1
|
Ohkuma M, Fukui M, Hattori A, Matsunaga T, Tomita H, Takamochi K, Suzuki K. Is the use of direct oral anticoagulants after non-cardiac thoracic surgery safe for patients? Surg Today 2024:10.1007/s00595-024-02942-7. [PMID: 39387901 DOI: 10.1007/s00595-024-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE The outcomes of direct oral anticoagulant use after noncardiac thoracic surgery have not been elucidated. We compared the safety and efficacy of the postoperative use of direct oral anticoagulants versus warfarin. METHODS This retrospective cohort study included patients taking anticoagulants after noncardiac thoracic surgery between 2008 and 2021. Patients were divided into 2 groups based on drug type: Group D (direct oral anticoagulants) and Group W (warfarin). The occurrence of bleeding and thromboembolic events was also assessed. RESULTS Anticoagulants were administered to 434 postoperative patients. One (0.4%) of the 247 patients in Group D and 3 (1.6%) of the 187 patients in Group W experienced thromboembolic events. Four patients (1.6%) in Group D and 4 (2.1%) patients in Group W experienced bleeding events. All bleeding events in Group D occurred within 1 week of oral administration, whereas only 1 case of bleeding occurred after resumption in Group W. CONCLUSIONS The outcomes of patients treated with direct oral anticoagulants did not differ from those of patients treated with warfarin. However, major bleeding can occur after the postoperative resumption of direct oral anticoagulant use. Attention should be paid to resuming oral anticoagulants within a few days of non-cardiac thoracic surgery.
Collapse
Affiliation(s)
- Mari Ohkuma
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Mariko Fukui
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Aritoshi Hattori
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Takeshi Matsunaga
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Hisashi Tomita
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 1-3 Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| |
Collapse
|
2
|
Palumbo F, Gunjak M, Lee PJ, Günther S, Hilgendorff A, Vadász I, Herold S, Seeger W, Mühlfeld C, Morty RE. Impact of different tissue dissociation protocols on endothelial cell recovery from developing mouse lungs. Cytometry A 2024; 105:521-535. [PMID: 38668123 DOI: 10.1002/cyto.a.24843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 07/19/2024]
Abstract
Flow cytometry and fluorescence-activated cell sorting are widely used to study endothelial cells, for which the generation of viable single-cell suspensions is an essential first step. Two enzymatic approaches, collagenase A and dispase, are widely employed for endothelial cell isolation. In this study, the utility of both enzymatic approaches, alone and in combination, for endothelial cell isolation from juvenile and adult mouse lungs was assessed, considering the number, viability, and subtype composition of recovered endothelial cell pools. Collagenase A yielded an 8-12-fold superior recovery of viable endothelial cells from lung tissue from developing mouse pups, compared to dispase, although dispase proved superior in efficiency for epithelial cell recovery. Single-cell RNA-Seq revealed that the collagenase A approach yielded a diverse endothelial cell subtype composition of recovered endothelial cell pools, with broad representation of arterial, capillary, venous, and lymphatic lung endothelial cells; while the dispase approach yielded a recovered endothelial cell pool highly enriched for one subset of general capillary endothelial cells, but poor representation of other endothelial cells subtypes. These data indicate that tissue dissociation markedly influences the recovery of endothelial cells, and the endothelial subtype composition of recovered endothelial cell pools, as assessed by single-cell RNA-Seq.
Collapse
Affiliation(s)
- Francesco Palumbo
- Flow Cytometry Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Miša Gunjak
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg (TLRC), Heidelberg University Hospital, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Patty J Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefan Günther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Comprehensive Developmental Care (CDeCLMU) at the Social Pediatric Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Herold
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
- Department of Internal Medicine (Infectious Disease and Hospital Hygiene), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Rory E Morty
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg (TLRC), Heidelberg University Hospital, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
3
|
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. JOURNAL OF VASCULAR DISEASES 2024; 3:174-200. [PMID: 39464800 PMCID: PMC11507615 DOI: 10.3390/jvd3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
Collapse
Affiliation(s)
- Amanda K. Garcia
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
Alveal M, Méndez A, García A, Henríquez M. Purinergic regulation of pulmonary vascular tone. Purinergic Signal 2024:10.1007/s11302-024-10010-5. [PMID: 38713328 DOI: 10.1007/s11302-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,β-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Marco Alveal
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
| | - Andrea Méndez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Campus Providencia, Sede Santiago, Universidad de Las Américas, Santiago, Chile
| | - Aline García
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias,, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile.
| |
Collapse
|
5
|
Screm G, Mondini L, Salton F, Confalonieri P, Trotta L, Barbieri M, Romallo A, Galantino A, Hughes M, Lerda S, Confalonieri M, Ruaro B. Vascular Endothelial Damage in COPD: Where Are We Now, Where Will We Go? Diagnostics (Basel) 2024; 14:950. [PMID: 38732364 PMCID: PMC11083092 DOI: 10.3390/diagnostics14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has higher rates among the general population, so early identification and prevention is the goal. The mechanisms of COPD development have not been completely established, although it has been demonstrated that endothelial dysfunction plays an important role. However, to date, the measurement of endothelial dysfunction is still invasive or not fully established. Nailfold video capillaroscopy (NVC) is a safe, non-invasive diagnostic tool that can be used to easily evaluate the microcirculation and can show any possible endothelial dysfunctions early on. The aim of this review is to evaluate if nailfold microcirculation abnormalities can reflect altered pulmonary vasculature and can predict the risk of cardiovascular comorbidities in COPD patients. METHODS A systematic literature search concerning COPD was performed in electronic databases (PUBMED, UpToDate, Google Scholar, ResearchGate), supplemented with manual research. We searched in these databases for articles published until March 2024. The following search words were searched in the databases in all possible combinations: chronic obstructive pulmonary disease (COPD), endothelial damage, vascular impairment, functional evaluation, capillaroscopy, video capillaroscopy, nailfold video capillaroscopy. Only manuscripts written in English were considered for this review. Papers were included only if they were able to define a relationship between COPD and endothelium dysfunction. RESULTS The search selected 10 articles, and among these, only three previous reviews were available. Retinal vessel imaging, flow-mediated dilation (FMD), and skin autofluorescence (AF) are reported as the most valuable methods for assessing endothelial dysfunction in COPD patients. CONCLUSIONS It has been assumed that decreased nitric oxide (NO) levels leads to microvascular damage in COPD patients. This finding allows us to assume NVC's potential effectiveness in COPD patients. However, this potential link is based on assumption; further investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Gianluca Screm
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Liliana Trotta
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Mariangela Barbieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Antonio Romallo
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Alessandra Galantino
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK
| | - Selene Lerda
- Graduate School, University of Milan, 20149 Milan, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| |
Collapse
|
6
|
Ta HQ, Kuppusamy M, Sonkusare SK, Roeser ME, Laubach VE. The endothelium: gatekeeper to lung ischemia-reperfusion injury. Respir Res 2024; 25:172. [PMID: 38637760 PMCID: PMC11027545 DOI: 10.1186/s12931-024-02776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.
