogues on planarity as an intrinsic indicator for electronic performance. We perform a quantum mechanical (DFT) study of PEDOT and analogous model systems and demonstrate the usefulness of the ωB97X-V functional to simulate chalcogen bonds and other noncovalent interactions. We confirm that the chalcogen bond stabilizes the planar conformation and further visualize its presence via the electrostatic potential surface. In comparison to the prevalent B3LYP, we gain 4-fold savings in computational time and simulate model systems of up to a dodecamer. Implications for design of conductive polymers can be drawn from the results, and an example for self-doped polymers is presented where modulation of the strength of the chalcogen bond plays a significant role.
Collapse
Affiliation(s)
- Dominik Farka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 160 00 Prague, Czech Republic
| | - Kristian Kříž
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 160 00 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 160 00 Prague, Czech Republic
| |
Collapse
|
12
|
Carugo O. Interplay between hydrogen and chalcogen bonds in cysteine. Proteins 2023; 91:395-399. [PMID: 36250971 PMCID: PMC10092013 DOI: 10.1002/prot.26437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Protein structures are stabilized by several types of chemical interactions between amino acids, which can compete with each other. This is the case of chalcogen and hydrogen bonds formed by the thiol group of cysteine, which can form three hydrogen bonds with one hydrogen acceptor and two hydrogen donors and a chalcogen bond with a nucleophile along the extension of the CS bond. A survey of the Protein Data Bank shows that hydrogen bonds are about 40-50 more common than chalcogen bonds, suggesting that they are stronger and, consequently, prevail, though not always. It is also observed that frequently a thiol group that forms a chalcogen bond is also involved, as a hydrogen donor, in a hydrogen bond.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy.,Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Pale P, Mamane V. Chalcogen Bonds: How to Characterize Them in Solution? Chemphyschem 2023; 24:e202200481. [PMID: 36205925 DOI: 10.1002/cphc.202200481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Indexed: 11/08/2022]
Abstract
Chalcogen bonds (ChBs) occur between molecules containing Lewis acidic chalcogen substituents and Lewis bases. Recently, ChB emerged as a pivotal interaction in solution-based applications such as anion recognition, anion transport and catalysis. However, before moving to applications, the involvement of ChB must be established in solution. In this Concept article, we provide a brief review of the currently available experimental investigations of ChB in solution.
Collapse
Affiliation(s)
- Patrick Pale
- UMR 7177, LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- UMR 7177, LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
14
|
Scheiner S. Competition Between the Two σ-Holes in the Formation of a Chalcogen Bond. Chemphyschem 2023; 24:e202200936. [PMID: 36744997 DOI: 10.1002/cphc.202200936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
A chalcogen atom Y contains two separate σ-holes when in a R1 YR2 molecular bonding pattern. Quantum chemical calculations consider competition between these two σ-holes to engage in a chalcogen bond (ChB) with a NH3 base. R groups considered include F, Br, I, and tert-butyl (tBu). Also examined is the situation where the Y lies within a chalcogenazole ring, where its neighbors are C and N. Both electron-withdrawing substituents R1 and R2 act cooperatively to deepen the two σ-holes, but the deeper of the two holes consistently lies opposite to the more electron-withdrawing group, and is also favored to form a stronger ChB. The formation of two simultaneous ChBs in a triad requires the Y atom to act as double electron acceptor, and so anti-cooperativity weakens each bond relative to the simple dyad. This effect is such that some of the shallower σ-holes are unable to form a ChB at all when a base occupies the other site.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, 84322-0300, Logan, Utah, USA
| |
Collapse
|
15
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
16
|
|
17
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
18
|
Mirgaux M, Scaillet T, Kozlova A, Tumanov N, Frederick R, Bodart L, Wouters J. Structural study of bioisosteric derivatives of 5-(1 H-indol-3-yl)-benzotriazole and their ability to form chalcogen bonds. Acta Crystallogr E Crystallogr Commun 2022; 78:418-424. [PMID: 35492280 PMCID: PMC8983978 DOI: 10.1107/s2056989022002948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
Recently, inter-est in the isosteric replacement of a nitro-gen atom to selenium, sulfur or oxygen atoms has been highlighted in the design of potential inhibitors for cancer research. In this context, the structures of 5-(1H-indol-3-yl)-2,1,3-benzotriazole derivatives [5-(1H-indol-3-yl)-2,1,3-benzo-thia-diazole (bS, C14H9N3S) and 5-(1H-indol-3-yl)-2,1,3-benzoxa-diazole (bO, C14H9N3O)], as well as a synthesis inter-mediate of the selenated bioisostere [5-[1-(benzensulfon-yl)-1H-indol-3-yl]-2,1,3-benzoselena-diazole (p-bSe, C20H13N3O2SSe)] were determined using single-crystal X-ray diffraction (SCXRD) analyses. Despite being analogues, different crystal packing, torsion angles and supra-molecular features were observed, depending on the substitution of the central atoms of the benzotriazole. In particular, chalcogen inter-actions were described in the case of p-bSe and not in the bS and bO derivatives. An investigation by ab initio computational methods was therefore conducted to understand the effect of the substitution on the ability to form chalcogen bonds and the flexibility of the compounds.
