1
|
Cao Q, Zhu H, Xu J, Zhang M, Xiao T, Xu S, Du B. Research progress in the preparation of lignin-based carbon nanofibers for supercapacitors using electrospinning technology: A review. Int J Biol Macromol 2024; 273:133037. [PMID: 38897523 DOI: 10.1016/j.ijbiomac.2024.133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
With the development of renewable energy technologies, the demand for efficient energy storage systems is growing. Supercapacitors have attracted considerable attention as efficient electrical energy storage devices because of their excellent power density, fast charging and discharging capabilities, and long cycle life. Carbon nanofibers are widely used as electrode materials in supercapacitors because of their excellent mechanical properties, electrical conductivity, and light weight. Although environmental factors are increasingly driving the application of circular economy concepts in materials science, lignin is an underutilized but promising environmentally benign electrode material for supercapacitors. Lignin-based carbon nanofibers are ideal for preparing high-performance supercapacitor electrode materials owing to their unique chemical stability, abundance, and environmental friendliness. Electrospinning is a well-known technique for producing large quantities of uniform lignin-based nanofibers, and is the simplest method for the large-scale production of lignin-based carbon nanofibers with specific diameters. This paper reviews the latest research progress in the preparation of lignin-based carbon nanofibers using the electrospinning technology, discusses the prospects of their application in supercapacitors, and analyzes the current challenges and future development directions. This is expected to have an enlightening effect on subsequent research.
Collapse
Affiliation(s)
- Qiping Cao
- Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Mingyu Zhang
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China
| | - Tianyuan Xiao
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China.
| | - Shuangping Xu
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China.
| | - Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
2
|
Winters C, Carsi M, Sanchis MJ, Culebras M, Collins MN. On the design of lignin reinforced acrylic acid/hyaluronic acid adhesive hydrogels with conductive PEDOT:HA nanoparticles. Int J Biol Macromol 2024; 273:133093. [PMID: 38866291 DOI: 10.1016/j.ijbiomac.2024.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Hydrogels are of great importance in biomedical engineering. They possess the ability to mimic bodily soft tissues, and this allows exciting possibilities for applications such as tissue engineering, drug delivery and wound healing, however much work remains on stability and mechanical robustness to allow for translation to clinical applications. The work herein describes the synthesis and analysis of a biocompatible, versatile hydrogel that has tailorable swelling, high stability when swollen and thermal stability. The synthesis methods used produce a hydrogel with high elasticity, good mechanical properties and rapid crosslinking whilst displaying biocompatibility, adhesion, and conductivity. It has been shown that cell viability in the samples is above 80 % in all cases, a Young's Modulus of up to 85 kPa and high swelling degrees were achieved. These materials show potential for use in numerous applications such as adhesive sensors, skin grafts and drug delivery systems.
Collapse
Affiliation(s)
- Caitriona Winters
- Stokes Labs, Bernal Institute, School of Engineering, University of Limerick, Ireland
| | - Marta Carsi
- Instituto de Automática E Informática Industrial, Universitat Politècnica de Valencia, 46022, Valencia, Spain
| | - Maria J Sanchis
- Departamento de Termodinámica Aplicada, Instituto Tecnológico de La Energía, Universitat Politècnica de València, Camí de Vera S/N, 46022, Valencia, Spain
| | - Mario Culebras
- Institute of Material Science (ICMUV), University of Valencia, 46980, Spain
| | - Maurice N Collins
- Stokes Labs, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland; SFI AMBER Centre, University of Limerick, Ireland.
| |
Collapse
|
3
|
Muddasar M, Mushtaq M, Beaucamp A, Kennedy T, Culebras M, Collins MN. Synthesis of Sustainable Lignin Precursors for Hierarchical Porous Carbons and Their Efficient Performance in Energy Storage Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2352-2363. [PMID: 38362533 PMCID: PMC10865442 DOI: 10.1021/acssuschemeng.3c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Lignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs). Dropwise injection of a lignin solution containing PVA sacrificial templates into liquid nitrogen produces tiny spheres that are lyophilized and carbonized to produce LSPCs. Most of the synthesized samples possess excellent specific surface areas (426.6-790.5 m2/g) along with hierarchical micro- and mesoporous morphologies. When tested in supercapacitor applications, LSPC-28 demonstrates a superior specific capacitance of 102.3 F/g at 0.5 A/g, excellent rate capability with 70.3% capacitance retention at 20 A/g, and a commendable energy density of 2.1 Wh/kg at 250 W/kg. These materials (LSPC-46) also show promising performance as an anode material in sodium-ion batteries with high reversible capacity (110 mAh g-1 at 100 mA g-1), high Coulombic efficiency, and excellent cycling stability. This novel and green technique is anticipated to facilitate the scalability of lignin-based porous carbons and open a range of research opportunities for energy storage applications.
Collapse
Affiliation(s)
- Muhammad Muddasar
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Misbah Mushtaq
- Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Anne Beaucamp
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Tadhg Kennedy
- Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mario Culebras
- Institute
of Material Science, (ICMUV) University of Valencia, Paterna 22085, Spain
| | - Maurice N. Collins
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SFI
Centre for Advanced Materials and BioEngineering Research, Dublin D02 PN40, Ireland
| |
Collapse
|
4
|
Wysocki Ł, Adamczuk P, Bardadyn P, Gabor A, Jelonek K, Kudelska M, Kukuć M, Piasek A, Pietras M, Słomka M, Trojan Z, Tybulczuk W, Sobiepanek A, Żylińska-Urban J, Cieśla J. Development of lactic acid production from coffee grounds hydrolysate by fermentation with Lacticaseibacillus rhamnosus. J Ind Microbiol Biotechnol 2024; 51:kuae032. [PMID: 39227166 PMCID: PMC11399779 DOI: 10.1093/jimb/kuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Spent coffee grounds (SCG) are commercial waste that are still rich in numerous valuable ingredients and can be further processed into useful products such as coffee oil, antioxidant extract, lactic acid, and lignin. The challenge and innovation is to develop the SCG processing technology, maximizing the use of raw material and minimizing the use of other resources within the sequential process. The presented research is focused on the aspect of biotechnological production of lactic acid from SCG by using the Lacticaseibacillus rhamnosus strain isolated from the environment. Thanks to the optimization of the processes of acid hydrolysis, neutralization, enzymatic hydrolysis of SCG, and fermentation, the obtained concentration of lactic acid was increased after 72 hr of culture from the initial 4.60 g/l to 48.6 g/l. In addition, the whole process has been improved, taking into account the dependence on other processes within the complete SCG biorefinery, economy, energy, and waste aspects. Costly enzymatic hydrolysis was completely eliminated, and it was proven that supplementation of SCG hydrolysate with expensive yeast extract can be replaced by cheap waste from the agri-food industry. ONE-SENTENCE SUMMARY A process for efficient lactic acid production from spent coffee grounds using the Lacticaseibacillus rhamnosus strain was developed and optimized, including nutrient solution preparation, supplementation and fermentation.
Collapse
Affiliation(s)
- Łukasz Wysocki
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Patrycja Adamczuk
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Paula Bardadyn
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Anna Gabor
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Karolina Jelonek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Monika Kudelska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Maksymilian Kukuć
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
- Chair of Polymer Chemistry and Technology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Adrianna Piasek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Marta Pietras
- Chair of Polymer Chemistry and Technology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Monika Słomka
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Zoja Trojan
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Wiktoria Tybulczuk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Joanna Żylińska-Urban
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| |
Collapse
|
5
|
Chikkatti BS, Sajjan AM, Banapurmath NR, Bhutto JK, Verma R, Yunus Khan TM. Fabrication of Flexible Films for Supercapacitors Using Halloysite Nano-Clay Incorporated Poly(lactic acid). Polymers (Basel) 2023; 15:4587. [PMID: 38231974 PMCID: PMC10708593 DOI: 10.3390/polym15234587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
In the past few years, significant research efforts have been directed toward improving the electrochemical capabilities of supercapacitors by advancing electrode materials. The present work signifies the development of poly(lactic acid)/alloysite nano-clay as an electrode material for supercapacitors. Physico-chemical characterizations were analyzed by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and a universal testing machine. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge techniques were employed to evaluate electrochemical characteristics. The optimized poly(lactic acid)/halloysite nano-clay film revealed the highest specific capacitance of 205.5 F g-1 at 0.05 A g-1 current density and showed 14.6 Wh kg-1 energy density at 72 W kg-1 power density. Capacitance retention of 98.48% was achieved after 1000 cycles. The microsupercapacitor device presented a specific capacitance of 197.7 mF g-1 at a current density of 0.45 mA g-1 with 10.8 mWh kg-1 energy density at 549 mW kg-1 power density.