Collapse
Affiliation(s)
- Huy Q Ta
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mark E Roeser
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Palomo M, Moreno-Castaño AB, Salas MQ, Escribano-Serrat S, Rovira M, Guillen-Olmos E, Fernandez S, Ventosa-Capell H, Youssef L, Crispi F, Nomdedeu M, Martinez-Sanchez J, De Moner B, Diaz-Ricart M. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front Med (Lausanne) 2023; 10:1285898. [PMID: 38034541 PMCID: PMC10682735 DOI: 10.3389/fmed.2023.1285898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The endothelium is a biologically active interface with multiple functions, some of them common throughout the vascular tree, and others that depend on its anatomical location. Endothelial cells are continually exposed to cellular and humoral factors, and to all those elements (biological, chemical, or hemodynamic) that circulate in blood at a certain time. It can adapt to different stimuli but this capability may be lost if the stimuli are strong enough and/or persistent in time. If the endothelium loses its adaptability it may become dysfunctional, becoming a potential real danger to the host. Endothelial dysfunction is present in multiple clinical conditions, such as chronic kidney disease, obesity, major depression, pregnancy-related complications, septic syndromes, COVID-19, and thrombotic microangiopathies, among other pathologies, but also in association with cell therapies, such as hematopoietic stem cell transplantation and treatment with chimeric antigen receptor T cells. In these diverse conditions, evidence suggests that the presence and severity of endothelial dysfunction correlate with the severity of the associated disease. More importantly, endothelial dysfunction has a strong diagnostic and prognostic value for the development of critical complications that, although may differ according to the underlying disease, have a vascular background in common. Our multidisciplinary team of women has devoted many years to exploring the role of the endothelium in association with the mentioned diseases and conditions. Our research group has characterized some of the mechanisms and also proposed biomarkers of endothelial damage. A better knowledge would provide therapeutic strategies either to prevent or to treat endothelial dysfunction.
Collapse
Affiliation(s)
- Marta Palomo
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Hematology External Quality Assessment Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Elena Guillen-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic de Barcelona, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Lina Youssef
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Takada K, Suzukawa M, Igarashi S, Uehara Y, Watanabe S, Imoto S, Ishii M, Morio Y, Matsui H, Akishita M, Ohta K. Serum IgA augments adhesiveness of cultured lung microvascular endothelial cells and suppresses angiogenesis. Cell Immunol 2023; 393-394:104769. [PMID: 37741001 DOI: 10.1016/j.cellimm.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Immunoglobulin A (IgA) is important in local immunity and is also abundant in the blood. This study aimed to evaluate the effects of serum IgA on cultured lung microvascular endothelial cells (HMVEC-Ls), which are involved in the pathogenesis of inflammatory lung diseases. Serum IgA induced adhesion molecules and inflammatory cytokine production from HMVEC-Ls, and enhanced adhesion of peripheral blood mononuclear cells to HMVEC-Ls. In contrast, migration, proliferation, and tube formation of HMVEC-Ls were significantly suppressed by serum IgA. Experiments with siRNAs and western blotting revealed that two known IgA receptors, β1,4-galactosyltransferase 1 (b4GALT1) and asialoglycoprotein receptor 1 (ASGR1), and mitogen-activated protein kinase and nuclear factor-kappa B pathways were partly involved in serum IgA-induced cytokine production by HMVEC-Ls. Collectively, serum IgA enhanced cytokine production and adhesiveness of HMVEC-L, with b4GALT1 and ASGR1 partially being involved, and suppressed angiogenesis. Thus, serum IgA may be targeted to treat inflammatory lung diseases.
Collapse
Affiliation(s)
- Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Yuuki Uehara
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masaki Ishii
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Hirotoshi Matsui
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, 3-1-24 Matsuyama, Kiyose-City, Tokyo 204-8522, Japan.
| |
Collapse
|
9
|
Loddé B, Giroux-Metges MA, Galinat H, Kerspern H, Pougnet R, Saliou P, Guerrero F, Lafère P. Does Decreased Diffusing Capacity of the Lungs for Carbon Monoxide Constitute a Risk of Decompression Sickness in Occupational Divers? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6516. [PMID: 37569056 PMCID: PMC10418885 DOI: 10.3390/ijerph20156516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Long-term alterations of pulmonary function (mainly decreased airway conductance and capacity of the lungs to diffuse carbon monoxide (DLCO)) have been described after hyperbaric exposures. However, whether these alterations convey a higher risk for divers' safety has never been investigated before. The purpose of the present pilot study was to assess whether decreased DLCO is associated with modifications of the physiological response to diving. In this case-control observational study, 15 "fit-to-dive" occupational divers were split into two groups according to their DLCO measurements compared to references values, either normal (control) or reduced (DLCO group). After a standardized 20 m/40 min dive in a sea water pool, the peak-flow, vascular gas emboli (VGE) grade, micro-circulatory reactivity, inflammatory biomarkers, thrombotic factors, and plasmatic aldosterone concentration were assessed at different times post-dive. Although VGE were recorded in all divers, no cases of decompression sickness (DCS) occurred. Compared to the control, the latency to VGE peak was increased in the DLCO group (60 vs. 30 min) along with a higher maximal VGE grade (p < 0.0001). P-selectin was higher in the DLCO group, both pre- and post-dive. The plasmatic aldosterone concentration was significantly decreased in the control group (-30.4 ± 24.6%) but not in the DLCO group. Apart from a state of hypocoagulability in all divers, other measured parameters remained unchanged. Our results suggest that divers with decreased DLCO might have a higher risk of DCS. Further studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Brice Loddé
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Occupational Diseases Center, Brest University Hospital, 29609 Brest, France
| | - Marie-Agnès Giroux-Metges
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Respiratory Functional Exploration Unit, Brest University Hospital, 29609 Brest, France
| | - Hubert Galinat
- Department of Biological Hematology, Brest University Hospital, 29609 Brest, France
| | - Hèlène Kerspern
- Department of Biochemistry and Pharmaco-Toxicology, Brest University Hospital, 29609 Brest, France
| | - Richard Pougnet
- Occupational Diseases Center, Brest University Hospital, 29609 Brest, France
| | - Philippe Saliou
- ISERM, EFS, UMR 1078, GGB, Infection Control Unit, Western Brittany University (UBO), 29238 Brest, France
| | - François Guerrero
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
| | - Pierre Lafère
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, HE2B, 1160 Brussels, Belgium
- DAN Europe Research Department, 1160 Brussels, Belgium
| |
Collapse
|
10
