1
|
Ball RL, Bogue MA, Liang H, Srivastava A, Ashbrook DG, Lamoureux A, Gerring MW, Hatoum AS, Kim MJ, He H, Emerson J, Berger AK, Walton DO, Sheppard K, El Kassaby B, Castellanos F, Kunde-Ramamoorthy G, Lu L, Bluis J, Desai S, Sundberg BA, Peltz G, Fang Z, Churchill GA, Williams RW, Agrawal A, Bult CJ, Philip VM, Chesler EJ. GenomeMUSter mouse genetic variation service enables multitrait, multipopulation data integration and analysis. Genome Res 2024; 34:145-159. [PMID: 38290977 PMCID: PMC10903950 DOI: 10.1101/gr.278157.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.
Collapse
Affiliation(s)
- Robyn L Ball
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - David G Ashbrook
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | - Alexander S Hatoum
- Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Artificial Intelligence and the Internet of Things Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew J Kim
- University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hao He
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Jake Emerson
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | - Lu Lu
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - John Bluis
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Sejal Desai
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Robert W Williams
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Carol J Bult
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
2
|
Meade RK, Long JE, Jinich A, Rhee KY, Ashbrook DG, Williams RW, Sassetti CM, Smith CM. Genome-wide screen identifies host loci that modulate Mycobacterium tuberculosis fitness in immunodivergent mice. G3 (BETHESDA, MD.) 2023; 13:jkad147. [PMID: 37405387 PMCID: PMC10468300 DOI: 10.1093/g3journal/jkad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
- Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA 01887, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10021, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Ball RL, Bogue MA, Liang H, Srivastava A, Ashbrook DG, Lamoureux A, Gerring MW, Hatoum AS, Kim M, He H, Emerson J, Berger AK, Walton DO, Sheppard K, Kassaby BE, Castellanos F, Kunde-Ramamoorthy G, Lu L, Bluis J, Desai S, Sundberg BA, Peltz G, Fang Z, Churchill GA, Williams RW, Agrawal A, Bult CJ, Philip VM, Chesler EJ. GenomeMUSter mouse genetic variation service enables multi-trait, multi-population data integration and analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552506. [PMID: 37609331 PMCID: PMC10441370 DOI: 10.1101/2023.08.08.552506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hundreds of inbred laboratory mouse strains and intercross populations have been used to functionalize genetic variants that contribute to disease. Thousands of disease relevant traits have been characterized in mice and made publicly available. New strains and populations including the Collaborative Cross, expanded BXD and inbred wild-derived strains add to set of complex disease mouse models, genetic mapping resources and sensitized backgrounds against which to evaluate engineered mutations. The genome sequences of many inbred strains, along with dense genotypes from others could allow integrated analysis of trait - variant associations across populations, but these analyses are not feasible due to the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense data resource by harmonizing multiple variant datasets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extensible to other model organism species. The result is a web- and programmatically-accessible data service called GenomeMUSter ( https://muster.jax.org ), comprising allelic data covering 657 strains at 106.8M segregating sites. Interoperation with phenotype databases, analytic tools and other resources enable a wealth of applications including multi-trait, multi-population meta-analysis. We demonstrate this in a cross-species comparison of the meta-analysis of Type 2 Diabetes and of substance use disorders, resulting in the more specific characterization of the role of human variant effects in light of mouse phenotype data. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.
Collapse
|
4
|
Leonardo M, Brunty S, Huffman J, Lester DB, Dickson PE. Effects of isolation housing stress and mouse strain on intravenous cocaine self-administration, sensory stimulus self-administration, and reward preference. Sci Rep 2023; 13:2810. [PMID: 36797314 PMCID: PMC9935522 DOI: 10.1038/s41598-023-29579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Sensory stimuli are natural rewards in mice and humans. Consequently, preference for a drug reward relative to a sensory reward may be an endophenotype of addiction vulnerability. In this study, we developed a novel behavioral assay to quantify the preference for intravenous drug self-administration relative to sensory stimulus self-administration. We used founder strains of the BXD recombinant inbred mouse panel (C57BL/6J, DBA/2J) and a model of stress (isolation vs enriched housing) to assess genetic and epigenetic effects. Following 10 weeks of differential housing, all mice were tested under three reward conditions: sensory rewards available, cocaine rewards available, both rewards available. When a single reward was available (sensory stimuli or cocaine; delivered using distinct levers), DBA/2J mice self-administered significantly more rewards than C57BL/6J mice. When both rewards were available, DBA/2J mice exhibited a significant preference for cocaine relative to sensory stimuli; in contrast, C57BL/6J mice exhibited no preference. Housing condition influenced sensory stimulus self-administration and strain-dependently influenced inactive lever pressing when both rewards were available. Collectively, these data reveal strain effects, housing effects, or both on reward self-administration and preference. Most importantly, this study reveals that genetic mechanisms underlying preference for a drug reward relative to a nondrug reward can be dissected using the full BXD panel.