Collapse
Affiliation(s)
- Bipin S. Chikkatti
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
- Centre of Excellence in Material Science, School of Mechanical Engineering, KLE Technological University, Hubballi 580031, India;
| | - Nagaraj R. Banapurmath
- Centre of Excellence in Material Science, School of Mechanical Engineering, KLE Technological University, Hubballi 580031, India;
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (J.K.B.); (R.V.)
| | - Rajesh Verma
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (J.K.B.); (R.V.)
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
6
|
Madivoli ES, Wanakai SI, Kairigo PK, Odhiambo RS. Encapsulation of AgNPs in a Lignin Isocyanate Film: Characterization and Antimicrobial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4271. [PMID: 37374454 DOI: 10.3390/ma16124271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Lignin isolated from agricultural residues is a promising alternative for petroleum-based polymers as feedstocks in development of antimicrobial materials. A polymer blend based on silver nanoparticles and lignin-toluene diisocyanate film (AgNPs-Lg-TDIs) was generated from organosolv lignin and silver nanoparticles (AgNPs). Lignin was isolated from Parthenium hysterophorus using acidified methanol and used to synthesize lignin capped silver nanoparticles. Lignin-toluene diisocyanate film (Lg-TDI) was prepared by treating lignin (Lg) with toluene diisocyanate (TDI) followed by solvent casting to form films. Functional groups present and thermal properties of the films were evaluated using Fourier-transform infrared spectrophotometry (FT-IR), thermal gravimetry (TGA), and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM), UV-visible spectrophotometry (UV-Vis), and Powder X-ray diffractometry (XRD) were used to assess the morphology, optical properties, and crystallinity of the films. Embedding AgNPs in the Lg-TDI films increased the thermal stability and the residual ash during thermal analysis, and the presence of powder diffraction peaks at 2θ = 20, 38, 44, 55, and 58⁰ in the films correspond to lignin and silver crystal planes (111). SEM micrographs of the films revealed the presence of AgNPs in the TDI matrix with variable sizes of between 50 to 250 nm. The doped films had a UV radiation cut-off at 400 nm as compared to that of undoped films, but they did not exhibit significant antimicrobial activity against selected microorganisms.
Collapse
Affiliation(s)
- Edwin S Madivoli
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Sammy I Wanakai
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Pius K Kairigo
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Rechab S Odhiambo
- Department of Physical Science, University of Kabianga, Kericho P.O. Box 2030-20200, Kenya
| |
Collapse
|
7
|
Wu KL, Zhang WW, Jiang TB, Wu M, Liu W, Wang HM, Hou QX. Structure regulated 3D flower-like lignin-based anode material for lithium-ion batteries and its storage kinetics. Int J Biol Macromol 2023; 227:146-157. [PMID: 36529218 DOI: 10.1016/j.ijbiomac.2022.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
As a green sustainable material, lignin-derived porous carbon (LPC) exhibits great application potential when used as the anode material in lithium-ion batteries (LIBs), but the applications are limited by the heterogeneity of the lignin precursor. Therefore, it is crucial to reveal the relationship among lignin properties, porous carbon structure and the kinetics of lithium-ion storage. Herein, LPCs from fractionated lignin have been prepared by an eco-friendly and recyclable activator. The structure of the LPCs was regulated by adjusting the molecular weight, linkage abundance and glass transition temperature (Tg) of lignin macromolecules. As the anode material of LIBs, the prepared 3D flower-like LPCE70 could achieve a reversible capacity of 528 mAh g-1 at a current density of 0.2 A g-1 after 200 cycles, 63 % higher than that of commercial graphite. Furthermore, kinetic calculations of lithium-ion storage behavior of LPCs were firstly used to confirm the contribution ratio of diffusion-controlled behavior and capacitive effect. Lignin with a high linkage abundance could yield LPCE70 with the largest interlayer spacing and specific surface area to maximize lithium-ion storage from both diffusion-controlled and capacitive contributions of specific capacities. This work provides a green, facile and effective pathway for value-added utilization of lignin in LIBs.
Collapse
Affiliation(s)
- Kai-Li Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tong-Bao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ming Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qing-Xi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Jia G, Innocent MT, Yu Y, Hu Z, Wang X, Xiang H, Zhu M. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. Int J Biol Macromol 2023; 226:646-659. [PMID: 36521701 DOI: 10.1016/j.ijbiomac.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lignin remains the second abundant source of renewable carbon with an aromatic structure. However, most of the lignin is burnt directly for power generation, with an effective utilization rate of <2 %, making value addition on lignin an urgent requirement. From this perspective, preparation of lignin-based carbon fibers has been widely studied as an effective way to increase value addition on lignin. However, lignin species are diverse and complex in structure, and the pathway that enables changes in lignin structure during pretreatment, fiber formation, stabilization, and carbonization is still uncertain. In this review, we condense the common structural evolution route from the previous studies, which can serve as a guide towards engineered lignin carbon fibers with high performance properties.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Liu X, Qin M, Sun W, Zhang D, Jian B, Sun Z, Wang S, Li X. Study on cellulose nanofibers/aramid fibers lithium-ion battery separators by the heterogeneous preparation method. Int J Biol Macromol 2023; 225:1476-1486. [PMID: 36435462 DOI: 10.1016/j.ijbiomac.2022.11.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
In this study, a heat-resistant and high-wettability lithium-ion batteries separator (PI-CPM-PI) composed of cellulose nanofibers (CNF) and aramid fibers (PMIA chopped fiber/PPTA pulp) with the reinforced concrete structure was fabricated via a traditional heterogeneous paper-making process. CNF played crucial roles in optimizing the pore structure and improving the wettability of PI-CPM-PI separator. The effects of composition on separator properties were investigated and the results indicated that the optimal compositions were 0.5 wt% CNF, 0.5 wt% PMIA chopped fiber/PPTA pulp (ratio of 5:5), 0.05 wt% diatomite and 1.5 wt% polyimide. Relevant tests demonstrated that the performance advantages of PI-CPM-PI separators were exhibited at the wettability and thermal stability compared to the commercial separator (PP). Additionally, batteries assembled with PI-CPM-PI separators showed excellent electrochemical and cycling performance (ionic conductivity of 1.041 mS.cm-1, the first discharge capacity of 158.2 mAh.g-1 at 0.2C and capacity retention ratio of 99.76 % after 100 cycles).
Collapse
Affiliation(s)
- Xin Liu
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Menghua Qin
- College of Chemistry and Chemical Engineering, TaiShan University, Taian 271000, China
| | - Wei Sun
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Dailiang Zhang
- College of Chemistry and Chemical Engineering, TaiShan University, Taian 271000, China
| | - Binbin Jian
- Lithium Battery Product Quality Supervision and Inspection Center, Zaozhuang 277000, China
| | - Zhonghua Sun
- College of Chemistry and Chemical Engineering, TaiShan University, Taian 271000, China.
| | - Shujie Wang
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Xiang Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| |
Collapse
|
10
|
Recent advances in lignin-based carbon materials and their applications: A review. Int J Biol Macromol 2022; 223:980-1014. [PMID: 36375669 DOI: 10.1016/j.ijbiomac.2022.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.