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Wu J, Ma Y, Chen Y. Extracellular vesicles and COPD: foe or friend? J Nanobiotechnology 2023; 21:147. [PMID: 37147634 PMCID: PMC10161449 DOI: 10.1186/s12951-023-01911-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease characterized by progressive airflow limitation. The complex biological processes of COPD include protein hydrolysis tissue remodeling, innate immune inflammation, disturbed host-pathogen response, abnormal cellular phenotype conversion, and cellular senescence. Extracellular vesicles (EVs) (including apoptotic vesicles, microvesicles and exosomes), are released by almost all cell types and can be found in a variety of body fluids including blood, sputum and urine. EVs are key mediators in cell-cell communication and can be used by using their bioactive substances (DNA, RNA, miRNA, proteins and other metabolites) to enable cells in adjacent and distant tissues to perform a wide variety of functions, which in turn affect the physiological and pathological functions of the body. Thus, EVs is expected to play an important role in the pathogenesis of COPD, which in turn affects its acute exacerbations and may serve as a diagnostic marker for it. Furthermore, recent therapeutic approaches and advances have introduced EVs into the treatment of COPD, such as the modification of EVs into novel drug delivery vehicles. Here, we discuss the role of EVs from cells of different origins in the pathogenesis of COPD and explore their possible use as biomarkers in diagnosis, and finally describe their role in therapy and future prospects for their application. Graphical Abstract.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Li S, Xu Y, Wu Y, Huang H, Sun C, Xu S, Li H, Zhang X, Zhao S, Huang L. Heparin-Binding Protein: A Prognostic Biomarker Associated with Severe or Complicated Community-Acquired Pneumonia in Children. J Inflamm Res 2023; 16:321-331. [PMID: 36726792 PMCID: PMC9885876 DOI: 10.2147/jir.s393600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/24/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose Heparin-binding protein (HBP) is a novel biomarker for inflammatory diseases. This study aimed to investigate the role of serum HBP in community-acquired pneumonia (CAP) in children and the association of HBP with the severity and prognosis. Patients and Methods A total of 125 children with CAP admitted to the hospital were enrolled in this retrospective study. We analyzed the differences in clinical characteristics and examination findings between patients with different levels of HBP. The severe or complicated CAP was defined as having severe radiographic findings and/or systemic manifestations. Receiver operator characteristic (ROC) curves detected the performance of biomarkers in identifying patients with severe or complicated pneumonia. The multivariate logistic regression models assessed the association between HBP levels and the severity and prognosis. Finally, we constructed a predictive model based on HBP. Results The rate of severe or complicated CAP for patients with upper-quartile HBP concentration (≥60 ng/mL) was 54.8%, significantly higher than that of patients with lower HBP concentration (26.6%). The level of HBP is substantially correlated with neutrophil counts, C-reactive protein, erythrocyte sedimentation rate, and serum amyloid A protein (r = 0.31, 0.26, 0.36, and 0.26, respectively). HBP achieved the highest level of discrimination for severe or complicated CAP among the biomarkers. Higher HBP concentration (≥60 ng/mL) was associated with a three-fold higher risk of severe or complicated CAP (adjusted odds ratio = 3.11, p < 0.05). A predictive model including four characteristics (HBP, lactate dehydrogenase, age and non-viral infection) for predicting severe or complicated CAP (with area under the ROC curve = 0.75) was built to create a nomogram. Conclusion Substantially elevated serum HBP is significantly associated with severe or complicated CAP and poor prognosis in children. This finding warrants further investigation of the function of HBP in the pathogenesis of CAP.
Collapse
Affiliation(s)
- Shuang Li
- Department of Infectious Diseases, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People’s Republic of China,Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanwen Xu
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuhang Wu
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Heyu Huang
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chen Sun
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shanshan Xu
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Huajun Li
- Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shiyong Zhao
- Department of Infectious Diseases, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, People’s Republic of China,Shiyong Zhao, Department of Infectious Diseases, Hangzhou Children’s Hospital, 195 Wenhui Road, Hangzhou, Zhejiang Provinve, 310005, People’s Republic of China, Email
| | - Lisu Huang
- Department of Infectious Diseases, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, People’s Republic of China,Department of Infectious Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Lisu Huang, Department of Infectious Diseases, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang Province, 310052, People’s Republic of China, Email
| |
Collapse
|
13
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
14
|
Lian H, Cai H, Zhang H, Ding X, Wang X, Zhang S. The Prediction Value of D-Dimer on Prognosis in Intensive Care Unit among Old Patients ( ≥65 Years): A 9-Year Single-Center Retrospective Study of 9261 Cases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2238985. [PMID: 36193080 PMCID: PMC9526612 DOI: 10.1155/2022/2238985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Background D-dimer (DD) has been indicated as a potential indicator due to its connection with the prognosis of the COVID-19 pandemic. Aging is linked to elevated DD levels in coagulation activation. However, few studies have investigated the correlation of DD with prognosis, especially in the old population. Therefore, this study aims at investigating the correlation of DD with prognosis in shock and perioperative populations over 65 years of age. Methods We analyzed 9261 old patients admitted to intensive care units (ICUs) with either confirmed shock or in perioperative period of high-risk surgery, with 8813 of them had DD levels determined on admission. In-hospital mortality, length of ICU stay and ventilation time (VT) associated variables were assessed using generalized linear models. Results Although DD levels had no positive correlations with in-hospital mortality (RR, 1.006; 95% CI, 0.998-1.014) and length of ICU stay (RR, 1.012; 95% CI, 0.997-1.028) in Model 3, they were strongly correlated with VT (RR, 1.577; 95% CI, 1.024-2.064). Higher DD levels in females (RR, 1.804; 95% CI, 1.116-2.602), those who used antibiotics (RR, 1.736; 95% CI, 1.092-2.453), those with surgery (RR, 1.640; 95% CI, 1.273-2.114), and those with shock (RR, 1.740; 95% CI, 1.001-2.687) had stronger correlation with longer VT than the counterparts. While patients who were between 65 and 74 years old (RR, 1.023; 95% CI, 1.003-1.043), with no use of antibiotics (RR, 1.007; 95% CI, 1.001-1.013) nor shock (RR, 1.011; 95% CI, 1.002-1.021), but had undergone surgical procedures (RR, 1.030; 95% CI, 1.012-1.048) were correlated with a longer ICU length of stay. Conclusion DD levels at ICU admission are highly related to increased VT and length of ICU stay in the old population with either confirmed shock or after high-risk surgery, indicating the strong potential of DD as a marker with prognostic utility for all ICU patients in the future.