Collapse
Affiliation(s)
- Michael Leonardo
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| | - Sarah Brunty
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| | - Jessica Huffman
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| | - Deranda B. Lester
- grid.56061.340000 0000 9560 654XDepartment of Psychology, University of Memphis, 202 Psychology Building, Memphis, TN 38152 USA
| | - Price E. Dickson
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| |
Collapse
|
5
|
Leonardo M, Brunty S, Huffman J, Kastigar A, Dickson PE. Intravenous fentanyl self-administration in male and female C57BL/6J and DBA/2J mice. Sci Rep 2023; 13:799. [PMID: 36646781 PMCID: PMC9842734 DOI: 10.1038/s41598-023-27992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The genetic mechanisms underlying fentanyl addiction, a highly heritable disease, are unknown. Identifying these mechanisms will lead to better risk assessment, early diagnosis, and improved intervention. To this end, we used intravenous fentanyl self-administration to quantify classical self-administration phenotypes and addiction-like fentanyl seeking in male and female mice from the two founder strains of the BXD recombinant inbred mouse panel (C57BL/6J and DBA/2J). We reached three primary conclusions from these experiments. First, mice from all groups rapidly acquired intravenous fentanyl self-administration and exhibited a dose-response curve, extinction burst, and extinction of the learned self-administration response. Second, fentanyl intake (during acquisition and dose response) and fentanyl seeking (during extinction) were equivalent among groups. Third, strain effects, sex effects, or both were identified for several addiction-like behaviors (cue-induced reinstatement, stress-induced reinstatement, escalation of intravenous fentanyl self-administration). Collectively, these data indicate that C57BL/6J and DBA/2J mice of both sexes were able to acquire, regulate, and extinguish intravenous fentanyl self-administration. Moreover, these data reveal novel strain and sex effects on addiction-like behaviors in the context of intravenous fentanyl self-administration in mice and indicate that the full BXD panel can be used to identify and dissect the genetic mechanisms underlying these effects.
Collapse
Affiliation(s)
- Michael Leonardo
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Jessica Huffman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Alexis Kastigar
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA.
| |
Collapse
|
6
|
Katashima CK, de Oliveira Micheletti T, Braga RR, Gaspar RS, Goeminne LJE, Moura-Assis A, Crisol BM, Brícola RS, Silva VRR, de Oliveira Ramos C, da Rocha AL, Tavares MR, Simabuco FM, Matheus VA, Buscaratti L, Marques-Souza H, Pazos P, Gonzalez-Touceda D, Tovar S, del Carmen García M, Neto JCR, Curi R, Hirabara SM, Brum PC, Prada PO, de Moura LP, Pauli JR, da Silva ASR, Cintra DE, Velloso LA, Ropelle ER. Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism. SCIENCE ADVANCES 2022; 8:eabm7355. [PMID: 35905178 PMCID: PMC9337767 DOI: 10.1126/sciadv.abm7355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/15/2022] [Indexed: 05/31/2023]
Abstract
Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Carlos Kiyoshi Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Thayana de Oliveira Micheletti
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rodrigo Stellzer Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ludger J. E. Goeminne
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Barbara Moreira Crisol
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rafael S. Brícola
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Vagner Ramon R. Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Camila de Oliveira Ramos
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Valquiria Aparecida Matheus
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Lucas Buscaratti
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Pazos
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - David Gonzalez-Touceda
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sulay Tovar
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María del Carmen García
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jose Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil
| | - Patrícia Oliveira Prada
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Licio A. Velloso
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| |
Collapse
|
7
|
de Vicente LG, Muñoz VR, Pinto AP, Rovina RL, da Rocha AL, Marafon BB, Tavares MEDA, Teixeira GR, Ferrari GD, Alberici LC, Frantz FG, Simabuco FM, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, da Silva ASR. TLR4 deletion increases basal energy expenditure and attenuates heart apoptosis and ER stress but mitigates the training-induced cardiac function and performance improvement. Life Sci 2021; 285:119988. [PMID: 34592238 DOI: 10.1016/j.lfs.2021.119988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts. Echocardiogram, RT-qPCR, immunoblotting, and histological techniques were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (TLR4 KO) mice submitted to a 4-week physical exercise protocol. Moreover, we performed a bioinformatics analysis to expand the relationship of Tlr4 mRNA in the heart with inflammation, ER stress, and apoptosis-related genes of several isogenic strains of BXD mice. The TLR4 KO mice had higher energy expenditure and heart rate in the control state but lower activation of apoptosis and ER stress pathways. The bioinformatics analysis reinforced these data. In the exercised state, the WT mice improved performance and cardiac function. However, these responses were blunted in the KO group. In conclusion, TLR4 has an essential role in the inhibition of apoptosis and ER stress pathways, as well as in the training-induced beneficial adaptations.