Collapse
|
11
|
Sun X, Chen Y, Li Y, Luo F. Biomass Alginate Derived Oxygen-Enriched Carbonaceous Materials with Partially Graphitic Nanolayers for High Performance Anodes in Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:82. [PMID: 36615992 PMCID: PMC9824850 DOI: 10.3390/nano13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Lithium-ion batteries with high reversible capacity, high-rate capability, and extended cycle life are vital for future consumer electronics and renewable energy storage. There is a great deal of interest in developing novel types of carbonaceous materials to boost lithium storage properties due to the inadequate properties of conventional graphite anodes. In this study, we describe a facile and low-cost approach for the synthesis of oxygen-doped hierarchically porous carbons with partially graphitic nanolayers (Alg-C) from pyrolyzed Na-alginate biopolymers without resorting to any kind of activation step. The obtained Alg-C samples were analyzed using various techniques, such as X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope, to determine their structure and morphology. When serving as lithium storage anodes, the as-prepared Alg-C electrodes have outstanding electrochemical features, such as a high-rate capability (120 mAh g-1 at 3000 mA g-1) and extended cycling lifetimes over 5000 cycles. The post-cycle morphologies ultimately provide evidence of the distinct structural characteristics of the Alg-C electrodes. These preliminary findings suggest that alginate-derived carbonaceous materials may have intensive potential for next-generation energy storage and other related applications.
Collapse
Affiliation(s)
- Xiaolei Sun
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Chen
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Li
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. MATERIALS HORIZONS 2022; 9:2914-2948. [PMID: 36226580 DOI: 10.1039/d2mh00879c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.
Collapse
Affiliation(s)
- Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| | - Seyed Vahid Ebadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, I-16146 Genova, Italy
| | - Ahmad Bagheri
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universitate Dresden, Dresden 01062, Germany
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, Smart Materials, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Lignin as a High-Value Bioaditive in 3D-DLP Printable Acrylic Resins and Polyaniline Conductive Composite. Polymers (Basel) 2022; 14:polym14194164. [PMID: 36236112 PMCID: PMC9572831 DOI: 10.3390/polym14194164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022] Open
Abstract
With increasing environmental awareness, lignin will play a key role in the transition from the traditional materials industry towards sustainability and Industry 4.0, boosting the development of functional eco-friendly composites for future electronic devices. In this work, a detailed study of the effect of unmodified lignin on 3D printed light-curable acrylic composites was performed up to 4 wt.%. Lignin ratios below 3 wt.% could be easily and reproducibly printed on a digital light processing (DLP) printer, maintaining the flexibility and thermal stability of the pristine resin. These low lignin contents lead to 3D printed composites with smoother surfaces, improved hardness (Shore A increase ~5%), and higher wettability (contact angles decrease ~19.5%). Finally, 1 wt.% lignin was added into 3D printed acrylic resins containing 5 wt.% p-toluensulfonic doped polyaniline (pTSA-PANI). The lignin/pTSA-PANI/acrylic composite showed a clear improvement in the dispersion of the conductive filler, reducing the average surface roughness (Ra) by 61% and increasing the electrical conductivity by an order of magnitude (up to 10-6 S cm-1) compared to lignin free PANI composites. Thus, incorporating organosolv lignin from wood industry wastes as raw material into 3D printed photocurable resins represents a simple, low-cost potential application for the design of novel high-valued, bio-based products.
Collapse
|
14
|
Beaucamp A, Muddasar M, Crawford T, Collins MN, Culebras M. Sustainable lignin precursors for tailored porous carbon-based supercapacitor electrodes. Int J Biol Macromol 2022; 221:1142-1149. [PMID: 36115449 DOI: 10.1016/j.ijbiomac.2022.09.097] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022]
Abstract
Sustainable materials are attracting a lot of attention since they will be critical in the creation of the next generation of products and devices. In this study, hydrogels were effectively synthesized utilizing lignin, a non-valorised biopolymer from the paper industry. This study proposes a method based on utilizing lignin to create highly swollen hydrogels using poly(ethylene) glycol diglycidyl ether (PEGDGE) as a crosslinking agent. The influence of different crosslinker ratios on the structural and chemical properties of the resultant hydrogels was investigated. Pore size was observed to be lowered when the amount of crosslinker was increased. The inclusion of additional hydrophilic groups in the hydrogel network decreased the swelling capacity of the hydrogels as the crosslinking density increases. These precursor materials were carbonised and electrochemically tested for application as electrodes for supercapacitors with capacitance characterized as a function of crosslinker ratio.
Collapse
Affiliation(s)
- Anne Beaucamp
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Muhammad Muddasar
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland; SFI Centre for Advanced Materials and BioEngineering Research, Ireland
| | - Tara Crawford
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Maurice N Collins
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland; SFI Centre for Advanced Materials and BioEngineering Research, Ireland.
| | - Mario Culebras
- Institute of Material Science, University of Valencia, Valencia, Spain.
| |
Collapse
|
15
|
Stanisz M, Klapiszewski Ł, Moszyński D, Stanisz BJ, Jesionowski T. Evaluation of cilazapril release profiles with the use of lignin-based spherical particles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Bai J, Feng Z, Huang L, Tang J, Wang Y, Wang S. Hardwood Kraft lignin-derived carbon microfibers with enhanced electrochemical performance. Int J Biol Macromol 2022; 220:733-742. [PMID: 36007695 DOI: 10.1016/j.ijbiomac.2022.08.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
It is of great challenge to prepare lignin-derived carbon microfibers with suitable graphite crystallites due to the volatilization of incorporated polymers. In this work, we proposed a simple method for the construction of graphite crystallites based on the regulation of the hydrogen-bonding interaction between hardwood Kraft lignin (HKL) and poly(m-phenylene isophthalamide) (PMIA). The strong hydrogen-bonding interaction demonstrated by the results of TG, FTIR, XPS, Raman and XRD increased the graphite crystal size and perfected the crystal structure of HKL-based carbon microfibers, which further enhanced the electrochemical performance of HKL/PMIA-based carbon microfibers electrodes, especially for the increase of capacitance and cycle performance and the decrease of charge transfer resistance. The specific capacitance, energy density and power density of P2H2-based (HKL/PMIA = 1:1) carbon microfibers electrode were up to 190.8 F g-1, 34.4 Wh kg-1 and 540 W kg-1 at a current density of 0.5 A g-1, respectively, which were comparable to or even higher than those of lignin composites-based carbon fibers electrodes. This work reveals the relationship between hydrogen-bonding interaction and crystalline structure, which can be further considered in the preparation of lignin-based carbon fibers electrodes.
Collapse
Affiliation(s)
- Jixing Bai
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zihao Feng
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shichao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
17
|
Muddasar M, Beaucamp A, Culebras M, Collins MN. Cellulose: Characteristics and applications for rechargeable batteries. Int J Biol Macromol 2022; 219:788-803. [PMID: 35963345 DOI: 10.1016/j.ijbiomac.2022.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/05/2022]
Abstract
Cellulose, an abundant natural polymer, has promising potential to be used for energy storage systems because of its excellent mechanical, structural, and physical characteristics. This review discusses the structural features of cellulose and describes its potential application as an electrode, separator, and binder, in various types of high-performing batteries. Various surface and structural characteristics of cellulose (e.g., fiber size, surface functional groups, the hierarchy of pores, and porosity levels) that contribute to its electrochemical performance are discussed. Cellulose structure/property/processing/function relationships are further focused and elucidated in terms of the latest developments in the emerging field of sustainable materials in Li-Ion, Na-Ion, and LiS batteries.
