1
|
Chen W, Yang M, Wang H, Song J, Mei C, Qiu L, Chen J. A Novel CaCu-Metal-Organic-Framework Based Multimodal Treatment Platform for Enhanced Synergistic Therapy of Hepatocellular Carcinoma. Adv Healthc Mater 2024; 13:e2304000. [PMID: 38502033 DOI: 10.1002/adhm.202304000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Metal ions have attracted a lot of interest in antitumor therapy due to their unique mechanism of action. However, multiple death mechanisms associate with metal ions to synergistic antitumors have few studies mainly due to the serious challenges in designing and building metal-associated multimodal treatment platforms. Hence, a series of glutathione-activatable CaCu-based metal-organic-frameworks loaded with doxorubicin and ovalbumin are successfully designed and synthesized with an "all in one" strategy, which is modified by galactosamine-linked hyaluronic acid to prepare multimodal treatment platform (SCC/DOX@OVA-HG) for targeted delivery and synergistic antitumor therapy. SCC/DOX@OVA-HG can be rapidly degraded by the overexpressed glutathione and then releases the "cargoes" in the tumor microenvironment. The released Cu+ efficiently catalyzes H2O2 to produce highly toxic ROS for CDT, and the up-regulation of calcium ion concentration in tumor cells induced by the released Ca2+ enables calcium overload therapy, which synergically enhances the metal-related death pattern. Meanwhile, OVA combined with Ca2+/Cu2+ further activates macrophages into an M1-like phenotype to accelerate tumor cell death through immunotherapy. Besides, the released DOX can also insert into the DNA double helix for chemotherapy. Consequently, the developed SCC/DOX@OVA-HG reveals significantly improved antitumor efficacy through a multimodal synergistic therapy of chemotherapy, chemodynamic therapy, calcium overload, and immunotherapy.
Collapse
Affiliation(s)
- Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huili Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junling Song
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Congjin Mei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Xia L, Cheng X, Jiang L, Min Y, Yao W, Wu Q, Xu Q. High-performance bismuth vanadate photoanodes cocatalyzed with nitrogen, sulphur co-doped ferrocobalt-metal organic frameworks thin layer for photoelectrochemical water splitting. J Colloid Interface Sci 2024; 659:676-686. [PMID: 38211485 DOI: 10.1016/j.jcis.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
In this study, we prepare a highly efficient BiVO4 photoanode co-catalyzed with an ultrathin layer of N, S co-doped FeCo-Metal Organic Frameworks (MOFs) for photoelectrochemical water splitting. The introduction of N and S into FeCo-MOFs enhances electron and mass transfer, exposing more catalytic active sites and significantly improving the catalytic performance of N, S co-doped FeCo-based MOFs in water oxidation. The optimized BiVO4/NS-FeCo-MOFs photoanode exhibits impressive results, with a photocurrent density of 5.23 mA cm-2 at 1.23 V vs. Reversible Hydrogen Electrode (RHE) and an incident photon-to-charge conversion efficiency (IPCE) of 74.4 % at 450 nm in a 0.1 M phosphate buffered solution (pH = 7). These values are 4.84 times and 6.2 times higher than those of the original BiVO4 photoanode, respectively. Furthermore, the optimized BiVO4/NS-FeCo-MOFs photoanode demonstrates exceptional long-term stability, maintaining 96 % of the initial current after five hours.
Collapse
Affiliation(s)
- Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Xinsheng Cheng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China
| | - Liwen Jiang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
3
|
Jia X, Gao F, Yang G, Wang YY. Designing Different Heterometallic Organic Frameworks by Heteroatom and Second Metal Doping Strategies for the Electrocatalytic Oxygen Evolution Reaction. Inorg Chem 2024; 63:5664-5671. [PMID: 38484386 DOI: 10.1021/acs.inorgchem.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Metal-organic frameworks (MOFs) are considered one of the most significant electrocatalysts for the sluggish oxygen evolution reaction (OER). Hence, a series of novel N,S-codoped Ni-based heterometallic organic framework (HMOF) (NiM-bptz-HMOF, M = Co, Zn, and Mn; bptz = 2,5-bis((3-pyridyl)methylthio)thiadiazole) precatalysts are constructed by the heteroatom and second metal doping strategies. The effective combination of the two strategies promotes electronic conductivity and optimizes the electronic structure of the metal. By regulation of the type and proportion of metal ions, the electrochemical performance of the OER can be improved. Among them, the optimized Ni6Zn1-bptz-HMOF precatalyst exhibits the best performance with an overpotential of 268 mV at 10 mA cm-2 and a small Tafel slope of 72.5 mV dec-1. This work presents a novel strategy for the design of modest heteroatom-doped OER catalysts.