Collapse
Affiliation(s)
- Manon Mirgaux
- Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS) University of Namur (UNamur), 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Tanguy Scaillet
- Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS) University of Namur (UNamur), 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Nikolay Tumanov
- Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS) University of Namur (UNamur), 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Raphaël Frederick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Laurie Bodart
- Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS) University of Namur (UNamur), 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS) University of Namur (UNamur), 61 Rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
19
|
Ibrahim MAA, Saeed RRA, Shehata MNI, Ahmed MN, Shawky AM, Khowdiary MM, Elkaeed EB, Soliman MES, Moussa NAM. Type I-IV Halogen⋯Halogen Interactions: A Comparative Theoretical Study in Halobenzene⋯Halobenzene Homodimers. Int J Mol Sci 2022; 23:3114. [PMID: 35328534 PMCID: PMC8953242 DOI: 10.3390/ijms23063114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
In the current study, unexplored type IV halogen⋯halogen interaction was thoroughly elucidated, for the first time, and compared to the well-established types I−III interactions by means of the second-order Møller−Plesset (MP2) method. For this aim, the halobenzene⋯halobenzene homodimers (where halogen = Cl, Br, and I) were designed into four different types, parodying the considered interactions. From the energetic perspective, the preference of scouted homodimers was ascribed to type II interactions (i.e., highest binding energy), whereas the lowest binding energies were discerned in type III interactions. Generally, binding energies of the studied interactions were observed to decline with the decrease in the σ-hole size in the order, C6H5I⋯IC6H5 > C6H5Br⋯BrC6H5 > C6H5Cl⋯ClC6H5 homodimers and the reverse was noticed in the case of type IV interactions. Such peculiar observations were relevant to the ample contributions of negative-belt⋯negative-belt interactions within the C6H5Cl⋯ClC6H5 homodimer. Further, type IV torsional trans → cis interconversion of C6H5X⋯XC6H5 homodimers was investigated to quantify the π⋯π contributions into the total binding energies. Evidently, the energetic features illustrated the amelioration of the considered homodimers (i.e., more negative binding energy) along the prolonged scope of torsional trans → cis interconversion. In turn, these findings outlined the efficiency of the cis configuration over the trans analog. Generally, symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) demonstrated the predominance of all the scouted homodimers by the dispersion forces. The obtained results would be beneficial for the omnipresent studies relevant to the applications of halogen bonds in the fields of materials science and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Rehab R. A. Saeed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Mohammed N. I. Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Manal M. Khowdiary
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Al-Lith Branch, Makkah 24211, Saudi Arabia;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Mahmoud E. S. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| |
Collapse
|
20
|
Ibrahim MAA, Shehata MNI, Soliman MES, Moustafa MF, El-Mageed HRA, Moussa NAM. Unusual chalcogen⋯chalcogen interactions in like⋯like and unlike YCY⋯YCY complexes (Y = O, S, and Se). Phys Chem Chem Phys 2022; 24:3386-3399. [PMID: 35072679 DOI: 10.1039/d1cp02706a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chalcogen⋯chalcogen interactions were investigated within four types of like⋯like and unlike YCY⋯YCY complexes (where Y = O, S, or Se). A plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), surface electrostatic potential extrema, point-of-charge (PoC), quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI), and symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) calculations, were executed. The energetic findings revealed a preferential tendency of the studied chalcogen-bearing molecules to engage in type I, II, III, or IV chalcogen⋯chalcogen interactions. Notably, the selenium-bearing molecules exhibited the most potent ability to favorably participate in all the explored chalcogen⋯chalcogen interactions. Among like⋯like complexes, type IV interactions showed the most favorable negative binding energies, whereas type