1
|
Bacchus A, Fatehi P. Drying temperature effect on the characteristics of cationically polymerized kraft lignin. Int J Biol Macromol 2024; 280:135935. [PMID: 39317282 DOI: 10.1016/j.ijbiomac.2024.135935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
In this work, the effect of drying temperature (55-130 °C) on the properties of kraft lignin (KL) polymerized with [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride, as a sustainable polymer (KLM) was investigated. KLM exhibited a 3-fold drop in charge density and a 10 % reduction in water solubility. These alterations were found to be associated with both chemical and physical changes determined by NMR and XPS analyses. At 55 °C, chain interactions were predominant due to electrostatic interactions amongst the pMETAC chains with the electronegative atoms present in KL. At 80, 105, and 130 °C drying temperatures, hydrolysis reactions predominated. The KLM polymer possessed, comparatively, a lesser resistance to thermal degradation than KL, and the KLM polymer had a more uniform thermal degradation behavior across the drying temperatures. Glass transition temperature, Tg, was shown to be comparable for KL across the various drying temperatures. KLM, however, showed an increasing trend as drying temperature increased, up to 130 °C, at which point Tg dropped due to KL degradation. Therefore, the drying temperature has a significant impact on the properties of kraft lignin and its cationic polymerized derivative, and it should be carefully selected to minimize the undesired changes in lignin properties.
Collapse
Affiliation(s)
- Ameena Bacchus
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
2
|
Qulatein HA, Gao W, Fatehi P. Carboxyalkylated Lignin as a Sustainable Dispersant for Coal Water Slurry. Polymers (Basel) 2024; 16:2586. [PMID: 39339050 PMCID: PMC11435015 DOI: 10.3390/polym16182586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Coal water slurry (CWS) has been considered a cleaner and sustainable alternative to coal. However, the challenging suspension of coal particles in CWS has created a major obstacle to its use in industry. This study presents a novel approach to enhance the stability and rheological properties of coal water slurry (CWS) through the utilization of carboxyalkylated lignin (CL) as a dispersant. The generated CL samples had high water solubility of around 9 g/L and a charge density of around 2 mmol/g. All CLs were able to stabilize the coal suspension, and their performance decreased due to the increase in the alkyl chain length of carboxyalkylated lignin. Carboxymethylated lignin (CL-1) improved the stability of the coal suspensions with the lowest instability index of less than 0.6. The addition of CLs reduced the contact angle of the coal surface from 45.3° to 34.6°, and the increase in the alkyl chain length hampered its effect on contact angle changes. The zeta potential measurements confirmed that the adsorption of CL enhanced the electrostatic repulsion between coal particles in suspensions, and the zeta potential decreased with the increased alkyl chain length of CLs due to increased steric hindrance. The rheology results indicated that CLs demonstrated shear thinning behavior. This innovative method showcases the affinity of carboxyalkylated lignin to improve the performance of CWS, offering an environmentally friendly alternative for producing a cleaner product, i.e., sustainable coal water slurry, with improved suspension stability.
Collapse
Affiliation(s)
- Hussein Ahmad Qulatein
- Faculty of Science and Technology, University of Lille, 59000 Lille, France
- Green Process Research Centre, Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Weijue Gao
- Green Process Research Centre, Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Pedram Fatehi
- Green Process Research Centre, Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
3
|
Breilly D, Dumarçay S, Froidevaux V, Boustingorry P, Fadlallah S, Allais F. Deciphering the enzymatic grafting of vanillin onto lignosulfonate for the production of versatile aldehydes-bearing biomaterials. Int J Biol Macromol 2024; 261:129814. [PMID: 38286382 DOI: 10.1016/j.ijbiomac.2024.129814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Modification of lignin plays a crucial role in extending its applications. While chemical functionalization has been extensively applied, exploring the enzyme-catalyzed approach for grafting phenolic molecules presents a promising avenue. Herein, we investigate the controlled laccase-mediated grafting of vanillin onto lignosulfonates (LS) as a sustainable approach to introduce aldehydes into LS, paving the way for further (bio)chemical functionalizations (e.g., reductive amination and Knoevenagel-Doebner condensations). The resulting vanillin-grafted LS is comprehensively characterized (HPLC, SEC, Pyrolysis-GC/MS, FTIR). The study reveals four key steps in the grafting process: (i) vanillin acts as a mediator, generating the phenoxyl radical that initiates LS oxidation, (ii) the oxidation leads to depolymerization of LS, resulting in a decrease in molecular weight, (iii) rearrangement in the vanillin-grafted LS, evidenced by the replacement of labile bonds by stronger 5-5 bonds that resist to pyrolysis, and (iv) if the reaction is prolonged after complete consumption of vanillin, condensation of the vanillin-grafted LS occurs, leading to a significant increase in molecular weight. This study provides valuable insights on the behavior of vanillin and LS throughout the process and allows to identify the optimal reaction conditions, thereby enhancing the production of vanillin-grafted LS for its subsequent functionalization.