Collapse
Affiliation(s)
- Larissa G de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Vitor R Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno B Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Eduarda de A Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Gustavo D Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo-FCFRP USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo-FCFRP USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Fabiani G Frantz
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Fernando M Simabuco
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Dickson PE, Mittleman G. Strain and sex dependent effects of isolation housing relative to environmental enrichment on operant sensation seeking in mice. Sci Rep 2021; 11:17826. [PMID: 34497303 PMCID: PMC8426458 DOI: 10.1038/s41598-021-97252-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/19/2021] [Indexed: 01/29/2023] Open
Abstract
Sensation seeking is a multidimensional phenotype that predicts the development of drug addiction in humans and addiction-like drug seeking in rodents. Several lines of evidence suggest that chronic stress increases sensation seeking and addiction-like drug seeking through common genetic mechanisms. Discovery and characterization of these mechanisms would reveal how chronic stress interacts with the genome to influence sensation seeking and how drugs of abuse hijack these fundamental reward mechanisms to drive addiction. To this end, we tested the hypothesis that chronic isolation housing stress (relative to environmental enrichment) influences operant sensation seeking as a function of strain, sex, or their interaction. To determine if the BXD recombinant inbred panel could be used to identify genetic and epigenetic mechanisms underlying any identified gene-by-environment interactions, we used mice from the two BXD founder strains. Following 10 weeks of differential housing, we assessed operant sensation seeking using several reinforcement schedules. The primary finding from this study was that DBA/2J but not C57BL/6J mice were significantly vulnerable to an isolation-induced increase (relative to environmental enrichment) in sensation seeking during extinction when the sensory reward was no longer available; this effect was significantly more robust in females. These data reveal a previously unknown isolation-induced effect on extinction of operant sensation seeking that is sex-dependent, addiction-relevant, and that can be dissected using the BXD recombinant inbred panel.
Collapse
Affiliation(s)
- Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA.
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN, 38111, USA.
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, North Quad (NQ), room 104, Muncie, IN, 47306, USA
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN, 38111, USA
| |
Collapse
|
9
|
Parks C, Rogers CM, Prins P, Williams RW, Chen H, Jones BC, Moore BM, Mulligan MK. Genetic Modulation of Initial Sensitivity to Δ9-Tetrahydrocannabinol (THC) Among the BXD Family of Mice. Front Genet 2021; 12:659012. [PMID: 34367237 PMCID: PMC8343140 DOI: 10.3389/fgene.2021.659012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cannabinoid receptor 1 activation by the major psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), produces motor impairments, hypothermia, and analgesia upon acute exposure. In previous work, we demonstrated significant sex and strain differences in acute responses to THC following administration of a single dose (10 mg/kg, i.p.) in C57BL/6J (B6) and DBA/2J (D2) inbred mice. To determine the extent to which these differences are heritable, we quantified acute responses to a single dose of THC (10 mg/kg, i.p.) in males and females from 20 members of the BXD family of inbred strains derived by crossing and inbreeding B6 and D2 mice. Acute THC responses (initial sensitivity) were quantified as changes from baseline for: 1. spontaneous activity in the open field (mobility), 2. body temperature (hypothermia), and 3. tail withdrawal latency to a thermal stimulus (antinociception). Initial sensitivity to the immobilizing, hypothermic, and antinociceptive effects of THC varied substantially across the BXD family. Heritability was highest for mobility and hypothermia traits, indicating that segregating genetic variants modulate initial sensitivity to THC. We identified genomic loci and candidate genes, including Ndufs2, Scp2, Rps6kb1 or P70S6K, Pde4d, and Pten, that may control variation in THC initial sensitivity. We also detected strong correlations between initial responses to THC and legacy phenotypes related to intake or response to other drugs of abuse (cocaine, ethanol, and morphine). Our study demonstrates the feasibility of mapping genes and variants modulating THC responses in the BXDs to systematically define biological processes and liabilities associated with drug use and abuse.