Collapse
Affiliation(s)
- Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huacong Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ding
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoting Wang
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
15
|
Lin Y, Hu X, Wang W, Yu B, Zhou L, Zhou Y, Li G, Dong H. D-Dimer Is Associated With Coronary Microvascular Dysfunction in Patients With Non-obstructive Coronary Artery Disease and Preserved Ejection Fraction. Front Cardiovasc Med 2022; 9:937952. [PMID: 35983182 PMCID: PMC9378984 DOI: 10.3389/fcvm.2022.937952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMVD), an important etiology of ischemic heart disease, has been widely studied. D-dimer is a simple indicator of microthrombosis and inflammation. However, whether an increase in D-dimer is related to CMVD is still unclear. MATERIALS AND METHODS This retrospective study consecutively enrolled patients with myocardial ischemia and excluded those with obstructive coronary artery. D-dimer was measured at admission and the TIMI myocardial perfusion grade (TMPG) was used to distinguish CMVD. Patients were divided into the two groups according to whether the D-dimer was elevated (>500 ng/ml). Logistic models and restricted cubic splines were used to explore the relationship between elevated D-dimer and CMVD. RESULTS A total of 377 patients were eventually enrolled in this study. Of these, 94 (24.9%) patients with CMVD had older age and higher D-dimer levels than those without CMVD. After full adjustment for other potential clinical risk factors, patients with high D-dimer levels (>500 ng/ml) had a 1.89-times (95% CI: 1.09-3.27) higher risk of CMVD than patients with low D-dimer levels. A non-linear relationship was found between concentrations of D-dimer and CMVD. With increased D-dimer level, the incidence of CMVD increased and then remained at a high level. Stratified analysis was performed and showed similar results. CONCLUSION Elevated D-dimer level is associated with the incidence of CMVD and potentially serves as a simple biomarker to facilitate the diagnosis of CMVD for patients with angina.
Collapse
Affiliation(s)
- Yan Lin
- Shantou University Medical College, Shantou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weimian Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bingyan Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Langping Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guang Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haojian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Targeting vascular inflammation through emerging methods and drug carriers. Adv Drug Deliv Rev 2022; 184:114180. [PMID: 35271986 PMCID: PMC9035126 DOI: 10.1016/j.addr.2022.114180] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Acute inflammation is a common dangerous component of pathogenesis of many prevalent conditions with high morbidity and mortality including sepsis, thrombosis, acute respiratory distress syndrome (ARDS), COVID-19, myocardial and cerebral ischemia-reperfusion, infection, and trauma. Inflammatory changes of the vasculature and blood mediate the course and outcome of the pathology in the tissue site of insult, remote organs and systemically. Endothelial cells lining the luminal surface of the vasculature play the key regulatory functions in the body, distinct under normal vs. pathological conditions. In theory, pharmacological interventions in the endothelial cells might enable therapeutic correction of the overzealous damaging pro-inflammatory and pro-thrombotic changes in the vasculature. However, current agents and drug delivery systems (DDS) have inadequate pharmacokinetics and lack the spatiotemporal precision of vascular delivery in the context of acute inflammation. To attain this level of precision, many groups design DDS targeted to specific endothelial surface determinants. These DDS are able to provide specificity for desired tissues, organs, cells, and sub-cellular compartments needed for a particular intervention. We provide a brief overview of endothelial determinants, design of DDS targeted to these molecules, their performance in experimental models with focus on animal studies and appraisal of emerging new approaches. Particular attention is paid to challenges and perspectives of targeted therapeutics and nanomedicine for advanced management of acute inflammation.
Collapse
|
17
|
Evlakhov VI, Poiasov IZ. [Spontaneous fibrinolysis and possibilities of its acceleration in pulmonary embolism]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2021; 27:25-31. [PMID: 34166341 DOI: 10.33529/angio2021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review contains the data concerning the mechanisms of spontaneous fibrinolysis in pulmonary vessels and possibilities of its acceleration in pulmonary embolism. The spontaneous fibrinolysis system is known to be sequential and multifactorial, with the interaction of accelerators (t-PA and u-PA) and inhibitors (alpha-2-antiplasmin, PAI-1, TAFI). The fibrinolytic processes take place in case of prevailing reactions of accelerating factors over inhibiting ones. The endothelium of pulmonary vessels possesses pronounced antithrombogenic and profibrinolytic properties, therefore, the processes of fibrinolysis in the pulmonary vascular bed normally occur more intensively than in the vessels of the systemic circulation. The membrane proteins of the endothelium annexins A2 activate plasminogen, whereas thrombomodulin inhibits the activity of PAI-1. The main approaches to increase the fibrinolysis intensity in conditions of pulmonary embolism may be aimed at elevating the activity of fibrinolytic enzymes (enhancing the synthesis of annexins A2, the use of NMDA-receptor antagonists) and suppressing its inhibitors (the use of monoclonal antibodies to alpha-2-antiplasmin, as well as plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI). Promising directions for future research can be the synthesis of a new generation of tissue-type plasminogen activators, and investigations of the possibility of clinical application of antithrombin and thrombomodulin, angiotensin converting enzyme inhibitors and cortisol antagonists. To meet these challenges, it is necessary to develop new models of venous thrombosis and acute pulmonary embolism in different animal species, with the assessment of the changes in the venous haemodynamics and pulmonary microcirculation on the background of administration of a new class of fibrinolytic agents.
Collapse
Affiliation(s)
- V I Evlakhov
- Laboratory of Physiology of Visceral Systems named after Academician K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - I Z Poiasov
- Laboratory of Physiology of Visceral Systems named after Academician K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
18
|
Fan Y, Wang H, Ma Q. Effects of sevoflurane and propofol anesthesia on intraoperative endothelial cell function in patients undergoing laparoscopic cholecystectomy. J Int Med Res 2021; 48:300060520918407. [PMID: 33050753 PMCID: PMC7570811 DOI: 10.1177/0300060520918407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives To investigate the effects of sevoflurane and propofol anesthesia on inflammatory or anti-inflammatory responses in patients undergoing laparoscopic cholecystectomy (LC). Methods Patients undergoing LC (n = 23) were divided into sevoflurane (S) (n = 11) and propofol (P) (n = 12) anesthesia groups. A blood sample was taken before induction (T0), after induction but before pneumoperitoneum (T1), 15 minutes after pneumoperitoneum (T2), immediately after extubation (T3), and 30 minutes after extubation (T4). P-selectin-positive platelets and intercellular cell adhesion molecule-1 (ICAM-1)-positive lymphocytes, and plasma P-selectin, ICAM-1 and thrombomodulin (TM) levels were analyzed. Results Sevoflurane significantly increased P-selectin expression in platelets at T2, T3, and T4 and in plasma at T1, T2, T3, and T4, but it did not affect ICAM-1 and TM. Propofol had no significant effects on P-selectin, ICAM-1, and TM expression during anesthesia and surgery. P-selectin, ICAM-1, and TM expression was higher in the S compared with P group at T1, T2, and T3 for platelet P-selectin; T2 and T4 for plasma P-selectin; T1 and T2 for lymphocyte ICAM-1; and T1, T2, and T3 for plasma TM. Conclusions Propofol anesthesia can delay the inflammatory reactions during laparoscopic surgery and better maintain the structure stability and function in vascular endothelial cells.