Collapse
Affiliation(s)
- Muhammad Muddasar
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Ireland
| | - A Beaucamp
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mario Culebras
- Institute of Material Science, University of Valencia, Valencia, Spain
| | - Maurice N Collins
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, Ireland.
| |
Collapse
|
18
|
Chen ZS, Yan M, Pei W, Yan B, Huang C, Chan HYE. Lignin-carbohydrate complexes suppress SCA3 neurodegeneration via upregulating proteasomal activities. Int J Biol Macromol 2022; 218:690-705. [PMID: 35872311 DOI: 10.1016/j.ijbiomac.2022.07.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023]
Abstract
Lignin-carbohydrate complexes (LCCs) represent a group of macromolecules with diverse biological functions such as antioxidative properties. Polyglutamine (polyQ) diseases such as spinocerebellar ataxia type 3 (SCA3) comprise a set of neurodegenerative disorders characterized by the formation of polyQ protein aggregates in patient neurons. LCCs have been reported to prevent such protein aggregation. In this study, we identified a potential mechanism underlying the above anti-protein aggregation activity. We isolated and characterized multiple LCC fractions from bamboo and poplar and found that lignin-rich LCCs (BM-LCC-AcOH and PR-LCC-AcOH) effectively eliminated both monomeric and aggregated mutant ataxin-3 (ATXN3polyQ) proteins in neuronal cells and a Drosophila melanogaster SCA3 disease model. In addition, treatment with BM-LCC-AcOH or PR-LCC-AcOH rescued photoreceptor degeneration in vivo. At the mechanistic level, we demonstrated that BM-LCC-AcOH and PR-LCC-AcOH upregulated proteasomal activity. When proteasomal function was impaired, the ability of the LCCs to suppress ATXN3polyQ aggregation was abolished. Thus, we identified a previously undescribed proteasome-inducing function of LCCs and showed that such activity is indispensable for the beneficial effects of LCCs on SCA3 neurotoxicity.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mingqi Yan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
19
|
Zhong Y, Wang T, Yan M, Miao C, Zhou X, Tong G. High-value utilization of bamboo pulp black liquor lignin: Preparation of silicon-carbide derived materials and its application. Int J Biol Macromol 2022; 217:66-76. [PMID: 35835306 DOI: 10.1016/j.ijbiomac.2022.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
The black liquor of bamboo pulp contains a large amount of silicon, which makes it difficult to separate industrial lignin, thus hindering its high-value utilization. Herein, this paper dedicates to exploring the high-value use of silica-containing lignin. Tetraethyl silicate (TEOS) was added to the above silicon-containing lignin for crosslinking with the lignin to prevent disintegration during carbonization and provide an additional source of silica. The carbonization is carried out at 600 °C (LT-6), 900 °C (LT-9) and 1200 °C (LT-12), and the structural evolution of SiOxCy is innovatively analyzed. The results show that LT-9 is dominated by the SiO3C structure and has a specific surface area of 269 m2 g-1. The specific capacitance of LT-9 and LT-12 as supercapacitors electrodes is 78.6 F g-1 and 74.8 F g-1 at a current density of 1 A g-1, and remains 95 % and 91.7 % after 10,000 cycles. Moreover, LT-9 has a high yield of 54 %. In this work, silicon-containing lignin is exploratively prepared as a silicon-carbide-derived material. Furthermore, the potential relationship between different SiOxCy molecular structures and electrochemical performance is evaluated, which is instructive for the high-value utilization of black liquor in bamboo pulp.
Collapse
Affiliation(s)
- Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
20
|
Jia G, Zhou Z, Wang Q, Innocent MT, Wang S, Hu Z, Wang X, Xiang H, Zhu M. Effect of pre-oxidation temperature and heating rate on the microstructure of lignin carbon fibers. Int J Biol Macromol 2022; 216:388-396. [DOI: 10.1016/j.ijbiomac.2022.06.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
|
21
|
Yu M, Guo Y, Wang X, Zhu H, Li W, Zhou J. Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications. Int J Biol Macromol 2022; 208:782-793. [PMID: 35367268 DOI: 10.1016/j.ijbiomac.2022.03.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/18/2023]
Abstract
The capture of radioactive iodine has recently attracted much attention due to the release of radioactive iodine during nuclear waste disposal and disasters. Exploring highly efficient, sustainable, and eco-friendly materials for capturing radioactive iodine has great significance in developing safe nuclear energy. We reported highly efficient, natural, lignin-based, electrospun nanofibers (LNFs) for reversible radioiodine capture. Abundant iodine adsorption sites, such as functional groups and the interaction between the intermolecular forces exist in LNFs. The capacity of the LNFs for the saturated adsorption of iodine was found to be 220 mg·g-1, which is higher than that of the majority of bio-based adsorbents studied. Moreover, the LNFs exhibited an excellent recycling behavior, and their absorption capacity remained at 84.72% after 10 recycles. Therefore, the results imply that the lignin-based nanofibers can act as a natural, sustainable and eco-friendly packed material for the purification columns in industrial applications. The results demonstrate that the novel, nanostructured, natural biomass, as an ideal candidate has the potential for practical nuclear wastewater purification.
Collapse
Affiliation(s)
- Mengtian Yu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongwei Zhu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Laboratory of Pulp and Papermaking Engineering, Yueyang Forest & Paper Co. Ltd., Hunan 414002, China
| | - Wenchao Li
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
22
|
Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities. Int J Biol Macromol 2022; 199:201-211. [PMID: 34995658 DOI: 10.1016/j.ijbiomac.2021.12.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022]
Abstract
It is difficult for green sustainable lignin-based materials to simultaneously obtain efficient electromagnetic wave absorption (EMWA) and supercapacitive energy storage (SCES), which has not yet been reported. Herein, the light-weight lignin-based carbon nanofibers (LCNFs) with proper pore size, well graphitization degree, and heteroatom doping were tailored through electrospinning and carbonization processes. Interestingly, the graphitization degree and porous structure of LCNFs could be easily adjusted by changing the activating temperature, and the higher conductivity was achieved for preparing LCNFs at higher activating temperature due to the differences in the crystal size and activating degree of LCNFs. As a result, in the field of EMWA, the LCNFs-950 exhibited the minimum reflection loss (RL) value was -41.4 dB and the absorbing frequency was 9.05 GHz at 2.5 mm thickness, which meant this absorbent could absorb and/or dissipate more than 99.9% of incident electromagnetic wave (EMW). Furthermore, the LCNFs-950 also exhibited excellent SCES ability. In two-electrode system, the optimal LCNFs-950 symmetric supercapacitor specific capacitance reached 139.4 F/g at a current density of 0.5 A/g, meanwhile, the energy density was 41.4 Wh/kg at a power density of 3500 W/Kg. These multifunctional features of LCNFs will be highly promising for the next-generation environmental remediating materials.
Collapse
|
23
|
Chauhan PS, Agrawal R, Satlewal A, Kumar R, Gupta RP, Ramakumar SSV. Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis. Int J Biol Macromol 2022; 197:179-200. [PMID: 34968542 DOI: 10.1016/j.ijbiomac.2021.12.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The pulp and biorefining industries produce their waste as lignin, which is one of the most abundant renewable resources. So far, lignin has been remained severely underutilized and generally burnt in a boiler as a low-value fuel. To demonstrate lignin's potential as a value-added product, we will review market opportunities for lignin related applications by utilizing the thermo-chemical/biological depolymerization strategies (with or without catalysts) and their comparative evaluation. The application of lignin and its derived aromatics in various sectors such as cement industry, bitumen modifier, energy materials, agriculture, nanocomposite, biomedical, H2 source, biosensor and bioimaging have been summarized. This comprehensive review article also highlights the technical, economic, environmental, and socio-economic variable that affect the market value of lignin-derived by-products. The review shows the importance of lignin, and its derived products are a platform for future bioeconomy and sustainability.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ruchi Agrawal
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India; TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gurugram, India.
| | - Alok Satlewal
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravindra Kumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravi P Gupta
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
24
|
Kizzire DG, García‐Negrón V, Harper DP, Keffer DJ. Local Structure Analysis and Modelling of Lignin-Based Carbon Composites through the Hierarchical Decomposition of the Radial Distribution Function. ChemistryOpen 2022; 11:e202100220. [PMID: 35174668 PMCID: PMC8850997 DOI: 10.1002/open.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Carbonized lignin has been proposed as a sustainable and domestic source of activated, amorphous, graphitic, and nanostructured carbon for many industrial applications as the structure can be tuned through processing conditions. However, the inherent variability of lignin and its complex physicochemical structure resulting from feedstock and pulping selection make the Process-Structure-Property-Performance (PSPP) relationships hard to define. In this work, radial distribution functions (RDFs) from synchrotron X-ray and neutron scattering of lignin-based carbon composites (LBCCs) are investigated using the Hierarchical Decomposition of the Radial Distribution Function (HDRDF) modelling method to characterize the local atomic environment and develop quantitative PSPP relationships. PSPP relationships for LBCCs defined by this work include crystallite size dependence on lignin feedstock as well as increasing crystalline volume fraction, nanoscale composite density, and crystallite size with increasing reduction temperature.