Collapse
Affiliation(s)
- Cory Parks
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Agriculture, Biology and Health Sciences, Cameron University, Lawton, OK, United States
| | - Chris M. Rogers
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Goldberg LR, Kutlu MG, Zeid D, Seemiller LR, Gould TJ. Systems genetic analysis of nicotine withdrawal deficits in hippocampus-dependent learning. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12734. [PMID: 33797169 DOI: 10.1111/gbb.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Cognitive deficits, such as disrupted learning, are a major symptom of nicotine withdrawal. These deficits are heritable, yet their genetic basis is largely unknown. Our lab has developed a mouse model of nicotine withdrawal deficits in learning, using chronic nicotine exposure via osmotic minipumps and fear conditioning. Here, we utilized the BXD genetic reference panel to identify genetic variants underlying nicotine withdrawal deficits in learning. Male and female mice (n = 6-11 per sex per strain, 31 strains) received either chronic saline or nicotine (6.3 mg/kg per day for 12 days), and were then tested for hippocampus-dependent learning deficits using contextual fear conditioning. Quantitative trait locus (QTL) mapping analyses using GeneNetwork identified a significant QTL on Chromosome 4 (82.13 Mb, LRS = 20.03, p < 0.05). Publicly available hippocampal gene expression data were used to identify eight positional candidates (Snacpc3, Mysm1, Rps6, Plaa, Lurap1l, Slc24a2, Hacd4, Ptprd) that overlapped with our behavioral QTL and correlated with our behavioral data. Overall, this study demonstrates that genetic factors impact cognitive deficits during nicotine withdrawal in the BXD recombinant inbred panel and identifies candidate genes for future research.
Collapse
Affiliation(s)
- Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Dickson PE, Mittleman G. Stimulus Complexity and Mouse Strain Drive Escalation of Operant Sensation Seeking Within and Across Sessions in C57BL/6J and DBA/2J Mice. Front Behav Neurosci 2020; 13:286. [PMID: 31998094 PMCID: PMC6965071 DOI: 10.3389/fnbeh.2019.00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Sensation seeking is a heritable trait that is genetically correlated with substance use; the shared genetic mechanisms underlying these traits are largely unknown. The relationship of sensation seeking and substance use has practical importance because discovering genes that drive sensation seeking can reveal genes driving substance use, and quantification of sensation seeking in mice is higher throughput and less technically challenging than quantification of volitional drug use. In order to fully understand the genetic mechanisms driving sensation seeking, it is critical to first understand the nongenetic factors driving sensation seeking. In the present study, we used the operant sensation seeking paradigm to assess the effects of stimulus complexity on sensation seeking in C57BL/6J and DBA/2J mice. These strains are the founders of the BXD recombinant inbred mouse panel which enables the discovery of genes driving phenotypic variation. This study led to four principal conclusions. First, all sensory stimuli used in the study, regardless of complexity or number of stimulus modalities, served as reinforcers for C57BL/6J and DBA/2J mice. Second, for both C57BL/6J and DBA/2J mice, sensation seeking for a high complexity sensory stimulus was significantly greater than sensation seeking for a low complexity sensory stimulus. Third, for both C57BL/6J and DBA/2J mice, sensation seeking escalated significantly within-session when a multimodal sensory stimulus of medium or high complexity was used but not when a unimodal sensory stimulus of low complexity was used. Finally, both the magnitude of sensation seeking and the magnitude of within-session escalation of sensation seeking were significantly greater in mice from the DBA/2J strain relative to mice from the C57BL/6J strain. Collectively, these findings indicate that stimulus complexity and genetic background drive escalation of operant sensation seeking within and across sessions, and that the BXD recombinant inbred mouse panel can be used to discover the genetic mechanisms underlying these phenomena.