III interactions exhibited the weakest binding energies. Unexpectedly, oxygen-containing complexes within type IV interactions showed an alien pattern of binding energies that decreased along with an increase in the chalcogen atomic size level. QTAIM analysis provided a solo BCP, via chalcogen⋯chalcogen interactions, with no clues as to any secondary ones. SAPT-EDA outlined the domination of the explored interactions by the dispersion forces and indicated the pivotal shares of the electrostatic forces, except type III σ-hole⋯σ-hole and di-σ-hole interactions. These observations demonstrate in better detail all the types of chalcogen⋯chalcogen interactions, providing persuasive reasons for their more intensive use in versatile fields related to materials science and drug design.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Mohammed N I Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia.,Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - H R Abd El-Mageed
- Micro-Analysis, Environmental Research and Community Affairs Center (MAESC), Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| |
Collapse
|
21
|
Máximo P, Colaço M, Pauleta SR, Costa PJ, Pischel U, Parola AJ, Basílio N. Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release. Org Chem Front 2022. [DOI: 10.1039/d2qo00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host–guest complexation of dithienylethene photoswitches with cucurbit[8]uril leads to photoresponsive binding pairs with picomolar affinity in water.
Collapse
Affiliation(s)
- Patrícia Máximo
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Miriam Colaço
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R. Pauleta
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Microbial Stress Lab, UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paulo J. Costa
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Uwe Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - A. Jorge Parola
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Gomila RM, Bauza A, Frontera A. Enhancing chalcogen bonding by metal coordination. Dalton Trans 2022; 51:5977-5982. [DOI: 10.1039/d2dt00796g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript shows that chalcogen bonding (ChB) interaction is enhanced by the coordination of the chalcogen atom to metal centers, as evidenced using DFT calculations (PBE0-D3/def2-TZVP level of theory). X-ray...
Collapse
|
23
|
Carugo O, Resnati G, Metrangolo P. Chalcogen Bonds Involving Selenium in Protein Structures. ACS Chem Biol 2021; 16:1622-1627. [PMID: 34477364 PMCID: PMC8453483 DOI: 10.1021/acschembio.1c00441] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Chalcogen bonds are the specific interactions involving group 16 elements as electrophilic sites. The role of chalcogen atoms as sticky sites in biomolecules is underappreciated, and the few available studies have mostly focused on S. Here, we carried out a statistical analysis over 3562 protein structures in the Protein Data Bank (PDB) containing 18 266 selenomethionines and found that Se···O chalcogen bonds are commonplace. These findings may help the future design of functional peptides and contribute to understanding the role of Se in nature.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Resnati
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierangelo Metrangolo
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
24
|
Fernández Riveras JA, Frontera A, Bauzá A. Selenium chalcogen bonds are involved in protein-carbohydrate recognition: a combined PDB and theoretical study. Phys Chem Chem Phys 2021; 23:17656-17662. [PMID: 34373871 DOI: 10.1039/d1cp01929e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript the ability of selenium carbohydrates to undergo chalcogen bonding (ChB) interactions with protein residues has been studied at the RI-MP2/def2-TZVP level of theory. An inspection of the Protein Data Bank (PDB) revealed SeA (A = O, C and S) intermolecular contacts involving Se-pyranose ligands and ASP, TYR, SER and MET residues. Theoretical models were built to analyse the strength and directionality of the interaction together with "Atoms in Molecules" (AIM), Natural Bonding Orbital (NBO) and Non Covalent Interactions plot (NCIplot) analyses, which further assisted in the characterization of the ChBs described herein. We expect that the results from this study will be useful to expand the current knowledge regarding biological ChBs as well as to increase the visibility of the interaction among the carbohydrate chemistry community.