Collapse
Affiliation(s)
- Yu Fan
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Hu Y, Chi L, Kuebler WM, Goldenberg NM. Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells 2020; 9:cells9112338. [PMID: 33105588 PMCID: PMC7690279 DOI: 10.3390/cells9112338] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Perivascular inflammation is a prominent pathologic feature in most animal models of pulmonary hypertension (PH) as well as in pulmonary arterial hypertension (PAH) patients. Accumulating evidence suggests a functional role of perivascular inflammation in the initiation and/or progression of PAH and pulmonary vascular remodeling. High levels of cytokines, chemokines, and inflammatory mediators can be detected in PAH patients and correlate with clinical outcome. Similarly, multiple immune cells, including neutrophils, macrophages, dendritic cells, mast cells, T lymphocytes, and B lymphocytes characteristically accumulate around pulmonary vessels in PAH. Concomitantly, vascular and parenchymal cells including endothelial cells, smooth muscle cells, and fibroblasts change their phenotype, resulting in altered sensitivity to inflammatory triggers and their enhanced capacity to stage inflammatory responses themselves, as well as the active secretion of cytokines and chemokines. The growing recognition of the interaction between inflammatory cells, vascular cells, and inflammatory mediators may provide important clues for the development of novel, safe, and effective immunotargeted therapies in PAH.
Collapse
Affiliation(s)
- Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Leon Chi
- Department of Physiology, University of Toronto, Toronto, ON M5B1W8, Canada;
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Departments of Physiology and Surgery, University of Toronto, Toronto, ON M5B1W8, Canada
- Institute of Physiology, Charité Universitäts Medizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-501
| | - Neil M. Goldenberg
- Departments of Physiology and Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5B1W8, Canada;
- Department of Anesthesia and Pain Medicine, Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5B1W8, Canada
| |
Collapse
|
20
|
Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ. Capillary cell-type specialization in the alveolus. Nature 2020; 586:785-789. [PMID: 33057196 PMCID: PMC7721049 DOI: 10.1038/s41586-020-2822-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
In the mammalian lung, an apparently homogenous mesh of capillary vessels surrounds each alveolus, forming the vast respiratory surface across which oxygen transfers to the blood1. Here we use single-cell analysis to elucidate the cell types, development, renewal and evolution of the alveolar capillary endothelium. We show that alveolar capillaries are mosaics; similar to the epithelium that lines the alveolus, the alveolar endothelium is made up of two intermingled cell types, with complex 'Swiss-cheese'-like morphologies and distinct functions. The first cell type, which we term the 'aerocyte', is specialized for gas exchange and the trafficking of leukocytes, and is unique to the lung. The other cell type, termed gCap ('general' capillary), is specialized to regulate vasomotor tone, and functions as a stem/progenitor cell in capillary homeostasis and repair. The two cell types develop from bipotent progenitors, mature gradually and are affected differently in disease and during ageing. This cell-type specialization is conserved between mouse and human lungs but is not found in alligator or turtle lungs, suggesting it arose during the evolution of the mammalian lung. The discovery of cell type specialization in alveolar capillaries transforms our understanding of the structure, function, regulation and maintenance of the air-blood barrier and gas exchange in health, disease and evolution.
Collapse
Affiliation(s)
- Astrid Gillich
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Colleen G Farmer
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Kyle J Travaglini
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Serena Y Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxia Gu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jeffrey A Feinstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ross J Metzger
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Deweirdt J, Quignard JF, Lacomme S, Gontier E, Mornet S, Savineau JP, Marthan R, Guibert C, Baudrimont I. In vitro study of carbon black nanoparticles on human pulmonary artery endothelial cells: effects on calcium signaling and mitochondrial alterations. Arch Toxicol 2020; 94:2331-2348. [PMID: 32394085 DOI: 10.1007/s00204-020-02764-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Human exposure to manufactured nanoparticles (NPs) is a public health concern. Endothelial cells lining the inner surface of arteries could be one of the primary targets for inhaled nanoparticles. Moreover, it is well known that alteration in calcium signaling is a critical event involved in the physiopathology of cardiovascular diseases. The objective of this study was to assess the role of oxidative stress in carbon black FW2 NPs-induced alteration in calcium signaling and mitochondria in human pulmonary artery endothelial cells. To this end, cells were exposed for 4 or 24 h to FW2 NPs (1-10 μg/cm2) and the following endpoints were studied: (i) production of ROS by fluorimetry and electron paramagnetic resonance, (ii) variation in intracellular calcium concentration by confocal microscopy, and (iii) mitochondrial alteration and apoptosis by confocal microscopy and transmission electronic microscopy. Exposure to FW2 NPs concentration-dependently increases oxidative stress, evidenced by the production of superoxide anion leading to an alteration in calcium content of intracellular organelles, such as endoplasmic reticulum and mitochondria activating, in turn, intrinsic apoptosis. This study provides evidence that FW2 NPs exposure impairs calcium signaling and mitochondria triggered by oxidative stress, and, thus, could act as a cardiovascular disease risk owing to the key role of calcium homeostasis in the control of vascular tone.
Collapse
Affiliation(s)
- J Deweirdt
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - J F Quignard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - S Lacomme
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS-US4 INSERM, 33000, Bordeaux, France
| | - E Gontier
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS-US4 INSERM, 33000, Bordeaux, France
| | - S Mornet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33076, Bordeaux, France
| | - J P Savineau
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - R Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France.,CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, 33000, Bordeaux, France
| | - C Guibert
- Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - I Baudrimont
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France. .,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France.
| |
Collapse
|
22
|
Keshavarz A, Kadry H, Alobaida A, Ahsan F. Newer approaches and novel drugs for inhalational therapy for pulmonary arterial hypertension. Expert Opin Drug Deliv 2020; 17:439-461. [PMID: 32070157 DOI: 10.1080/17425247.2020.1729119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of small pulmonary arteries leading to increased pulmonary arterial pressure. Existing treatments acts to normalize vascular tone via three signaling pathways: the prostacyclin, the endothelin-1, and the nitric oxide. Although over the past 20 years, there has been considerable progress in terms of treatments for PAH, the disease still remains incurable with a disappointing prognosis.Areas covered: This review summarizes the pathophysiology of PAH, the advantages and disadvantages of the inhalation route, and assess the relative advantages various inhaled therapies for PAH. The recent studies concerning the development of controlled-release drug delivery systems loaded with available anti-PAH drugs have also been summarized.Expert opinion: The main obstacles of current pharmacotherapies of PAH are their short half-life, stability, and formulations, resulting in reducing the efficacy and increasing systemic side effects and unknown pathogenesis of PAH. The pulmonary route has been proposed for delivering anti-PAH drugs to overcome the shortcomings. However, the application of approved inhaled anti-PAH drugs is limited. Inhalational delivery of controlled-release nanoformulations can overcome these restrictions. Extensive studies are required to develop safe and effective drug delivery systems for PAH patients.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hossam Kadry
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
23
|
Inflammatory Basis of Pulmonary Arterial Hypertension: Implications for Perioperative and Critical Care Medicine. Anesthesiology 2020; 131:898-907. [PMID: 31094755 DOI: 10.1097/aln.0000000000002740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with pulmonary arterial hypertension have exceptionally high perioperative risk. This review summarizes the clinical presentation and therapies for pulmonary arterial hypertension, and it highlights evidence for inflammation as a driver of disease pathogenesis and a therapeutic target.