Collapse
Affiliation(s)
- Damien Breilly
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; CHRYSO, 7 rue de l'Europe, Z.I. 45300 Sermaises du Loiret, France
| | - Stéphane Dumarçay
- Laboratoire d'Etudes et de Recherche sur le Matériau Bois (LERMAB), Université de Lorraine, INRAE, 54000 Nancy, France
| | | | | | - Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France.
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France.
| |
Collapse
|
4
|
Diaz-Baca JA, Fatehi P. Production and characterization of starch-lignin based materials: A review. Biotechnol Adv 2024; 70:108281. [PMID: 37956796 DOI: 10.1016/j.biotechadv.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
5
|
Mahtar A, Sulaimon AA, Wilfred CD. Lignosulfonate-Based Ionic Liquids as Asphaltene Dispersants. Molecules 2023; 28:molecules28083390. [PMID: 37110627 PMCID: PMC10145202 DOI: 10.3390/molecules28083390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Asphaltenes are recognized as being troublesome from upstream to downstream in the oil industry due to their tendency to precipitate and self-associate. Their extraction from asphaltenic crude oil for a cost-effective refining process is a crucial and critical challenge in the oil and gas sector. Lignosulfonate (LS), as a by-product of the wood pulping process in the papermaking industry, is a highly available and underutilized feedstock. This study aimed to synthesize novel LS-based ionic liquids (ILs) by reacting lignosulfonate acid sodium salt [Na]2[LS] with different alkyl chains of piperidinium chloride for asphaltene dispersion. The synthesized ILs, 1-hexyl-1-methyl-piperidinium lignosulfonate [C6C1Pip]2[LS], 1-octyl-1-methyl-piperidinium lignosulfonate [C8C1Pip]2[LS], 1-dodecyl-1-methyl-piperidinium lignosulfonate [C12C1Pip]2[LS] and 1-hexadecyl-1-methyl-piperidinium lignosulfonate [C16C1Pip]2[LS] were characterized using FTIR-ATR and 1H NMR for functional groups and structural confirmation. The ILs depicted high thermal stability because of the presence of a long side alkyl chain and piperidinium cation following thermogravimetric analysis (TGA). Asphaltene dispersion indices (%) of ILs were tested by varying contact time, temperature and ILs concentration. The obtained indices were high for all ILs, with a dispersion index of more than 91.2% [C16C1Pip]2[LS], representing the highest dispersion at 50,000 ppm. It was able to lower asphaltene particle size diameter from 51 nm to 11 nm. The kinetic data of [C16C1Pip]2[LS] were consistent with the pseudo-second-order kinetic model. The dispersion index (%), asphaltene particle growth and the kinetic model agreed with the molecular modeling studies of the HOMO-LUMO energy of IL holds.