Collapse
Affiliation(s)
- Jose A Fernández Riveras
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, Palma (Baleares) 07122, Spain.
| | | | | |
Collapse
|
25
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
26
|
Al-Wahaibi LH, Rahul B, Mohamed AAB, Abdelbaky MSM, Garcia-Granda S, El-Emam AA, Percino MJ, Thamotharan S. Supramolecular Self-Assembly Built by Weak Hydrogen, Chalcogen, and Unorthodox Nonbonded Motifs in 4-(4-Chlorophenyl)-3-[(4-fluorobenzyl)sulfanyl]-5-(thiophen-2-yl)-4 H-1,2,4-triazole, a Selective COX-2 Inhibitor: Insights from X-ray and Theoretical Studies. ACS OMEGA 2021; 6:6996-7007. [PMID: 33748613 PMCID: PMC7970574 DOI: 10.1021/acsomega.0c06287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 11/28/2022]
Abstract
![]()
A selective triazole-based
COX-2 inhibitor, 4-(4-chlorophenyl)-3-[(4-fluorobenzyl)sulfanyl]-5-(thiophen-2-yl)-4H-1,2,4-triazole, C19H13ClFN3S2, has been synthesized, and its crystal structure was
determined at 150 K. Single-crystal X-ray diffraction analysis revealed
that the thiophene ring was disordered over two orientations. The
crystal structure is stabilized by weak hydrogen and chalcogen bonds
and unorthodox F···π and S···C(π)
contacts. These noncovalent interactions cooperatively generate the
supramolecular self-assembly in the crystalline state. The Hirshfeld
surface and its associated two-dimensional (2D)-fingerprint plots
were obtained to analyze the role of different noncovalent interactions
in the crystal packing. Further, the enrichment ratio was obtained
from different atom···atom pairs to calculate the propensity
of these pairs to form noncovalent interactions. The strength of different
dimeric motifs formed in the crystal structure and lattice energies
was calculated by the PIXEL method. Furthermore, the topological analysis
of the charge density of intermolecular interactions was described.
A CSD survey of C–H···F hydrogen bond, C–S···Cl
chalcogen bond, and unorthodox nonbonded contacts (F···π
and S···C(π)) is presented. The title compound
possesses selective inhibitory activity against human COX-2 enzyme
rather than COX-1. The quantum mechanics (QM) polarized ligand docking
analysis was used to predict the binding pose and study the title
compound’s selectivity against COX-1/2 enzymes.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Bavanandan Rahul
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S. M. Abdelbaky
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - M. Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Puebla C.P. 72960, Mexico
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
27
|
Li X, Lu T, Obenchain DA, Zhang J, Herbers S, Grabow JU, Feng G. The Characteristics of Disulfide-Centered Hydrogen Bonds. Angew Chem Int Ed Engl 2021; 60:5838-5842. [PMID: 33258264 DOI: 10.1002/anie.202014364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/10/2022]
Abstract
The disulfide-centered hydrogen bonds in the three different model systems of diethyl disulfide⋅⋅⋅H2 O/H2 CO/HCONH2 clusters were characterized by high-resolution Fourier transform microwave spectroscopy and quantum chemical computations. The global minimum energy structures for each cluster are experimentally observed and are characterized by one of the three different S-S⋅⋅⋅H-C/N/O disulfide-centered hydrogen bonds and two O⋅⋅⋅H-C hydrogen bonds. Non-covalent interaction and natural bond orbital analyses further confirm the experimental observations. The symmetry-adapted perturbation theory (SAPT) analysis reveals that electrostatic is dominant in diethyl disulfide⋅⋅⋅H2 O/HCONH2 clusters being consistent with normal hydrogen bonds, whilst dispersion takes over in diethyl disulfide⋅⋅⋅H2 CO cluster. Our study gives accurate structural parameters for the disulfide bond involved non-covalent clusters providing important benchmarking data for the theoretical evaluation of more complex systems.