Collapse
Affiliation(s)
- Dayton G. Kizzire
- Materials Science and Engineering DepartmentUniversity of Tennessee, Knoxville1508 Middle DrKnoxvilleTN37996USA
| | - Valerie García‐Negrón
- Sustainable Biofuels and Co-Products Research UnitUSDA – Agricultural Research Service/Eastern Regional Research Center600 East Mermaid LaneWyndmoorPA19038USA
| | - David P. Harper
- The Center for Renewable Carbon – UT Institute of AgricultureUniversity of Tennessee, Knoxville2506 Jacob DrKnoxvilleTN37996USA
| | - David J. Keffer
- Materials Science and Engineering DepartmentUniversity of Tennessee, Knoxville1508 Middle DrKnoxvilleTN37996USA
| |
Collapse
|
25
|
Ovejero-Pérez A, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Organosolv and ionosolv processes for autohydrolyzed poplar fractionation: Lignin recovery and characterization. Int J Biol Macromol 2022; 197:131-140. [PMID: 34971638 DOI: 10.1016/j.ijbiomac.2021.12.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/05/2022]
Abstract
Biomass fractionation plays a major role in the search for competitive biorefineries, where the isolation and recovery of the three woody fractions is key. In this sense, we have used autohydrolyzed hemicellulose-free poplar as feedstock to compare two fractionation processes, organosolv and ionosolv, oriented to lignin recovery. The recovered lignins were then characterize by different techniques (NMR, GPC, TGA). Both treatments were tested at different temperatures to analyze temperature influence on lignin recovery and properties. The highest lignin recovery was obtained with the ionosolv process at 135 °C, reaching a solid yield of ~70%. Lignin characterization showed differences between both treatments. Lignins enriched in C-O linkages and G units were recovered with the organosolv process, where increasing temperature led to highly depolymerized lignins. However, lignins with higher C-C linkages and S units contents were obtained with the ionosolv process, producing more thermically stable lignins. In addition, increasing temperature caused lignin repolymerization when employing ionic liquids as solvents. Therefore, this work outlines the most important differences between ionosolv and organosolv processes for biomass fractionation, focusing on lignin recovery and its properties, which is the first step in order to valorize all biomass fractions.
Collapse
Affiliation(s)
- Antonio Ovejero-Pérez
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain.
| | - Victoria Rigual
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - Juan Carlos Domínguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - M Virginia Alonso
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - Mercedes Oliet
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| | - Francisco Rodriguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid, Av Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
26
|
Developing highly transparent yet ultraviolet blocking fully biocomposite films based on chitin and lignin using ethanol/water as processing solvents. Int J Biol Macromol 2022; 201:308-317. [PMID: 35026219 DOI: 10.1016/j.ijbiomac.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/28/2021] [Accepted: 01/01/2022] [Indexed: 11/21/2022]
Abstract
Developing fully biobased products with functionality in a green fashion is highly desirable to meet the increasing demand for environmental sustainability and mitigate "white pollution" by petroleum-based counterparts. Here, chitin from shrimp shells was propionylated to obtain chitin propionate (CP) with significantly improved solubility in organic solvents, organosolv lignin (OSL) was extracted from the forest harvest residuals. The fully biobased composite consisting of CP as a matrix and OSL as a UV-blocker were successfully prepared using acidic ethanol/water as a green processing solvent. The results indicated that the 5% OSL addition enabled the CP film to block approximately 98% UV light while allowing 71% visible light transmittance; tensile and thermal properties were also retained. Nearly 100% UV light was blocked with 20% OSL addition, but visible light transmittance was moderately sacrificed. This study provides an alternative solution to produce novel fully biobased films with high transparency yet excellent UV protection for potential packaging applications.
Collapse
|
27
|
Wang Y, Hou J, Huang Y, Fu Y. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties. Int J Biol Macromol 2022; 194:1002-1009. [PMID: 34852261 DOI: 10.1016/j.ijbiomac.2021.11.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Polylactic acid (PLA) is increasingly being considered as an ideal biodegradable candidate to replace petroleum-based polymers. However, its practical applications are often hampered by the poor mechanical robustness and solo functionality. Herein, based on the mechanical property improvement of PLA we proposed a simple process of assembling lignin-hybridized modifier and PLA matrix, as opposed to the traditional trade-off between mechanical strength and functionality, while anchoring a biofluorescent moiety onto lignin surfaces. Specifically, the fluorophore group could act as interfacial compatibilizer of complex and facilitate the shape-tailored hybrids for promoting functionality flexibility. With the bimetallic hetero-particles, the preferable lignin-assembled complex could be controllably configured as an antibacterial, fluorophore and photothermal agent. Thus, mechanical enhancement, fluorescence introduction and favorable photothermal ability of the resulting PLA composites were successfully achieved for integrated unification of structural robustness, geometric integrity and functional multiplicity, which was never seen in the other reports. The results showed that PLA composites containing 5 wt% modified lignin, 10 wt% zinc oxide, and 5 wt% silver presented excellent mechanical, fluorescent, photothermal conversion properties. By controlling the ZnO content and morphology, strong inhibition of Escherichia coli (Gram-negative) than that of Staphylococcus Aureus (Gram-positive) was also observed. The flake-shaped ZnO /Ag hybrids contributed to better overall performance of PLA composites than the rod-shaped ZnO/Ag. In this work we developed a facile strategy to assemble a bioderived fluorophore with lignin particles for constructing a structure-controlled complex as a multitasking modifier, featuring mechanical unity and functional adaptability. Specifically, the lignin reinforcement and bimetallic hybrids with different morphologies were explored as an effective fluorophore, antibacterial and photothermal agent. Through multiple dehydration reactions, a conjugating fluorophore was successfully grafted on lignin surfaces to serve as an interface modifier without physical changing its structural robustness. And morphology-tailored hybrid was advantageously immobilized on predefined hetero-particle carrier of fluorescent lignin and endowed composites with desirable antimicrobial properties. The developed strategy would expand the functional applications of PLA materials in food packaging, biopharmaceuticals and simple fluorescent anti-counterfeiting.