Collapse
Affiliation(s)
- Ariff Mahtar
- Centre of Research in Ionic Liquids, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia
| | - Aliyu Adebayo Sulaimon
- Department of Petroleum Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia
| | - Cecilia Devi Wilfred
- Fundamental and Applied Sciences Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia
| |
Collapse
|
6
|
Wang L, Wu K, Ding CJ, Min JJ, Chen HP, Liu ZH, Xi DN, Zeng HY, Jian J, Xu S. Novel hierarchical carbon microspheres@layered double hydroxides@copper lignosulfonate architecture for polypropylene with enhanced flame retardant and mechanical performances. Int J Biol Macromol 2023; 235:123726. [PMID: 36801299 DOI: 10.1016/j.ijbiomac.2023.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Due to the inherent defect of flammability of polypropylene (PP), a novel and highly efficient carbon microspheres@layered double hydroxides@copper lignosulfonate (CMSs@LDHs@CLS) flame retardant was designed and prepared, which was attributed to the strong electrostatic interaction between carbon microspheres (CMSs), layered double hydroxides (LDHs) and lignosulfonate as well as the chelation effect of lignosulfonate on copper ions, and then it was incorporated into the PP matrix. Significantly, CMSs@LDHs@CLS not only observably improved its dispersibility in PP matrix, but also simultaneously achieved excellent flame retardant properties for composites. With the addition of 20.0 % CMSs@LDHs@CLS, the limit oxygen index of CMSs@LDHs@CLS and PP composites (PP/CMSs@LDHs@CLS) reached 29.3 % and achieved the UL-94 V-0 rating. Cone calorimeter tests indicated that the peak heat release rate, total heat release and total smoke production of PP/CMSs@LDHs@CLS composites exhibited declines of 28.8 %, 29.2 % and 11.5 %, respectively, compared with those of PP/CMSs@LDHs composites. These advancements were attributed to the better dispersibility of CMSs@LDHs@CLS in PP matrix and illustrated that CMSs@LDHs@CLS observably reduced fire hazards of PP. The flame retardant property of CMSs@LDHs@CLS might relate to condensed phase flame retardant effect of char layer and catalytic charring of copper oxides.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Kun Wu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Chi-Jie Ding
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Jun-Jie Min
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hao-Ping Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zhi-Hao Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Dan-Ni Xi
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Yan Zeng
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Jian Jian
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Sheng Xu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
7
|
|
8
|
Sun H, Xu Q, Ren M, Wang S, Kong F. Recent Studies on the Preparation and Application of Ionic Amphiphilic Lignin: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8871-8891. [PMID: 35848582 DOI: 10.1021/acs.jafc.2c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the second most abundant natural polymer after cellulose, lignin has received considerable attention recently due to its reproducibility, safety, and biodegradability. Studies are now focusing on the development of new lignin applications to replace petroleum-based chemicals. Unfortunately, lignin has several inherent problems, such as poor water solubility and a tendency to agglomerate. However, after chemical modification, lignin can gain new functions through the introduction of new functional groups. For example, amphiphilic lignin is a polymer that is soluble in both water and organic solvents. Amphiphilic lignin polymers can be divided into anionic, cationic, and anionic-cationic amphoteric lignin-based polymers, according to the ions contained in their molecular structure. Amphiphilic lignin polymers also have a wide range of applications in various industrial fields and can be used as wetting agents, detergents, controlled release fertilizers, adsorbents, and emulsifiers. Thus, this article reviews research progress on the synthesis and applications of amphiphilic lignin-derived polymers over the past 10 years, providing a theoretical reference for the utilization of high-added-value and high-performance lignin.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
9
|
Yadav V, Banerjee S, Bairagi S, Baisoya S, Ali SW. Green synthesis of sodium lignosulfonate nanoparticles using chitosan for significantly enhanced multifunctional characteristics. Int J Biol Macromol 2022; 211:380-389. [PMID: 35569681 DOI: 10.1016/j.ijbiomac.2022.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Nanoparticles of green materials have gained enormous interest due to their broad range of applications in several disciplines since they have significantly improved multifunctional activities. This article attempts a sustainable green approach to synthesize sodium lignosulfonate nanoparticles (SLS NPs) using another biomolecule, i.e., chitosan. The synthesized SLS NPs (with an average diameter of ~125 nm to 129 nm) have demonstrated synergetic efficacy by exhibiting outstanding multifunctional properties due to the presence of two types of biomolecules (i.e., lignosulfonate as well as chitosan) in their structure. The synthesized SLS NPs have bestowed excellent antibacterial activity against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. Moreover, SLS NPs have displayed ~92% antioxidant property. Having polyphenolic entities in the structure of SLS NPs, they have shown UV-visible absorption peak at 224 nm, which directly indicates that they can act as an outstanding UV protective agent which has also been proven experimentally.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sourav Banerjee