Collapse
Affiliation(s)
- Xiaolong Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.,Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Daniel A Obenchain
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Sven Herbers
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
28
|
Li X, Lu T, Obenchain DA, Zhang J, Herbers S, Grabow J, Feng G. The Characteristics of Disulfide‐Centered Hydrogen Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaolong Li
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Tao Lu
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
| | - Daniel A. Obenchain
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
| | - Sven Herbers
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Jens‐Uwe Grabow
- Institut für Physikalische Chemie and Elektrochemie Gottfried Wilhelm Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany
| | - Gang Feng
- School of Chemistry and Chemical Engineering Chongqing University Daxuecheng South Rd. 55 401331 Chongqing China
| |
Collapse
|
29
|
Ibrahim MAA, Telb EMZ. Comparison of ±σ-hole and ±R˙-hole interactions formed by tetrel-containing complexes: a computational study. RSC Adv 2021; 11:4011-4021. [PMID: 35424365 PMCID: PMC8694216 DOI: 10.1039/d0ra09564h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
For the first time, unconventional ±R˙-hole interactions were unveiled in tetrel-containing complexes. The nature and characteristics of ±R˙-hole interactions were explored relative to their ±σ-hole counterparts for ˙TF3⋯ and W-T-F3⋯B/R˙/A complexes (where T = C, Si, and Ge, W = H and F, B = Lewis bases, R˙ = free radicals, and A = Lewis acids). In an effort to thoroughly investigate such interactions, a plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), maximum positive electrostatic potential (V s,max), point-of-charge (PoC), interaction energy, symmetry adapted perturbation theory (SAPT), and reduced density gradient-noncovalent interaction (RDG-NCI) calculations, were applied. The most notable findings to emerge from this study are that (i) from the electrostatic perspective, the molecular stabilization energies of ˙TF3 and W-T-F3 monomers became more negative as the Lewis basicity increased, (ii) the most stable complexes were observed for the ones containing Lewis bases, forming -σ-hole and -R˙-hole interactions, and the interaction energies systematically increased in the order H-T-F3⋯B < ˙TF3⋯B < F-T-F3⋯B, (iii) contrariwise, the +σ-hole and +R˙-hole interactions with Lewis acids are more energetically favorable in the order F-T-F3⋯A < ˙TF3⋯A < H-T-F3⋯A, and (iv) generally, the dispersion force plays a key role in stabilizing the tetrel-containing complexes, jointly with the electrostatic and induction forces for the interactions with Lewis bases and acids, respectively. Concretely, the findings presented in this paper add to our understanding of the characteristics and nature of such intriguing interactions.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Ebtisam M Z Telb
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
30
|
Michalczyk M, Malik M, Zierkiewicz W, Scheiner S. Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. J Phys Chem A 2021; 125:657-668. [PMID: 33423496 DOI: 10.1021/acs.jpca.0c10814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of the 5,6-dichloro-2,1,3-benzoselenadiazole homodimer, obtained by adding the ligand, 4,5-dichloro-o-phenylenediamine, to the methanolic solution of SeCl4, was determined by X-ray crystallography, augmented by Fourier transform infrared, Raman, and NMR spectroscopy. The binding motif involves a pair of Se···N chalcogen bonds, with a supplementary N···N pnicogen bond. Quantum calculations provide assessments of the strengths of the individual interactions as well as their contributing factors. All together, these three bonds compose a total interaction energy between 5.4 and 16.8 kcal/mol, with the larger chalcogen atom associated with the strongest interactions. Replacement of the Se atoms by S and Te analogues allows analysis of the dependence of these forces on the nature of the chalcogen atom. Calculations also measure the importance to the binding of the presence of a second N atom on each diazole unit as well as the substituted phenyl ring to which it is fused.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
31
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
32
|
Ibrahim MAA, Telb EMZ. σ-Hole and Lone-Pair Hole Interactions in Chalcogen-Containing Complexes: A Comparative Study. ACS OMEGA 2020; 5:21631-21640. [PMID: 32905338 PMCID: PMC7469375 DOI: 10.1021/acsomega.0c02362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 05/07/2023]
Abstract