Collapse
Affiliation(s)
- Yongqin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jie Hou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yangze Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
28
|
Du B, Wang X, Chai L, Wang X, Pan Z, Chen X, Zhou J, Sun RC. Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes. Int J Biol Macromol 2022; 194:632-643. [PMID: 34822819 DOI: 10.1016/j.ijbiomac.2021.11.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023]
Abstract
Recently, the high-value utilization of food wastes has attracted great interest in sustainable development. Focusing on the major application of electrochemical energy storage (ECES), light-weight lignin-based carbon nanofibers (LCNFs) were controllably fabricated as supercapacitors from melon seed shells (MSS) and peanut shells (PS) through electrospinning and carbonizing processes. As a result, the optimal specific capacitance of 533.7 F/g in three-electrode system, energy density of 69.7 Wh/kg and power density of 780 W/Kg in two-electrode system were achieved. Surprisingly, the LCNFs also presented a satisfied electromagnetic absorption property: The minimum reflection loss (RL) value reached -37.2 dB at an absorbing frequency of 7.98 GHz with an effective frequency (RL < 10 dB) of 2.24 GHz (6.88 to 9.12 GHz) at a thickness of 3.0 mm. These features make the multifunctional LCNFs highly attractive for light-weight supercapacitor electrodes and electromagnetic wave absorbers applications.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Lanfang Chai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zheng Pan
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaohong Chen
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
29
|
Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: A review. CHEMOSPHERE 2021; 280:130723. [PMID: 34162084 DOI: 10.1016/j.chemosphere.2021.130723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The automotive industry is directly affected by the shortage of fossil fuels and the excessive pollution resulting from crude oil-based fuels has many adverse effects on the environment. The search for a greener and sustainable source of materials and fuels to power automobiles has ultimately led to the usage of biomass and biobased sources as the main precursor due to its graft availability and renewability. Biobased fuels developed have been shown to easily blend in with the existing automobile engines and to provide sustainable performance. Similarly, the usage of various biobased polymers, plastics, and composite materials as the structural materials for the construction of automobiles instead of crude oil sources have shown to be invaluable. The powering of automobiles with electricity is the future of the transportation industry to address the greenhouse gas emissions caused by fossil fuels. Hence, biobased lithium-ion batteries and supercapacitors have started to enter the mid-sized automotive industry. However, extensive commercialization of biobased products application in the automotive sector is underdeveloped. Hence it is customary to assess the various drawbacks of using biobased materials and identify the correct pathway for new research and development in this field. Therefore, this review covers various applications of biobased products in the automotive industries and mentions the active researches going on in this field to replace petroleum and crude oil-based sources with biobased sources.
Collapse
Affiliation(s)
- S M Prasanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - S Harish
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - M Rishikesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering University of Saskatchewan, Saskatchewan, S7N 5A9, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
30
|
Sustainable design of lignin-based spherical particles with the use of green surfactants and its application as sorbents in wastewater treatment. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Bai J, Wang S, Li Y, Wang Z, Tang J. Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers. Int J Biol Macromol 2021; 187:594-602. [PMID: 34324906 DOI: 10.1016/j.ijbiomac.2021.07.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Unlocking the effects of chemical structure and molecular weight of lignin on the properties of carbonized fiber can accelerate the development of lignin-based carbon fiber which was mainly limited by its complex structure. Hardwood kraft lignins (HKLs) with different structures and molecular weights prepared via heat treatment and fractionation processes were spun into ultrafine fibers using electrospinning technique at the assistance of 1 wt% polyoxyethylene (PEO), which was further removed during the carbonization process to eliminate the potential impacts. The structure and molecular weight of HKLs together with their influences on the thermal behavior, fiber morphology, crystal structure and mechanical performance of HKLs ultrafine fibers or carbonized ultrafine fibers were systemically investigated to provide an elaborate knowledge on the relationship between physico-chemical structure and properties of HKLs ultrafine fibers. Results suggest that a high molecular weight of HKL is beneficial to the formation of graphite-like crystallite, and the formed graphite-like crystallite and condensed structure of HKLs are crucial for the improvement of the mechanical performance of carbonized ultrafine fibers.
Collapse
Affiliation(s)
- Jixing Bai
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shichao Wang
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yajun Li
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhe Wang
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
32
|
Jędrzejczak P, Collins MN, Jesionowski T, Klapiszewski Ł. The role of lignin and lignin-based materials in sustainable construction - A comprehensive review. Int J Biol Macromol 2021; 187:624-650. [PMID: 34302869 DOI: 10.1016/j.ijbiomac.2021.07.125] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
The construction industry in the 21st century faces numerous global challenges associated with growing concerns for the environment. Therefore, this review focuses on the role of lignin and its derivatives in sustainable construction. Lignin's properties are defined in terms of their structure/property relationships and how structural differences arising from lignin extraction methods influence its application within the construction sector. Lignin and lignin composites allow the partial replacement of petroleum products, making the final materials and the entire construction sector more sustainable. The latest technological developments associated with cement composites, rigid polyurethane foams, paints and coatings, phenolic or epoxy resins, and bitumen replacements are discussed in terms of key engineering parameters. The application of life cycle assessment in construction, which is important from the point of view of estimating the environmental impact of various solutions and materials, is also discussed.
Collapse
Affiliation(s)
- Patryk Jędrzejczak
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland
| | - Maurice N Collins
- School of Engineering and Bernal Institute, University of Limerick, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), University of Limerick, Ireland
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland.
| |
Collapse
|
33
|
Baloch M, Labidi J. Lignin biopolymer: the material of choice for advanced lithium-based batteries. RSC Adv 2021; 11:23644-23653. [PMID: 35479805 PMCID: PMC9036608 DOI: 10.1039/d1ra02611a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Lignin, an aromatic polymer, offers interesting electroactive redox properties and abundant active functional groups. Due to its quinone functionality, it fulfils the requirement of erratic electrical energy storage by only providing adequate charge density. Research on the use of lignin as a renewable material in energy storage applications has been published in the form of reviews and scientific articles. Lignin has been used as a binder, polymer electrolyte and an electrode material, i.e. organic composite electrodes/hybrid lignin-polymer combination in different battery systems depending on the principal charge of quinone and hydroquinone. Furthermore, lignin-derived carbons have gained much popularity. The aim of this review is to depict the meticulous follow-ups of the vital challenges and progress linked to lignin usage in different lithium-based conventional and next-generation batteries as a valuable, ecological and low-cost material. The key factor of this new finding is to open a new path towards sustainable and renewable future lithium-based batteries for practical/industrial applications.
Collapse
Affiliation(s)
- Marya Baloch
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, School of Engineering Donostia-San Sebastian Gipuzkoa Spain
| |
Collapse
|
34
|
Banitaba SN, Ehrmann A. Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers (Basel) 2021; 13:1741. [PMID: 34073391 PMCID: PMC8197972 DOI: 10.3390/polym13111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemical devices convert chemical reactions into electrical energy or, vice versa, electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for production and storage of renewable energies. This review sheds light on recent developments in the area of electrospun electrochemical devices, new materials, techniques, and applications. Starting with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries, fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The paper concentrates on the advantages of electrospun nanofiber mats for these applications which are mostly based on their high specific surface area and the possibility to tailor morphology and material properties during the spinning and post-treatment processes. It is shown that several research areas dealing with electrospun parts of electrochemical devices have already reached a broad state-of-the-art, while other research areas have large space for future investigations.
Collapse
Affiliation(s)
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
35
|
Huang J, Liu W, Qiu X, Tu Z, Li J, Lou H. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites. Int J Biol Macromol 2021; 183:1450-1458. [PMID: 33974926 DOI: 10.1016/j.ijbiomac.2021.04.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
In this work, the coordination-based energy sacrificial bonds have been constructed in the interphase between lignin and polyolefin elastomer to prepare high performance lignin-based thermoplastic elastomers (TPEs). The strength and toughness of lignin-based TPEs can be adjusted by choosing different nitrogen heterocyclic compounds as reactive assistants and Fe3+ or Zn2+ as metal coordination centers. It was demonstrated that 3-Amino-1,2,4-triazole with three nitrogen atoms in the heterocyclic ring and one nitrogen branch chain could form the most efficient coordination bond system and generate the best mechanical performance. The system with ferric iron as coordination center exhibited better enhancement effect than divalent zinc. By adjusting the nitrogen-containing reactive additives or metal salts as coordination centers, the mechanical performance of the lignin-based TPE can be regulated, which provides a method for making green bio-composites with good strength and toughness, and also promotes the high value utilization of lignin in polymer materials.