Collapse
Affiliation(s)
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN, United States
| |
Collapse
|
12
|
Li Y, Struebing FL, Wang J, King R, Geisert EE. Different Effect of Sox11 in Retinal Ganglion Cells Survival and Axon Regeneration. Front Genet 2018; 9:633. [PMID: 30619460 PMCID: PMC6305287 DOI: 10.3389/fgene.2018.00633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose: The present study examines the role of Sox11 in the initial response of retinal ganglion cells (RGCs) to axon damage and in optic nerve regeneration in mouse. Methods: Markers of retinal injury were identified using the normal retina database and optic nerve crush (ONC) database on GeneNetwork2 (www.genenetwork.org). One gene, Sox11, was highly upregulated following ONC. We examined the role of this transcription factor, Sox11, following ONC and optic nerve regeneration in mice. In situ hybridization was performed using the Affymetrix 2-plex Quantigene View RNA In Situ Hybridization Tissue Assay System. Sox11 was partially knocked out by intravitreal injection of AAV2-CMV-Cre-GFP in Sox11 f/f mice. Optic nerve regeneration model used Pten knockdown. Mice were perfused and the retinas and optic nerves were dissected and examined for RGC survival and axon growth. Results: Sox11 was dramatically upregulated in the retina following ONC injury. The level of Sox11 message increased by approximately eightfold 2 days after ONC. In situ hybridization demonstrated low-level Sox11 message in RGCs and cells in the inner nuclear layer in the normal retina as well as a profound increase in Sox11 message within the ganglion cells following ONC. In Sox11 f/f retinas, partially knocking out Sox11 significantly increased RGC survival after ONC as compared to the AAV2-CMV-GFP control group; however, it had little effect on the ability of axon regeneration. Combinatorial downregulation of both Sox11 and Pten resulted in a significant increase in RGC survival as compared to Pten knockdown only. When Pten was knocked down there was a remarkable increase in the number and the length of regenerating axons. Partially knocking out Sox11 in combination with Pten deletion resulted in a fewer regenerating axons. Conclusion: Taken together, these data demonstrate that Sox11 is involved in the initial response of the retina to injury, playing a role in the early attempts of axon regeneration and neuronal survival. Downregulation of Sox11 aids in RGC survival following injury of optic nerve axons, while a partial knockout of Sox11 negates the axon regeneration stimulated by Pten knockdown.
Collapse
Affiliation(s)
- Ying Li
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Felix L Struebing
- Department of Ophthalmology, Emory University, Atlanta, GA, United States.,Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany.,Department for Translational Brain Research, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Rebecca King
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Dickson PE, Roy TA, McNaughton KA, Wilcox TD, Kumar P, Chesler EJ. Systems genetics of sensation seeking. GENES BRAIN AND BEHAVIOR 2018; 18:e12519. [PMID: 30221471 PMCID: PMC6399063 DOI: 10.1111/gbb.12519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Sensation seeking is a multifaceted, heritable trait which predicts the development of substance use and abuse in humans; similar phenomena have been observed in rodents. Genetic correlations among sensation seeking and substance use indicate shared biological mechanisms, but the genes and networks underlying these relationships remain elusive. Here, we used a systems genetics approach in the BXD recombinant inbred mouse panel to identify shared genetic mechanisms underlying substance use and preference for sensory stimuli, an intermediate phenotype of sensation seeking. Using the operant sensation seeking (OSS) paradigm, we quantified preference for sensory stimuli in 120 male and 127 female mice from 62 BXD strains and the C57BL/6J and DBA/2J founder strains. We used relative preference for the active and inactive levers to dissociate preference for sensory stimuli from locomotion and exploration phenotypes. We identified genomic regions on chromosome 4 (155.236‐155.742 Mb) and chromosome 13 (72.969‐89.423 Mb) associated with distinct behavioral components of OSS. Using publicly available behavioral data and mRNA expression data from brain regions involved in reward processing, we identified (a) genes within these behavioral QTL exhibiting genome‐wide significant cis‐eQTL and (b) genetic correlations among OSS phenotypes, ethanol phenotypes and mRNA expression. From these analyses, we nominated positional candidates for behavioral QTL associated with distinct OSS phenotypes including Gnb1 and Mef2c. Genetic covariation of Gnb1 expression, preference for sensory stimuli and multiple ethanol phenotypes suggest that heritable variation in Gnb1 expression in reward circuitry partially underlies the widely reported relationship between sensation seeking and substance use.