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Satyaranjan Bairagi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sujata Baisoya
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Wazed Ali
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Liu X, Gao C, Fu C, Xi Y, Fatehi P, Zhao JR, Wang S, Gibril ME, Kong F. Preparation and Performance of Lignin-Based Multifunctional Superhydrophobic Coating. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041440. [PMID: 35209240 PMCID: PMC8877995 DOI: 10.3390/molecules27041440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
Superhydrophobic coatings have drawn much attention in recent years for their widespread potential applications. However, there are challenges to find a simple and cost-effective approach to prepare superhydrophobic materials and coatings using natural polymer. Herein, we prepared a kraft lignin-based superhydrophobic powder via modifying kraft lignin through 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) substitution reaction, and constructed superhydrophobic coatings by direct spraying the suspended PFDTES-Lignin powder on different substrates, including glass, wood, metal and paper. The prepared lignin-based coatings have excellent repellency to water, with a water contact angle of 164.7°, as well as good friction resistance, acid resistance, alkali resistance, salt resistance properties and quite good self-cleaning performance. After 30 cycles of sand friction or being stayed in 2 mol/L HCl, 0.25 mol/L NaOH and 2 mol/L NaCl solution for 30 min, the coatings still retain super hydrophobic capability, with contact angles higher than 150°. The superhydrophobic performance of PFDTES-Lignin coatings is mainly attributed to the constructed high surface roughness and the low surface energy afforded by modified lignin. This lignin-based polymer coating is low-cost, scalable, and has huge potential application in different fields, providing a simple way for the value-added utilization of kraft lignin.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
| | - Chenglong Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
| | - Yuebin Xi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
| | - Joe R. Zhao
- Tri-Y Environmental Research Institute, Vancouver, BC V5M 3H9, Canada;
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
- Correspondence: (S.W.); (M.E.G.); (F.K.); Tel.: +86-531-8963-1883 (F.K.)
| | - Magdi E. Gibril
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
- Correspondence: (S.W.); (M.E.G.); (F.K.); Tel.: +86-531-8963-1883 (F.K.)
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (X.L.); (C.G.); (C.F.); (Y.X.)
- Correspondence: (S.W.); (M.E.G.); (F.K.); Tel.: +86-531-8963-1883 (F.K.)
| |
Collapse
|
11
|
Alipoormazandarani N, Benselfelt T, Wang L, Wang X, Xu C, Wågberg L, Willför S, Fatehi P. Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26308-26317. [PMID: 34042445 DOI: 10.1021/acsami.1c03496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lignin is the richest source of renewable aromatics and has immense potential for replacing synthetic chemicals. The limited functionality of lignin is, however, challenging for its potential use, which motivates research for creating advanced functional lignin-derived materials. Here, we present an aqueous-based acid precipitation method for preparing functional lignin nanoparticles (LNPs) from carboxymethylated or carboxypentylated lignin. We observe that the longer grafted side chains of carboxypentylated lignin allow for the formation of larger LNPs. The functional nanoparticles have high tolerance against salt and aging time and well-controlled size distribution with Rh ≤ 60 nm over a pH range of 5-11. We further investigate the layer-by-layer (LbL) assembly of the LNPs and poly(allylamine hydrochloride) (PAH) using a stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). Results demonstrate that LNPs made of carboxypentylated lignin (i.e., PLNPs with the adsorbed mass of 3.02 mg/m2) form a more packed and thicker adlayer onto the PAH surface compared to those made of carboxymethylated lignin (i.e., CLNPs with the adsorbed mass of 2.51 mg/m2). The theoretical flux, J, and initial rate of adsorption, (dΓ/dt)0, analyses confirm that 22% of PLNPs and 20% of CLNPs arriving at the PAH surface are adsorbed. The present study provides a feasible platform for engineering LNPs with a tunable size and adsorption behavior, which can be adapted in bionanomaterial production.