Collapse
|
24
|
Reiterer M, Branco CM. Endothelial cells and organ function: applications and implications of understanding unique and reciprocal remodelling. FEBS J 2019; 287:1088-1100. [PMID: 31736207 PMCID: PMC7155104 DOI: 10.1111/febs.15143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The microvasculature is a heterogeneous, dynamic and versatile component of the systemic circulation, with a unique ability to locally self-regulate and to respond to organ demand and environmental stimuli. Endothelial cells from different organs display considerable variation, but it is currently unclear to what extent functional properties of organ-specific endothelial cells are intrinsic, acquired and/or reprogrammable. Vascular function is a fundamental pillar of homeostasis, and dysfunction results in systemic consequences for the organism. Additionally, vascular failure can occur downstream of organ disease or environmental stress, often driving an exacerbation of symptoms and pathologies originally independent of the local circulation. The understanding of the molecular mechanisms underlying endothelial physiology and metabolism holds the promise to inform and improve diagnosis, prognosis and treatment options for a myriad of conditions as unrelated as cancer, neurodegeneration or pulmonary hypertension, and likely everything in between, if we consider that also treatments for such conditions are primarily distributed via the bloodstream. However, studying endothelial function has its challenges: the origin, isolation, culture conditions and preconditioning stimuli make this an extremely variable cell type to study and difficult to source. Animal models exist but are neither trivial to generate, nor necessarily adequately translatable to human disease. In this article, we aim to illustrate the breadth of microvascular functions in different environments, highlighting current and pioneering studies that have advanced our insight into the importance of the integrity of this tissue, as well as the limitations posed by its heterogeneity and plasticity.
Collapse
Affiliation(s)
- Moritz Reiterer
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Cristina M Branco
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| |
Collapse
|
25
|
Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogenous process resulting in a severe acute lung injury. A single indicator does not exist for PARDS diagnosis. Rather, current diagnosis requires a combination of clinical and physiologic variables. Similarly, there is little ability to predict the path of disease, identify those at high risk of poor outcomes or target therapies specific to the underlying pathophysiology. Biomarkers, a measured indicator of a pathologic state or response to intervention, have been studied in PARDS due to their potential in diagnosis, prognostication and measurement of therapeutic response. Additionally, PARDS biomarkers show great promise in furthering our understanding of specific subgroups or endotypes in this highly variable disease, and thereby predict which patients may benefit and which may be harmed by PARDS specific therapies. In this chapter, we review the what, when, why and how of biomarkers in PARDS and discuss future directions in this quickly changing landscape.
Collapse
Affiliation(s)
- Erin F Carlton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Szucs B, Szucs C, Petrekanits M, Varga JT. Molecular Characteristics and Treatment of Endothelial Dysfunction in Patients with COPD: A Review Article. Int J Mol Sci 2019; 20:E4329. [PMID: 31487864 PMCID: PMC6770145 DOI: 10.3390/ijms20184329] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) show systemic consequences, such as chronic systemic inflammation leading to changes in the airway, airway penetrability, and endothelial function. Endothelial dysfunction is characterized by a list of alterations of endothelium towards reduced vasodilation, proinflammatory state, detachment and apoptosis of endothelial cells, and development of atherosclerosis. COPD-induced endothelial dysfunction is associated with elevated cardiovascular risk. The increment of physical activities such as pulmonary rehabilitation (PR) training have a significant effect on COPD, thus, PR can be an integrative part of COPD treatment. In this narrative review the focus is on the function of endothelial inflammatory mediators [cytokines, chemokines, and cellular proteases] and pulmonary endothelial cells and endothelial dysfunction in COPD as well as the effects of dysfunction of the endothelium may play in COPD-related pulmonary hypertension. The relationship between smoking and endothelial dysfunction is also discussed. The connection between different pulmonary rehabilitation programs, arterial stiffness and pulse wave velocity (PWV) is presented. Endothelial dysfunction is a significant prognostic factor of COPD, which can be characterized by PWV. We discuss future considerations, like training programs, as an important part of the treatment that has a favorable impact on the endothelial function.
Collapse
Affiliation(s)
- Botond Szucs
- PharmaFlight Research and Training Center, H-4030 Debrecen, Hungary
| | - Csilla Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Mate Petrekanits
- Institute of Exercise Physiology and Sport Medicine, University of Physical Education, H-1123 Budapest, Hungary
| | - Janos T Varga
- Department of Pulmonary Rehabilitation, National Koranyi Institute for Pulmonology, H-1121 Budapest, Hungary.
| |
Collapse
|
27
|
Kim HJ, Jang JH, Zhang YH, Yoo HY, Kim SJ. Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS. Pflugers Arch 2019; 471:1317-1330. [PMID: 31468138 DOI: 10.1007/s00424-019-02305-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Angiotensin II (AngII) triggers a transient contraction of pulmonary arteries (PAs) followed by protracted desensitization. Based on the unconventional eNOS expression in PA smooth muscle cells (PASMCs), we hypothesized that activation of smooth muscle eNOS by AngII might be responsible for fast relaxation and tachyphylaxis. Using dual-wire myograph, mechanically endothelium-denuded rat PA [E(-)PA] showed AngII concentration-dependent transient contractions (ΔTAngII, 95% decay within 1 min), which were abolished by losartan (AT1R antagonist). Neither PD123319 (AT2R antagonist) nor A779 (MasR antagonist) affected ΔTAngII. When the vessels were pretreated with L-NAME (NOS inhibitor), ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), ΔTAngII of E(-)PA became larger and sustained, whereas nNOS or iNOS inhibitors had no such effect. Immunoblotting of human PASMCs (hPASMCs) also showed eNOS expression, and AngII treatment induced activating phosphorylations of Ser1177 in eNOS and of Ser473 in Akt (Ser/Thr protein kinase B), an upstream signal of eNOS phosphorylation. In addition, L-NAME co-treatment promoted AngII-induced Ser19 phosphorylation of myosin light chain. In hPASMCs, AngII abolished plasma membrane expression of AT1R, and recovery by washout took more than 1 h. Consistent with the data from hPASMCs, the second application of AngII to E(-)PA did not induce contraction, and significant recovery of ΔTAngII required prolonged washout (> 2 h) in the myography study. L-NAME treatment before the second application facilitated recovery of ΔTAngII. Muscular eNOS plays an auto-inhibitory role in ΔTAngII of PAs. The molecular changes investigated in hPASMCs revealed eNOS phosphorylation and internalization of AT1R by AngII. We propose that the rat PA smooth muscle eNOS-induced lusitropy and slow recovery of AT1R from tachyphylaxis might counterbalance the excessive contractile response to AngII, contributing to the distinctive low-pressure pulmonary circulation.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Ji Hyun Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, 100-031, South Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
28
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
29
|
Djuric D, Jakovljevic V, Zivkovic V, Srejovic I. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol 2018; 96:991-1003. [PMID: 30130426 DOI: 10.1139/cjpp-2018-0112] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Homocysteine, an amino acid containing a sulfhydryl group, is an intermediate product during metabolism of the amino acids methionine and cysteine. Hyperhomocysteinemia is used as a predictive risk factor for cardiovascular disorders, the stroke progression, screening for inborn errors of methionine metabolism, and as a supplementary test for vitamin B12 deficiency. Two organic systems in which homocysteine has the most harmful effects are the cardiovascular and nervous system. The adverse effects of homocysteine are achieved by the action of several different mechanisms, such as overactivation of N-methyl-d-aspartate receptors, activation of Toll-like receptor 4, disturbance in Ca2+ handling, increased activity of nicotinamide adenine dinucleotide phosphate-oxidase and subsequent increase of production of reactive oxygen species, increased activity of nitric oxide synthase and nitric oxide synthase uncoupling and consequent impairment in nitric oxide and reactive oxygen species synthesis. Increased production of reactive species during hyperhomocysteinemia is related with increased expression of several proinflammatory cytokines, including IL-1β, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1. All these mechanisms contribute to the emergence of diseases like atherosclerosis and related complications such as myocardial infarction, stroke, aortic aneurysm, as well as Alzheimer disease and epilepsy. This review provides evidence that supports the causal role for hyperhomocysteinemia in the development of cardiovascular disease and nervous system disorders.