The potentiality of sp3-hybridized chalcogen-containing molecules to participate in lone-pair (lp) hole interactions was reported for the first time. lp hole interactions were characterized and compared to σ-hole ones for OF2 and SF2 molecules as a case study. Various quantum mechanical calculations, including molecular electrostatic potential (MEP), maximum positive electrostatic potential (V s,max), point of charge (PoC), symmetry-adapted perturbation theory (SAPT), quantum theory of atoms in molecule (QTAIM), and reduced density gradient-noncovalent interaction (RDG-NCI) calculations, were carried out. The more significant findings to emerge from this study are the following: (i) the V s,max calculation was proved to be an unreliable method to determine the precise σ-hole and lp hole locations. (ii) The maximum positive electrostatic potential of the σ hole and lp hole was found to be at the F-Chal···PoC angle (θ) of 180° and at the centroid of XYlp plane, respectively. (iii) Lewis basicity has a significant effect on the strength of σ-hole and lp hole interactions. (iv) The studied molecules more favorably interact with Lewis bases via the σ hole compared to the lp hole, and (v) stabilization of the σ-hole and lp hole interactions stems from the electrostatic and dispersion forces, respectively.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory,
Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ebtisam M. Z. Telb
- Computational Chemistry Laboratory,
Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
33
|
In Silico Identification of Potential Natural Product Inhibitors of Human Proteases Key to SARS-CoV-2 Infection. Molecules 2020; 25:molecules25173822. [PMID: 32842606 PMCID: PMC7504347 DOI: 10.3390/molecules25173822] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.
Collapse
|
34
|
Pecina A, Eyrilmez SM, Köprülüoğlu C, Miriyala VM, Lepšík M, Fanfrlík J, Řezáč J, Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. Chempluschem 2020; 85:2362-2371. [PMID: 32609421 DOI: 10.1002/cplu.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e. QM/MM, fragmentation or semiempirical (SQM) methods had to be pursued to overcome the unfavorable scaling of QM methods. Various SQM-based approaches have significantly contributed to the accuracy of docking and improvement of lead compounds. Parametrizations of SQM and implicit solvent methods in our laboratory have been instrumental to obtain a reliable SQM-based scoring function. The experience gained in its application for activity ranking of ligands binding to tens of protein targets resulted in setting up a faster SQM/COSMO scoring approach, which outperforms standard scoring methods in native pose identification for two dozen protein targets with ten thousand poses. Recently, SQM/COSMO was effectively applied in a proof-of-concept study of enrichment in virtual screening. Due to its superior performance, feasibility and chemical generality, we propose the SQM/COSMO approach as an efficient tool in structure-based drug design.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| |
Collapse
|
35
|
Kumar V, Xu Y, Bryce DL. Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid-State Magnetic Resonance Spectroscopy. Chemistry 2020; 26:3275-3286. [PMID: 31794082 DOI: 10.1002/chem.201904795] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 12/22/2022]
Abstract
Group 16 chalcogens potentially provide Lewis-acidic σ-holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen-bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single-crystal X-ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen- and nitrogen-containing heterocycles. Extensive 77 Se and 125 Te solid-state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77 Se and 125 Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen-bond-based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid-state NMR protocols to detect these interactions in powdered materials.
Collapse
Affiliation(s)
- Vijith Kumar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Yijue Xu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
36
|
Kumar V, Xu Y, Leroy C, Bryce DL. Direct investigation of chalcogen bonds by multinuclear solid-state magnetic resonance and vibrational spectroscopy. Phys Chem Chem Phys 2020; 22:3817-3824. [DOI: 10.1039/c9cp06267j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a multifaceted experimental and computational study of three self-complementary chalcogen-bond donors as well as a series of seven chalcogen bonded cocrystals.
Collapse
Affiliation(s)
- Vijith Kumar
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- 10 Marie Curie Private
- Ottawa
- Canada
| | - Yijue Xu
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- 10 Marie Curie Private
- Ottawa
- Canada
| | - César Leroy
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- 10 Marie Curie Private
- Ottawa
- Canada
| | - David L. Bryce
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- 10 Marie Curie Private
- Ottawa
- Canada
| |
Collapse
|
37
|
Dopieralski P, Zoloff Michoff ME, Marx D. Mechanochemical disulfide reduction reveals imprints of noncovalent sulfur⋯oxygen chalcogen bonds in protein-inspired mimics in aqueous solution. Phys Chem Chem Phys 2020; 22:25112-25117. [DOI: 10.1039/d0cp04026f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chalcogen bonds in proteins are found to impact on the mechanochemical reduction of disulfide bridges in aqueous environments.