Collapse
Affiliation(s)
- Niloofar Alipoormazandarani
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON, Canada
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, Finland
| | - Tobias Benselfelt
- Department of Fiber and Polymer Technology, Division of Fibre Technology and Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Luyao Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, Finland
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, Division of Fibre Technology and Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefan Willför
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, Finland
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, Shangdong, China
| |
Collapse
|
12
|
Sabaghi S, Alipoormazandarani N, Fatehi P. Production and Application of Triblock Hydrolysis Lignin-Based Anionic Copolymers in Aqueous Systems. ACS OMEGA 2021; 6:6393-6403. [PMID: 33718730 PMCID: PMC7948438 DOI: 10.1021/acsomega.0c06344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 06/01/2023]
Abstract
Although lignin is currently an under-utilized biopolymer, it has the potential to be valorized through different modification pathways to yield alternative products to petroleum-based ones. In this work, hydrolysis lignin (HL) was copolymerized with acrylamide (AM) and acrylic acid (AA) under acidic conditions to generate the lignin/AM polymer (HM), lignin/AA polymer (HA), and lignin/AM/AA copolymer (HAM) with different negative charge densities and molecular weights. Lignin-based polymers characterized by advanced tools, such as proton nuclear magnetic resonance (1H NMR), gel permission chromatography (GPC), and elemental analysis confirmed the successful polymerization of HL with AM, AA, or AM/AA monomers. The adsorption analysis using a quartz crystal microbalance (QCM) revealed that compared to diblock HM and HA, the triblock copolymers of HAM adsorbed more on the Al2O3 surface and generated a bulkier adsorbed layer, which is important for lignin-based coating formulation. HAM1 with a lower charge density yielded a higher surface excess density, while HAM2 with a larger R h occupied more space (153.7 Å2) at the interface of water and Al2O3. In suspension systems, because of the higher M w, R h, and adsorption affinity, the bridging performance of HAM2 was more remarkable than that of the other lignin derivatives for Al2O3 particles via forming stronger flocs (with a deflocculation parameter, T df, of 80.6 s). However, the diblock lignin-AA (HA1) polymer showed the fastest floc regrowth capability after reducing the shear forces (with a reflocculation parameter, T rf, of 62.5 s). The high thermal stability, T g, and rheological characteristics of the HAM copolymer proved that it can be an excellent material for coating formulations and flocculants for wastewater treatment systems.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Biorefining Research Institute and
Chemical Engineering Department, Lakehead
University, Thunder
Bay, Ontario P7B 5E1, Canada
| | - Niloofar Alipoormazandarani
- Biorefining Research Institute and
Chemical Engineering Department, Lakehead
University, Thunder
Bay, Ontario P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and
Chemical Engineering Department, Lakehead
University, Thunder
Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
13
|
Chen S, Wang G, Pang T, Sui W, Chen Z, Si C. Green assembly of high-density and small-sized silver nanoparticles on lignosulfonate-phenolic resin spheres: Focusing on multifunction of lignosulfonate. Int J Biol Macromol 2020; 166:893-901. [PMID: 33144257 DOI: 10.1016/j.ijbiomac.2020.10.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
In this work, sodium lignosulfonate (SL) was introduced in the hydrothermal preparation of phenol-formaldehyde (PF) resin sphere that was subsequently used as a green reducer and support for synthesis of Ag nanoparticles (Ag NPs). The results showed that the addition amount of SL had a remarkable effect on the size of the SL incorporated PF (SLPF) spheres and the smallest particle size was obtained when 20% of SL (based on phenol mass) was added. The addition of SL increased the surface area and negative charge of SLPF spheres, which enhanced the Ag NPs loading amount accordingly. Moreover, SL also prevented Ag NPs from aggregating effectively, resulting in the high-density loading of small size Ag NPs on the SLPF spheres. Therefore, the as-prepared Ag@SLPF composites exhibited significantly enhanced catalytic activities in the 4-nitrophenol reduction than that of SL-free Ag@PF. Besides, the Ag@SLPF catalyst demonstrated superior recyclability owing to strong anchoring between the Ag NPs and the support. Consequently, the work demonstrates the incorporation of SL enables the green formation of high-density and tunable Ag NPs on the SLPF support and then endows the composite catalyst with enhanced catalytic performance, which presents a promising value-added application of lignosulfonate for functional catalyst preparation.
Collapse
Affiliation(s)
- Shilin Chen
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tairan Pang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Gao C, Zhou L, Yao S, Qin C, Fatehi P. Phosphorylated kraft lignin with improved thermal stability. Int J Biol Macromol 2020; 162:1642-1652. [PMID: 32795583 DOI: 10.1016/j.ijbiomac.2020.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 10/23/2022]
Abstract
The low cost, environmental friendliness, and reproducibility of kraft lignin (KL) make it a potential candidate for the development of new green material. The phosphorylation of KL can extend its application as a flame-retardant material. Herein, the phosphorylated kraft lignin (PKL) was systematically fabricated in a sustainable process by utilizing a green phosphating reagent, NH4H2PO4, in the presence of urea. The influence of the reaction parameters, i.e., reaction time and temperature, and NH4H2PO4/lignin ratio on the phosphorylation process were investigated. Advanced characterization techniques including 1H NMR, 31P NMR, and XPS confirmed that the phosphorus groups were successfully introduced to lignin molecules. The active phenolic and aliphatic hydroxy groups of kraft lignin underwent a nucleophilic substitution reaction with the phosphate group to generate phosphorylated lignin. Compared with KL, PKL showed excellent thermal stability, and its maximum decomposition temperature was 620 °C compared with 541 °C for KL.