Collapse
Affiliation(s)
- Dragan Djuric
- a Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade, Visegradska 26, Belgrade 11000, Serbia
| | - Vladimir Jakovljevic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.,c Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st. 8, Moscow 119991, Russia
| | - Vladimir Zivkovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| | - Ivan Srejovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| |
Collapse
|
30
|
Vrigkou E, Tsangaris I, Bonovas S, Kopterides P, Kyriakou E, Konstantonis D, Pappas A, Anthi A, Gialeraki A, Orfanos SE, Armaganidis A, Tsantes A. Platelet and coagulation disorders in newly diagnosed patients with pulmonary arterial hypertension. Platelets 2018; 30:646-651. [PMID: 30047809 DOI: 10.1080/09537104.2018.1499890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a complex and not fully elucidated association between pulmonary arterial hypertension (PAH) and coagulation disorders. The goal of this study was to evaluate platelet function, coagulation and fibrinolysis in PAH patients at diagnosis, before PAH-specific treatment initiation. We enrolled 20 healthy controls and 30 PAH patients (20 with connective tissue disease (CTD-PAH) and 10 idiopathic (iPAH)). None of the participants was on any antiplatelet or anticoagulation therapy. Blood samples from PAH patients were collected during the initial right heart catheterization. All subjects were assessed with platelet function analyzer-100 (PFA-100), epinephrine (Epi) and ADP-induced light transmission aggregometry (LTA), thromboelastometry (ROTEM) and endogenous thrombin potential (ETP). Our results showed that Epi and ADP-LTA values were significantly lower in newly diagnosed PAH patients compared to controls. Disaggregation was present in 73% of patients, a characteristic not seen in healthy individuals. In ROTEM assay, CT and CFT measurements were significantly higher and a angle lower compared to controls. ETP testing revealed significantly reduced outcomes in AUC, Cmax and Tmax. When CTD-PAH and iPAH patient groups were compared, iPAH ADP-LTA values were significantly decreased compared to CTD-PAH. In conclusion, newly diagnosed PAH patients presented with decreased platelet aggregation, clot propagation and thrombin generation, along with delayed initiation of the coagulation process. These hemostatic deficits could indicate an "exhaustion" of the coagulation process that could be caused by endothelial dysfunction and chronic activation of the procoagulant pathways. Further studies are warranted to confirm these laboratory findings and assess their potential clinical significance.
Collapse
Affiliation(s)
- Eleni Vrigkou
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Iraklis Tsangaris
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Stefanos Bonovas
- b Humanitas University , Department of Biomedical Sciences , Milan , Italy.,c Humanitas Clinical and Research Center , Milan , Italy
| | - Petros Kopterides
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Elias Kyriakou
- d Laboratory of Hematology & Blood Bank Unit , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Dimitrios Konstantonis
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasios Pappas
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Anastasia Anthi
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyri Gialeraki
- d Laboratory of Hematology & Blood Bank Unit , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Stylianos E Orfanos
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Apostolos Armaganidis
- a Second Department of Critical Care Medicine , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tsantes
- d Laboratory of Hematology & Blood Bank Unit , University Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
31
|
Polverino F, Celli BR, Owen CA. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018758528. [PMID: 29468936 PMCID: PMC5826015 DOI: 10.1177/2045894018758528] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/21/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. Early research into the pathogenesis of COPD focused on the contributions of injury to the extracellular matrix and pulmonary epithelial cells. More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the "vascular COPD phenotype" including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested on cell culture systems, animal models of COPD, and/or smokers and COPD patients.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bartolome R. Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
32
|
Giang M, Papamatheakis DG, Nguyen D, Paez R, Blum Johnston C, Kim J, Brunnell A, Blood Q, Goyal R, Longo LD, Wilson SM. Muscarinic Receptor Activation Affects Pulmonary Artery Contractility in Sheep: The Impact of Maturation and Chronic Hypoxia on Endothelium-Dependent and Endothelium-Independent Function. High Alt Med Biol 2017; 17:122-32. [PMID: 27281473 DOI: 10.1089/ham.2015.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Giang, Michael, Demosthenes G. Papamatheakis, Dan Nguyen, Ricardo Paez, Carla Blum Johnston, Joon Kim, Alexander Brunnell, Quintin Blood, Ravi Goyal, Lawrence D. Longo, and Sean M. Wilson. Muscarinic receptor activation affects pulmonary artery contractility in sheep: the impact of maturation and chronic hypoxia on endothelium-dependent and endothelium-independent function. High Alt Med Biol. 17:122-132, 2015.-Muscarinic receptor activation in the pulmonary vasculature can cause endothelium-dependent vasodilation and smooth muscle-dependent vasoconstriction. Chronic hypoxia (CH) can modify both of these responses. This study aimed to assess the combined influence of CH and maturation on endothelium-dependent and endothelium-independent muscarinic-induced vasoreactivity. This was accomplished by performing wire myography on endothelium-intact or endothelium-disrupted pulmonary arterial rings isolated from normoxic or CH fetal and adult sheep. In endothelium-intact arteries, vasodilation was evaluated using cumulative bradykinin doses in phenylephrine and carbachol precontracted pulmonary arterial segments; and vasoconstriction was examined using cumulative doses of carbachol following bradykinin predilation. Effects of nonselective (atropine) and selective M1 (pirenzepine), M2 (AFDX116), and M3 (4-DAMP and Dau5884) muscarinic receptor antagonists were assessed in disrupted arteries. In normoxic arteries, bradykinin relaxation was twofold greater in the adult compared to fetus, while carbachol contraction was fourfold greater. In adult arteries, CH increased bradykinin relaxation and carbachol contraction. In vessels with intact endothelium, maturation and CH augmented maximal response and efficacy for carbachol constriction and bradykinin relaxation. Approximately 50%-80% of adult normoxic and CH endothelium-disrupted arteries contracted to acetylcholine, while ∼50% of fetal normoxic and ∼10% of CH arteries responded. Atropine reduced carbachol-induced contraction in all vessels. Adult normoxic vessels were most responsive to M3 antagonism, fetal to M2 antagonism, while M1 inhibition had no effect. Overall, muscarinic-induced pulmonary arterial contraction is partially endothelium dependent and appears to develop after birth. Fetuses are more reliant on M3 receptors while M2 receptors predominate in adults, whereas CH augments muscarinic-dependent pulmonary vasoconstriction in both.