Collapse
Affiliation(s)
- Xiaoqing Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Fei Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
4
|
Chen WJ, Gupta D, Yang M, Yang F, Feng N, Song J, Wood MJA, Qiu L, Chen J. A Purposefully Designed pH/GSH-Responsive MnFe-Based Metal-Organic Frameworks as Cascade Nanoreactor for Enhanced Chemo-Chemodynamic-Starvation Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303403. [PMID: 37649230 DOI: 10.1002/smll.202303403] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising novel therapeutics for treating malignancies due to their tunable porosity, biocompatibility, and modularity to functionalize with various chemotherapeutics drugs. However, the design and synthesis of dual-stimuli responsive MOFs for controlled drug release in tumor microenvironments are vitally essential but still challenging. Meanwhile, the catalytic effect of metal ions selection and ratio optimization in MOFs for enhanced chemodynamic therapy (CDT) is relatively unexplored. Herein, a series of MnFe-based MOFs with pH/glutathione (GSH)-sensitivity are synthesized and then combined with gold nanoparticles (Au NPs) and cisplatin prodrugs (DSCP) as a cascade nanoreactor (SMnFeCGH) for chemo-chemodynamic-starvation synergistic therapy. H+ and GSH can specifically activate the optimal SMnFeCGH nanoparticles in cancer cells to release Mn2+/4+ /Fe2+/3+ , Au NPs, and DSCP rapidly. The optimal ratio of Mn/Fe shows excellent H2 O2 decomposition efficiency for accelerating CDT. Au NPs can cut off the energy supply to cancer cells for starvation therapy and strengthen CDT by providing large amounts of H2 O2 . Then H2 O2 is catalyzed by Mn2+ /Fe2+ to generate highly toxic •OH with the depletion of GSH. Meanwhile, the reduced DSCP accelerates cancer cell regression for chemotherapy. The ultrasensitivity cascade nanoreactor can enhance the anticancer therapeutic effect by combining chemotherapy, CDT, and starvation therapy.
Collapse
Affiliation(s)
- Wei Jun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dhanu Gupta
- Department of Paediatrics, University of Oxford, Oxford, OX1 3QX, UK
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ning Feng
- Department of Paediatrics, University of Oxford, Oxford, OX1 3QX, UK
| | - Junling Song
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, OX1 3QX, UK
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Liu Y, Wang S, Li Z, Chu H, Zhou W. Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
7
|
Zhou P, Lv J, Huang X, Lu Y, Wang G. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Zheng W, Zhang X, Zheng Y, Yue Y. "Oxynitride trap" over N/S co-doped graphene-supported catalysts promoting low temperature NH 3-SCR performance: Insight into the structure and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127187. [PMID: 34560481 DOI: 10.1016/j.jhazmat.2021.127187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
A series of nitrogen and sulfur (N/S) co-doped graphene supported catalysts (Mn-Ce-SnOx/NSG) were synthesized using an in situ method for enhancing selective catalytic reduction of NOx with NH3 (NH3-SCR) performance. The changes in catalysts' structure, morphology, and active sites were systematically researched to explore the promoting effect of N/S co-doped on catalytic performance. The prepared Mn-Ce-SnOx/NSG-0.3 catalyst achieves an excellent SCR activity at a low temperature, which is comparable to previous graphene-based catalysts. The Ce3+/(Ce3+ + Ce4+), Mn4+/Mn3+, and Oα/(Oα + Oβ) ratios in the catalyst are improved by N/S co-doping, which closely related to excellent SCR activity. Meanwhile, the unpaired electrons on N/S functional groups are effective in promoting the adsorption and further oxidation of gaseous NO. The ability to adsorb NH3 has also been promoted result of numerous Lewis acid sites over Mn-Ce-SnOx/NSG-0.3. In-situ DRIFTS and reaction kinetic results suggest that the Eley-Rideal mechanism should be the most significant pathway in the temperature range of ≥ 200 °C, where coordinated NH3 has higher activity than ionic NH4+. The Langmuir-Hinshelwood (L-H) mechanism is the main route of the low-temperature (L-T) (< 200 °C) SCR reaction. Particularly, the L-T SCR activity improves because the N/S functional groups act as an additional "oxynitride trap" (based on the L-H mechanism).