Collapse
Affiliation(s)
- Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Zhikai Tu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Jinxing Li
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| |
Collapse
|
36
|
Shi X, Mai X, Wei R, Ma Y, Naik N, He Z, Chen Y, Wang C, Dong B, Guo Z. Removing Pb2+ and As(V) from polluted water by highly reusable Fe-Mg metal-organic complex adsorbent. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Al Rai A, Yanilmaz M. High-performance nanostructured bio-based carbon electrodes for energy storage applications. CELLULOSE (LONDON, ENGLAND) 2021; 28:5169-5218. [PMID: 33897123 PMCID: PMC8053374 DOI: 10.1007/s10570-021-03881-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/10/2021] [Indexed: 06/01/2023]
Abstract
Polyacrylonitrile (PAN)-based carbon precursor is a well-established and researched material for electrodes in energy storage applications due to its good physical properties and excellent electrochemical performance. However, in the fight of preserving the environment and pioneering renewable energy sources, environmentally sustainable carbon precursors with superior electrochemical performance are needed. Therefore, bio-based materials are excellent candidates to replace PAN as a carbon precursor. Depending on the design requirement (e.g. carbon morphology, doping level, specific surface area, pore size and volume, and electrochemical performance), the appropriate selection of carbon precursors can be made from a variety of biomass and biowaste materials. This review provides a summary and discussion on the preparation and characterization of the emerging and recent bio-based carbon precursors that can be used as electrodes in energy storage applications. The review is outlined based on the morphology of nanostructures and the precursor's type. Furthermore, the review discusses and summarizes the excellent electrochemical performance of these recent carbon precursors in storage energy applications. Finally, a summary and outlook are also given. All this together portrays the promising role of bio-based carbon electrodes in energy storage applications.
Collapse
Affiliation(s)
- Adel Al Rai
- Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, 34469 Turkey
| | - Meltem Yanilmaz
- Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, 34469 Turkey
- Textile Engineering, Istanbul Technical University, Istanbul, 34469 Turkey
| |
Collapse
|
38
|
Powell MD, LaCoste JD, Fetrow CJ, Fei L, Wei S. Bio‐derived nanomaterials for energy storage and conversion. NANO SELECT 2021. [DOI: 10.1002/nano.202100001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Matthew Dalton Powell
- Department of Chemical and Biological Engineering University of New Mexico Albuquerque New Mexico USA
| | - Jed Donavan LaCoste
- Department of Chemical Engineering Institute for Materials Research and Innovations University of Louisiana at Lafayette Lafayette Louisiana USA
| | - Christopher James Fetrow
- Department of Chemical and Biological Engineering University of New Mexico Albuquerque New Mexico USA
| | - Ling Fei
- Department of Chemical Engineering Institute for Materials Research and Innovations University of Louisiana at Lafayette Lafayette Louisiana USA
| | - Shuya Wei
- Department of Chemical and Biological Engineering University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
39
|
Culebras M, Pishnamazi M, Walker GM, Collins MN. Facile Tailoring of Structures for Controlled Release of Paracetamol from Sustainable Lignin Derived Platforms. Molecules 2021; 26:1593. [PMID: 33805704 PMCID: PMC8000009 DOI: 10.3390/molecules26061593] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Nowadays, sustainable materials are receiving significant attention due to the fact that they will be crucial for the development of the next generation of products and devices. In the present work, hydrogels have been successfully synthesized using lignin which is non-valorized biopolymer from the paper industry. Hydrogels were prepared via crosslinking with Poly(ethylene) glycol diglycidyl ether (PEGDGE). Different crosslinker ratios were used to determine their influence on the structural and chemical properties of the resulting hydrogels. It has been found that pore size was reduced by increasing crosslinker amount. The greater crosslinking density increased the swelling capacity of the hydrogels due to the presence of more hydrophilic groups in the hydrogel network. Paracetamol release test showed higher drug diffusion for hydrogels produced with a ratio lignin:PEGDGE 1:1. The obtained results demonstrate that the proposed approach is a promising route to utilize lignocellulose waste for producing porous materials for advanced biomedical applications in the pharmacy industry.
Collapse
Affiliation(s)
- Mario Culebras
- Stokes Laboratories, School of Engineering, Bernal Institute and AMBER, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Mahboubeh Pishnamazi
- Pharmaceutical Centre (SSPC), University of Limerick, V94 T9PX Limerick, Ireland; (M.P.); (G.M.W.)
| | - Gavin M. Walker
- Pharmaceutical Centre (SSPC), University of Limerick, V94 T9PX Limerick, Ireland; (M.P.); (G.M.W.)
| | - Maurice N. Collins
- Stokes Laboratories, School of Engineering, Bernal Institute and AMBER, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
40
|
Wan X, Shen F, Hu J, Huang M, Zhao L, Zeng Y, Tian D, Yang G, Zhang Y. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor. Int J Biol Macromol 2021; 180:51-60. [PMID: 33727185 DOI: 10.1016/j.ijbiomac.2021.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023]
Abstract
To convert lignin into high-valued carbon materials and understand the lignin structure function, oxidized lignin, a by-product from lignocellulose PHP-pretreatment (phosphoric acid plus hydrogen peroxide), was carbonized by one-step KOH-activation; the physico-chemical characteristics and electrochemical performances of the harvested carbons were also investigated. Results indicated the resultant carbons displayed 3-dimensional hierarchical porous morphology with maximum specific surface area of 3094 m2 g-1 and pore volume of 1.72 cm3 g-1 using 3:1 KOH/lignin ratio for carbonization. Three-electrode determination achieved a specific capacitance of 352.9 F g-1 at a current of 0.5 A g-1, suggesting a superior rate performance of this carbon. Two-electrode determination obtained an excellent energy density of 9.5 W h kg-1 at power density of 25.0 W kg-1. Moreover, 5000 cycles of charge/discharge reached 88.46% retention at 5 A g-1, implying an outstanding cycle stability. Basically, low molecular weight and abundant oxygen-containing functional groups of employed lignin mainly related to the excellent porous morphology and the outstanding electrochemical performances, suggesting the oxidized lignin was an ideal precursor to facilely prepare activated carbon for high-performance supercapacitor. Overall, this work provides a new path to valorize lignin by-product derived from oxidative pretreatment techniques, which can further promote the integrality of lignocellulose biorefinery.
Collapse
Affiliation(s)
- Xue Wan
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary T2N 4H9, Canada
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
41
|
Serafin A, Murphy C, Rubio MC, Collins MN. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111927. [DOI: 10.1016/j.msec.2021.111927] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
|
42
|
Culebras M, Barrett A, Pishnamazi M, Walker GM, Collins MN. Wood-Derived Hydrogels as a Platform for Drug-Release Systems. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:2515-2522. [PMID: 34306837 PMCID: PMC8296679 DOI: 10.1021/acssuschemeng.0c08022] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Indexed: 05/04/2023]
Abstract
Wood (cellulose and lignin)-based hydrogels were successfully produced as platforms for drug-release systems. Viscoelastic and cross-linking behaviors of precursor solutions were tuned to produce highly porous hydrogel architectures via freeze-drying. Pore sizes in the range of 100-160 μm were obtained. Varying lignin molecular structure played a key role in tailoring swelling and mechanical performance of these gels with organosolv-type lignin showing optimum properties due to its propensity for intermolecular cross-linking, achieving a compressive modulus around 11 kPa. Paracetamol was selected as a standard drug for release tests and its release rate was improved with the presence of lignin (50% more compared to pure cellulose hydrogels). This was attributed to a reduction in molecular interactions between paracetamol and cellulose. These results highlight the potential for the valorization of lignin as a platform for drug-release systems.