Collapse
Affiliation(s)
- Price E. Dickson
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | - Tyler A. Roy
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | | | - Troy D. Wilcox
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | - Padam Kumar
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | - Elissa J. Chesler
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| |
Collapse
|
14
|
Delprato A, Bonheur B, Algéo MP, Murillo A, Dhawan E, Lu L, Williams RW, Crusio WE. A quantitative trait locus on chromosome 1 modulates intermale aggression in mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12469. [PMID: 29457871 DOI: 10.1111/gbb.12469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/28/2022]
Abstract
Aggression between male conspecifics is a complex social behavior that is likely modulated by multiple gene variants. In this study, the BXD recombinant inbred mouse strains (RIS) were used to map quantitative trait loci (QTLs) underlying behaviors associated with intermale aggression. Four hundred and fifty-seven males from 55 strains (including the parentals) were observed at an age of 13 ± 1 week in a resident-intruder test following 10 days of isolation. Attack latency was measured directly within a 10-minute time period and the test was repeated 24 hours later. The variables we analyzed were the proportion of attacking males in a given strain as well as the attack latency (on days 1 and 2, and both days combined). On day 1, 29% of males attacked, and this increased to 37% on day 2. Large strain differences were obtained for all measures of aggression, indicating substantial heritability (intraclass correlations 0.10-0.18). We identified a significant QTL on chromosome (Chr) 1 and suggestive QTLs on mouse Chrs 1 and 12 for both attack and latency variables. The significant Chr 1 locus maps to a gene-sparse region between 82 and 88.5 Mb with the C57BL/6J allele increasing aggression and explaining about 18% of the variance. The most likely candidate gene modulating this trait is Htr2b which encodes the serotonin 2B receptor and has been implicated in aggressive and impulsive behavior in mice, humans and other species.
Collapse
Affiliation(s)
- A Delprato
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of Bordeaux, Pessac Cedex, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Pessac Cedex, France.,BioScience Project, Wakefield, Massachusetts
| | - B Bonheur
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of Bordeaux, Pessac Cedex, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Pessac Cedex, France
| | - M-P Algéo
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of Bordeaux, Pessac Cedex, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Pessac Cedex, France
| | - A Murillo
- BioScience Project, Wakefield, Massachusetts
| | - E Dhawan
- BioScience Project, Wakefield, Massachusetts
| | - L Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - W E Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, University of Bordeaux, Pessac Cedex, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Pessac Cedex, France
| |
Collapse
|
15
|
Delprato A, Algéo MP, Bonheur B, Bubier JA, Lu L, Williams RW, Chesler EJ, Crusio WE. QTL and systems genetics analysis of mouse grooming and behavioral responses to novelty in an open field. GENES BRAIN AND BEHAVIOR 2017; 16:790-799. [PMID: 28544613 DOI: 10.1111/gbb.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023]
Abstract
The open field is a classic test used to assess exploratory behavior, anxiety and locomotor activity in rodents. Here, we mapped quantitative trait loci (QTLs) underlying behaviors displayed in an open field, using a panel of 53 BXD recombinant inbred mouse strains with deep replication (10 per strain and sex). The use of these strains permits the integration and comparison of data obtained in different laboratories, and also offers the possibility to study trait covariance by exploiting powerful bioinformatics tools and resources. We quantified behavioral traits during 20-min test sessions including (1) percent time spent and distance traveled near the wall (thigmotaxis), (2) leaning against the wall, (3) rearing, (4) jumping, (5) grooming duration, (6) grooming frequency, (7) locomotion and (8) defecation. All traits exhibit moderate heritability making them amenable to genetic analysis. We identified a significant QTL on chromosome M.m. 4 at approximately 104 Mb that modulates grooming duration in both males and females (likelihood ratio statistic values of approximately 18, explaining 25% and 14% of the variance, respectively) and a suggestive QTL modulating locomotion that maps to the same locus. Bioinformatic analysis indicates Disabled 1 (Dab1, a key protein in the reelin signaling pathway) as a particularly strong candidate gene modulating these behaviors. We also found 2 highly suggestive QTLs for a sex by strain interaction for grooming duration on chromosomes 13 and 17. In addition, we identified a pairwise epistatic interaction between loci on chromosomes 12 at 36-37 Mb and 14 at 34-36 Mb that influences rearing frequency in males.
Collapse
Affiliation(s)
- A Delprato
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Pessac, France.,BioScience Project, Wakefield, MA, USA
| | - M-P Algéo
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Pessac, France
| | - B Bonheur
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Pessac, France
| | - J A Bubier
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - L Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | | | - W E Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Pessac, France
| |
Collapse
|