Collapse
Affiliation(s)
| | | | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
38
|
Zierkiewicz W, Wysokiński R, Michalczyk M, Scheiner S. Chalcogen bonding of two ligands to hypervalent YF 4 (Y = S, Se, Te, Po). Phys Chem Chem Phys 2019; 21:20829-20839. [PMID: 31517347 DOI: 10.1039/c9cp04006d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two NH3 ligands to engage in simultaneous chalcogen bonds to a hypervalent YF4 molecule, with Y = S, Se, Te, Po, is assessed via quantum calculations. The complex can take on one of two different geometries. The cis structure places the two ligands adjacent to one another in a pseudo-octahedral geometry, held there by a pair of σ-hole chalcogen bonds. The bases can also lie nearly opposite one another, in a distorted octahedron containing one π-hole and one strained σ-hole bond. The cis geometry is favored for Y = S, while Te, and Po tend toward the trans structure; they are nearly equally stable for Se. In either case, the binding energy rises rapidly with the size of the Y atom, exceeding 30 kcal mol-1 for PoF4.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
39
|
Abstract
A complete inventory of the forces governing protein folding is critical for productive protein modeling, including structure prediction and de novo design, as well as understanding protein misfolding diseases of clinical significance. The dominant contributors to protein folding include the hydrophobic effect and conventional hydrogen bonding, along with Coulombic and van der Waals interactions. Over the past few decades, important additional contributors have been identified, including C-H···O hydrogen bonding, n→π* interactions, C5 hydrogen bonding, chalcogen bonding, and interactions involving aromatic rings (cation-π, X-H···π, π-π, anion-π, and sulfur-arene). These secondary contributions fall into two general classes: (1) weak but abundant interactions of the protein main chain and (2) strong but less frequent interactions involving protein side chains. Though interactions with high individual energies play important roles in specifying nonlocal molecular contacts and ligand binding, we estimate that weak but abundant interactions are likely to make greater overall contributions to protein folding, particularly at the level of secondary structure. Further research is likely to illuminate additional roles of these noncanonical interactions and could also reveal contributions yet unknown.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Abstract
Halogens in a M–X bond are inhibited from forming a halogen bond but can do so in certain circumstances, with or without a σ-hole.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
41
|
Riwar L, Trapp N, Root K, Zenobi R, Diederich F. Supramolekulare Kapseln: starke und schwache Chalkogenbrücken im Vergleich. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812095] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Leslie‐Joana Riwar
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Katharina Root
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Renato Zenobi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - François Diederich
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
42
|
Riwar L, Trapp N, Root K, Zenobi R, Diederich F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew Chem Int Ed Engl 2018; 57:17259-17264. [DOI: 10.1002/anie.201812095] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Leslie‐Joana Riwar
- Laboratorium für Organische Chemie ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Katharina Root
- Laboratorium für Organische Chemie ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Renato Zenobi
- Laboratorium für Organische Chemie ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - François Diederich
- Laboratorium für Organische Chemie ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
43
|
Bortoli M, Ahmad SM, Hamlin TA, Bickelhaupt FM, Orian L. Nature and strength of chalcogen–π bonds. Phys Chem Chem Phys 2018; 20:27592-27599. [DOI: 10.1039/c8cp05922e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have analyzed the chalcogen–π bonding mechanism in a systematic series of model systems through Kohn–Sham molecular orbital theory and a quantitative energy decomposition scheme.
Collapse
Affiliation(s)
- Marco Bortoli
- Dipartimento di Scienze Chimiche Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Shah Masood Ahmad
- Dipartimento di Scienze Chimiche Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
- Institute for Molecules and Materials (IMM)
| | - Laura Orian
- Dipartimento di Scienze Chimiche Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|