Collapse
Affiliation(s)
- Mario Culebras
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Plassy Technological Park, Limerick V94 T9PX, Ireland
| | - Anthony Barrett
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Plassy Technological Park, Limerick V94 T9PX, Ireland
| | - Mahboubeh Pishnamazi
- Department
of Chemical Sciences, Bernal Institute, Synthesis and Solid State
Pharmaceutical Centre (SSPC), University
of Limerick, Plassy Technological
Park, Limerick V94 T9PX, Ireland
| | - Gavin Michael Walker
- Department
of Chemical Sciences, Bernal Institute, Synthesis and Solid State
Pharmaceutical Centre (SSPC), University
of Limerick, Plassy Technological
Park, Limerick V94 T9PX, Ireland
| | - Maurice N. Collins
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Plassy Technological Park, Limerick V94 T9PX, Ireland
- Health
Research Institute, University of Limerick, Plassy Technological Park, Limerick V94 T9PX, Ireland
| |
Collapse
|
43
|
Salem KS, Naithani V, Jameel H, Lucia L, Pal L. Lignocellulosic Fibers from Renewable Resources Using Green Chemistry for a Circular Economy. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000065. [PMID: 33552552 PMCID: PMC7857128 DOI: 10.1002/gch2.202000065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Indexed: 06/01/2023]
Abstract
The sustainable development of lignocellulose fibers exhibits significant potential to supplant synthetic polymer feedstocks and offers a global platform for generating sustainable packaging, bioplastics, sanitary towels, wipes, and related products. The current research explores the dynamics of fiber production from wood, non-wood, and agro-residues using carbonate hydrolysis and a mild kraft process without bleaching agents. With respect to carbonate hydrolysis, high yield, and good coarseness fibers are attained using a simple, low-cost, and ecofriendly process. Fibers produced using a mild kraft process have lower Klason lignin, carboxyl content, surface charges, and higher fiber length, and crystallinity. Eucalyptus fibers show the highest crystallinity while softwood carbonate fibers show the lowest crystallinity. Hemp hurd fibers contain the highest concentration of hard-to-remove water, and thus, suffer maximum flattening visualized by the microscopic images. The relatively high yield sustainable fibers with versatile properties can provide a significant economic benefit since fiber is the dominant cost for producing various bioproducts to meet society's current and future needs.
Collapse
Affiliation(s)
- Khandoker S. Salem
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Ved Naithani
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Hasan Jameel
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Lucian Lucia
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Lokendra Pal
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| |
Collapse
|
44
|
Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance. Int J Biol Macromol 2021; 174:254-262. [PMID: 33529632 DOI: 10.1016/j.ijbiomac.2021.01.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Fabricating lignin-based carbon nanofibers (LCNFs) with the lignin in spent coffee grounds (SCG) as raw material which are disposed as waste amounting to millions tons annual is benefit to promote economy and environmental protection. However, due to the heterogeneity and complex three-dimensional structure, the mechanic property is very poor. In this study, we propose a fractionating pretreatment method to overcome the above problems by regulating the structure of SCG lignin in which high-performance LCNFs were fabricated. On one hand, the linear structure of SCG lignin was optimized to fit the raw material of LCNFs by tuning the content of β-O-4 and C5-substituted condensed phenolic compounds. On the other hand, the carboxyl as the hydrophilic groups was removed so as to promote the mixing of lignin and polyacrylonitrile (PAN, blending agent) in organic solvents. Additionally, the heterogeneity was reduced by screening large molecular weight SCG lignin with low polydispersity index (PDI). Fortunately, with 1:1 mass ratio of the above fractionated lignin and PAN as substrate, the LCNFs could reach to comparable mechanic properties with those of pure PAN CNFs. This work can provide a new way to not only promote the utilization of SCG lignin but also accelerate the development of LCNFs.
Collapse
|
45
|
Xue B, Yang Y, Tang R, Xue D, Sun Y, Li X. Efficient dissolution of lignin in novel ternary deep eutectic solvents and its application in polyurethane. Int J Biol Macromol 2020; 164:480-488. [DOI: 10.1016/j.ijbiomac.2020.07.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
|
46
|
Zhang L, Wei K, Yin J, Zhou J, Zhang L, Li J, Jiao T. Chemical Vapor Deposition-Assisted Fabrication of Self-Assembled Co/MnO@C Composite Nanofibers as Advanced Anode Materials for High-Capacity Li-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14342-14351. [PMID: 33205652 DOI: 10.1021/acs.langmuir.0c02691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing the nanostructure of transition metal oxides for high energy density lithium-ion batteries has been widely studied recently. Prompted by the idea that the transition metal can serve as a catalyzer influence on the reversibility of solid-electrolyte interphase films, Co/MnO@C composite nanofibers were designed by electrospinning and chemical vapor deposition methods. The Co/MnO@C electrode showed superior electrochemical performance with a large capacity increase for the first 400 cycles and a high rate performance of 1345 mA h g-1 at 1000 mA g-1. There was no obvious decay of capacity over the whole 1000 cycles, demonstrating the excellent cycling stability of the samples. The new design and synthesis of the anodic materials may offer a prototype for high-performance and strong-stability batteries.
Collapse
Affiliation(s)
- Lun Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Kuo Wei
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
47
|
Chen Y, Yan Y, Liu X, Zhao Y, Wu X, Zhou J, Wang Z. Porous Si/Fe 2O 3 Dual Network Anode for Lithium-Ion Battery Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2331. [PMID: 33255567 PMCID: PMC7761259 DOI: 10.3390/nano10122331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
Benefiting from ultra-high theoretical capacity, silicon (Si) is popular for use in energy storage fields as a Li-ion battery anode material because of its high-performance. However, a serious volume variation happens towards Si anodes in the lithiation/delithiation process, triggering the pulverization of Si and a fast decay in its capacity, which greatly limits its commercial application. In our study, a porous Si/Fe2O3 dual network anode was fabricated using the melt-spinning, ball-milling and dealloying method. The anode material shows good electrochemical performance, delivering a reversible capacity of 697.2 mAh g-1 at 200 mA g-1 after 100 cycles. The high Li storage property is ascribed to the rich mesoporous distribution of the dual network structure, which may adapt the volume variation of the material during the lithiation/delithiation process, shorten the Li-ion diffusion distance and improve the electron transport speed. This study offers a new idea for developing natural ferrosilicon ores into the porous Si-based materials and may prompt the development of natural ores in energy storage fields.
Collapse
Affiliation(s)
- Yanxu Chen
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (Y.Y.); (X.W.)
- Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300401, China
| | - Yajing Yan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (Y.Y.); (X.W.)
| | - Xiaoli Liu
- School of Materials Science and Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, China;
| | - Yan Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (Y.Y.); (X.W.)
| | - Xiaoyu Wu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (Y.Y.); (X.W.)
| | - Jun Zhou
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (Y.Y.); (X.W.)
| | - Zhifeng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (Y.Y.); (X.W.)
- Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
48
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
49
|
Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Int J Biol Macromol 2020; 161:147-154. [DOI: 10.1016/j.ijbiomac.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
50
|
Budnyak TM, Slabon A, Sipponen MH. Lignin-Inorganic Interfaces: Chemistry and Applications from Adsorbents to Catalysts and Energy Storage Materials. CHEMSUSCHEM 2020; 13:4344-4355. [PMID: 32096608 PMCID: PMC7540583 DOI: 10.1002/cssc.202000216] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 05/05/2023]
Abstract
Lignin is one the most fascinating natural polymers due to its complex aromatic-aliphatic structure. Phenolic hydroxyl and carboxyl groups along with other functional groups provide technical lignins with reactivity and amphiphilic character. Many different lignins have been used as functional agents to facilitate the synthesis and stabilization of inorganic materials. Herein, the use of lignin in the synthesis and chemistry of inorganic materials in selected applications with relevance to sustainable energy and environmental fields is reviewed. In essence, the combination of lignin and inorganic materials creates an interface between soft and hard materials. In many cases it is either this interface or the external lignin surface that provides functionality to the hybrid and composite materials. This Minireview closes with an overview on future directions for this research field that bridges inorganic and lignin materials for a more sustainable future.
Collapse
Affiliation(s)
- Tetyana M. Budnyak
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16CSE-106 91StockholmSweden
| | - Adam Slabon
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16CSE-106 91StockholmSweden
| | - Mika H. Sipponen
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16CSE-106 91StockholmSweden
| |
Collapse
|