Collapse
Affiliation(s)
- Cong Gao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Long Zhou
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Shuangquan Yao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Chengrong Qin
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
15
|
Hopa DY, Fatehi P. Using Sulfobutylated and Sulfomethylated Lignin as Dispersant for Kaolin Suspension. Polymers (Basel) 2020; 12:polym12092046. [PMID: 32911748 PMCID: PMC7570282 DOI: 10.3390/polym12092046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Kraft lignin is an abundant natural resource, but it is underutilized. In this study, sulfoalkylated lignin derivatives with similar charge densities but with different alkyl chain length were produced via sulfobutylation and sulfomethylation reactions. The contact angle studies revealed that sulfobutylated lignin (SBL) with longer alkyl chains had a higher hydrophobicity than sulfomethylated lignin (SML) did. The adsorption behavior of sulfoalkylated lignins was studied using a Quartz crystal microbalance with dissipation (QCM-D) on Al2O3 coated surface as representative of positively charged sites of kaolin particles. The results of adsorption studies showed that SBL deposited more greatly than SML did on the Al2O3 surface, and it generated a thicker but less viscoelastic adlayer on the surface. The adlayer thickness and configuration of molecules on the surface were also related to the zeta potential and stabilization performance of the polymers in the kaolin suspension system. The results also confirmed that both lignin derivatives were very effective in dispersing kaolin particles at neutral pH, and their effectiveness was hampered under alkaline or acidic pH.
Collapse
Affiliation(s)
- Derya Yesim Hopa
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Department of Chemical Engineering, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: ; Tel.: +1-807-343-8697; Fax: +1-807-346-7943
| |
Collapse
|
16
|
Ghavidel N, Fatehi P. Pickering/Non-Pickering Emulsions of Nanostructured Sulfonated Lignin Derivatives. CHEMSUSCHEM 2020; 13:4567-4578. [PMID: 32419354 DOI: 10.1002/cssc.202000965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Sulfoethylated lignin (SEKL) polymeric surfactant and sulfoethylated lignin nanoparticles (N-SEKL) with a size of 750±50 nm are produced by using a facile green process involving a solvent-free reaction and acidification-based fractionation. SEKL forms a liquid-like conventional emulsion with low viscosity that has temporary stability (5 h) at pH 7. However, N-SEKL forms a gel-like, motionless, and ultra-stable Pickering emulsion through a network of interactions between N-SEKL particles, which creates steric hindrance among the oil droplets at pH 3. The deposition of SEKL and N-SEKL on the oil surface is monitored by a using a quartz crystal microbalance. Experimentally, the formation of emulsions at pH 7 is found to be reversible owing to the low adsorption energy ΔE of SEKL on the oil droplet (ΔE≈15 kB T), which is determined with the help of three-phase contact-angle measurements. However, the high desorption energy (ΔE≈6.0×105 kB T) of N-SEKL makes it irreversibly adsorb on the oil droplets. SEKL is too hydrophilic to attach to the oil interface (ΔE≈0) and thus does not facilitate emulsion formation at pH 11. Therefore, it is feasible to apply SEKL for the formulation of Pickering or non-Pickering emulsions in the form of nanoparticles or polymeric surfactants, depending on the targeted application.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shangdong, 250353, P.R. China
| |
Collapse
|
17
|
Sabaghi S, Fatehi P. Polarity of Cationic Lignin Polymers: Physicochemical Behavior in Aqueous Solutions and Suspensions. CHEMSUSCHEM 2020; 13:4722-4734. [PMID: 33448658 DOI: 10.1002/cssc.202000897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The structure of cationic monomers can significantly impact the polarity of lignin after polymerization. Cationic hydrolysis lignin (CHL) polymers were produced by polymerizing hydrolysis lignin (HL) with [3-(methacryloylamino)propyl] trimethylammonium chloride (MAPTAC) or [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (METAC). The METAC monomer has an oxygen atom, with larger electronegativity, in its molecular structure, whereas the MAPTAC monomer contains a nitrogen atom, as well as an extra nonpolar CH2 group, facilitating investigation