Collapse
Affiliation(s)
- Michael Giang
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | | | - Dan Nguyen
- 3 Department of Pharmacology, University of Mississippi School of Pharmacy , University, Mississippi
| | - Ricardo Paez
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,4 Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, California
| | - Carla Blum Johnston
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,4 Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University , Loma Linda, California
| | - Joon Kim
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,5 Division of Pulmonary and Critical Care, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunnell
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Quintin Blood
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Ravi Goyal
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lawrence D Longo
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- 1 Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
33
|
Wong PF, Jamal J, Tong KL, Khor ES, Yeap CE, Jong HL, Lee ST, Mustafa MR, Abubakar S. Deregulation of hsa-miR-20b expression in TNF-α-induced premature senescence of human pulmonary microvascular endothelial cells. Microvasc Res 2017; 114:26-33. [PMID: 28595801 DOI: 10.1016/j.mvr.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
miRNAs are important regulators of cellular senescence yet the extent of their involvement remains to be investigated. We sought to identify miRNAs that are involved in cytokine-induced premature senescence (CIPS) in endothelial cells. CIPS was established in young human pulmonary microvascular endothelial cells (HMVEC-Ls) following treatment with a sublethal dose (20ng/ml) of tumor necrosis factor alpha (TNF-α) for 15days. In parallel, HMVEC-Ls were grown and routinely passaged until the onset of replicative senescence (RS). Differential expression analysis following miRNA microarray profiling revealed an overlapped of eight deregulated miRNAs in both the miRNA profiles of RS and TNF-α-induced premature senescence cells. Amongst the deregulated miRNAs were members of the miR 17-92 cluster which are known regulators of angiogenesis. The role of hsa-miR-20b in TNF-α-induced premature senescence, a paralog member of the miR 17-92 cluster, was further investigated. Biotin-labeled hsa-miR-20b captured the enriched transcripts of retinoblastoma-like 1 (RBL1), indicating that RBL1 is a target of hsa-miR-20b. Knockdown of hsa-miR-20b attenuated premature senescence in the TNF-α-treated HMVEC-Ls as evidenced by increased cell proliferation, increased RBL1 mRNA expression level but decreased protein expression of p16INK4a, a cellular senescence marker. These findings provide an early insight into the role of hsa-miR-20b in endothelial senescence.
Collapse
Affiliation(s)
- Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Juliana Jamal
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chia-Earn Yeap
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hui-Lan Jong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sui-Ting Lee
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly Abubakar
- Department of Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
35
|
Belvitch P, Brown ME, Brinley BN, Letsiou E, Rizzo AN, Garcia JGN, Dudek SM. The ARP 2/3 complex mediates endothelial barrier function and recovery. Pulm Circ 2017; 7:200-210. [PMID: 28680579 PMCID: PMC5448540 DOI: 10.1086/690307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023] Open
Abstract
Pulmonary endothelial cell (EC) barrier dysfunction and recovery is critical to the pathophysiology of acute respiratory distress syndrome. Cytoskeletal and subsequent cell membrane dynamics play a key mechanistic role in determination of EC barrier integrity. Here, we characterizAQe the actin related protein 2/3 (Arp 2/3) complex, a regulator of peripheral branched actin polymerization, in human pulmonary EC barrier function through studies of transendothelial electrical resistance (TER), intercellular gap formation, peripheral cytoskeletal structures and lamellipodia. Compared to control, Arp 2/3 inhibition with the small molecule inhibitor CK-666 results in a reduction of baseline barrier function (1,241 ± 53 vs 988 ± 64 ohm; p < 0.01), S1P-induced barrier enhancement and delayed recovery of barrier function after thrombin (143 ± 14 vs 93 ± 6 min; p < 0.01). Functional changes of Arp 2/3 inhibition on barrier integrity are associated temporally with increased intercellular gap area at baseline (0.456 ± 0.02 vs 0.299 ± 0.02; p < 0.05) and thirty minutes after thrombin (0.885 ± 0.03 vs 0.754 ± 0.03; p < 0.05). Immunofluorescent microscopy reveals reduced lamellipodia formation after S1P and during thrombin recovery in Arp 2/3 inhibited cells. Individual lamellipodia demonstrate reduced depth following Arp 2/3 inhibition vs vehicle at baseline (1.83 ± 0.41 vs 2.55 ± 0.46 µm; p < 0.05) and thirty minutes after S1P treatment (1.53 ± 0.37 vs 2.09 ± 0.36 µm; p < 0.05). These results establish a critical role for Arp 2/3 activity in determination of pulmonary endothelial barrier function and recovery through formation of EC lamellipodia and closure of intercellular gaps.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Mary E Brown
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | | | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Alicia N Rizzo
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Joe G N Garcia
- University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| |
Collapse
|
36
|
Green CE, Turner AM. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir Res 2017; 18:20. [PMID: 28100233 PMCID: PMC5241996 DOI: 10.1186/s12931-017-0505-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its’ progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.
Collapse
Affiliation(s)
- Clara E Green
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK.
| | - Alice M Turner
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Lawal A, Davids L, Marnewick J. Diesel exhaust particles and endothelial cells dysfunction: An update. Toxicol In Vitro 2016; 32:92-104. [DOI: 10.1016/j.tiv.2015.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
|
38
|
Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 2016; 71:462-73. [DOI: 10.1136/thoraxjnl-2015-207461] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
|
39
|
Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:511-540. [DOI: 10.1007/5584_2016_90] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
41
|
Garraud O. Editorial: Platelets as Immune Cells in Physiology and Immunopathology. Front Immunol 2015; 6:274. [PMID: 26089822 PMCID: PMC4453471 DOI: 10.3389/fimmu.2015.00274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Olivier Garraud
- EA3064, University of Lyon Saint-Etienne , Saint-Etienne , France ; Institut National de la Transfusion Sanguine (INTS) , Paris , France
| |
Collapse
|