into the effects of the polarity of CHLs on their physicochemical performance in an aqueous system. CHL polymers are analyzed and their interactions with clay particles are determined in colloidal systems. CHLs are designed to have similar charge densities (2.1-2.2 mmol g-1) and molecular weights (55000-60000 g mol-1 ). The hydrodynamic radius (Hy) and radius of gyration, (Rg) of HL-METAC are larger than those of HL-MAPTAC, implying a more 3-dimensional structure of HL-METAC in aqueous solution. The stability ratio of kaolin particles affirms the better performance of HL-METAC in comparison to HL-MAPTAC, which reflects the better flocculation efficiency of HL-METAC. The results also reveal that salt and urea aqueous solutions affect the Hy, Rg, and configuration of CHL polymers, which alters the flocculation efficiency of HL-METAC and HL-MAPTAC polymers in kaolin suspensions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| |
Collapse
|
18
|
Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface. J Colloid Interface Sci 2020; 561:231-243. [DOI: 10.1016/j.jcis.2019.11.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022]
|
19
|
Bahrpaima K, Fatehi P. Preparation and Coagulation Performance of Carboxypropylated and Carboxypentylated Lignosulfonates for Dye Removal. Biomolecules 2019; 9:biom9080383. [PMID: 31434221 PMCID: PMC6723465 DOI: 10.3390/biom9080383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
In this work, 1-carboxypropyled (1-CPRLS) and 5-carboxypentyled lignosulfonates (5-CPELS) were synthesized using 2-chlorobutanoic acid and 6-chlorohexanoic acid as carboxylate group donors via SN1 and SN2 mechanisms, respectively. 1-Carboxypropyl and 5-carboxypentyl lignosulfonates with the charge densities of −3.45 and −2.94 meq g−1 and molecular weights of 87,900 and 42,400 g·mol−1 were produced, respectively, under mild conditions. The carboxylate content and degree of substitution (DS) of the 1-CPRLS product were 2.37 mmol·g−1 and 0.70 mol·mol−1, while those of 5-CPELS products were 2.13 mmol·g−1 and 0.66 mol·mol−1, respectively. The grafting of carboxypropyl and carboxypentyl groups to lignosulfonate was confirmed by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR and 13C-NMR) spectroscopies. In addition, 1-CPRLS and 5-CPELS were applied as coagulants for removing ethyl violet (EV) dye from a simulated solution, and their performance was related to their charge densities and molecular weights. Furthermore, fundamental discussion is provided on the advantages of (1) producing 1-CPRLS and (2) the superior properties and performance of 1-CPRLS to carboxyethylated lignosulfonate.
Collapse
Affiliation(s)
- Khatereh Bahrpaima
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Pedram Fatehi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad 74719-13113, Iran.
| |
Collapse
|
20
|
Ghavidel N, Fatehi P. Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Adv 2019; 9:17639-17652. [PMID: 35520539 PMCID: PMC9064571 DOI: 10.1039/c9ra02526j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products. Polystyrene (PS) is known for its worldwide application in water purification processes. To induce a sustainable PS, kraft lignin (KL) and polystyrene were polymerized via free radical polymerization in a facile aqueous emulsion process. KL enhanced surface area and porosity of PS. The physicochemical properties of induced KL–PS were analyzed, and the fate of lignin in KL–PS was discussed fundamentally. Wettability and surface energy analyses were implemented to monitor the surface properties of KL, PS and KL–PS. Incorporation of KL in PS (40 wt%) boosted its surface energy and oxygen content, which led to KL–PS with better compatibility than PS with copper ions in aqueous systems. A quartz crystal microbalance with dissipation (QCM-D) confirmed the noticeably higher adsorption performance of copper ion on KL–PS than on PS and KL. The sorption mechanism, which was revealed by FTIR studies, was primarily attributed to the coordination of Cu(ii) and hydroxyl group of KL–PS as well as the quadrupolar system of KL–PS. Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products.![]()
Collapse
Affiliation(s)
- Nasim Ghavidel
- Green Processes Research Centre and Chemical Engineering Department
- Lakehead University
- Thunder Bay
- Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department
- Lakehead University
- Thunder Bay
- Canada
| |
Collapse
|