Collapse
Affiliation(s)
- Weijie Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Yuying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, PR China.
| | - Yuanyuan Yue
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China.
| |
Collapse
|
9
|
Cheng J, Yue X, Chen C, Shen X, Zeng S, Ji Z, Yuan A, Zhu G. Template-assisted synthesis of accordion-like CoFe(OH) nanosheet clusters on GO sheets for electrocatalytic water oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Liang Q, Liu Y, Xue Z, Zhao Z, Li G, Hu JQ. Multiscale structural regulation of Metal-organic framework nanofilm arrays for efficient oxygen evolution reaction. Chem Commun (Camb) 2022; 58:6966-6969. [DOI: 10.1039/d2cc02140d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel MOF nanofilm arrays (NiCoBDC-Fc) grown on Ni foam via a multiscale structural regulation strategy. The introducing of metal doping and defects regulated the morphology structure of NiBDC for...
Collapse
|
11
|
Liu X, Guo R, Huang W, Zhu J, Wen B, Mai L. Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100629. [PMID: 34288417 DOI: 10.1002/smll.202100629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Indexed: 06/13/2023]
Abstract
Coordination compounds including mainstream metal-organic frameworks and Prussian blue analogues receive extensive researches when they directly serve as electrocatalysts. Their reconstruction phenomena, that are closely associated with actual contributions and intrinsic catalytic mechanisms, are expected to be well summarized. Here, the recent advances in understanding reconstruction chemistry of coordination compounds are reviewed, including their main classifications and structural properties, reconstruction phenomena in electrocatalysis (e.g., oxygen/hydrogen evolution reaction, CO2 reduction), influence factors of reconstruction parameters (e.g., reconstruction rate and reconstruction degree), and reconstruction-performance correlation. It is outlined that the reconstruction processes are influenced by electronic structure of coordination compounds, pH and temperature of testing solution, and applied potentials. The characterization techniques reflecting the evolution information before and after catalysis are also introduced for reconstruction-related mechanistic study. Finally, some challenges and outlooks on reconstruction investigations of coordination compounds are proposed, and the necessity of studying and understanding of these themes under actual working conditions of devices is highlighted.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruiting Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenzhong Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Wen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
12
|
|
13
|
Liu X, Meng J, Zhu J, Huang M, Wen B, Guo R, Mai L. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007344. [PMID: 34050565 DOI: 10.1002/adma.202007344] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/09/2021] [Indexed: 05/14/2023]
Abstract
Reconstruction induced by external environment (such as applied voltage bias and test electrolytes) changes catalyst component and catalytic behaviors. Investigations of complete reconstruction in energy conversion recently receive intensive attention, which promote the targeted design of top-performance materials with maximum component utilization and good stability. However, the advantages of complete reconstruction, its design strategies, and extensive applications have not achieved the profound understandings and summaries it deserves. Here, this review systematically summarizes several important advances in complete reconstruction for the first time, which includes 1) fundamental understandings of complete reconstruction, the characteristics and advantages of completely reconstructed catalysts, and their design principles, 2) types of reconstruction-involved precatalysts for oxygen evolution reaction catalysis in wide pH solution, and origins of limited reconstruction degree as well as design strategies/principles toward complete reconstruction, 3) complete reconstruction for novel material synthesis and other electrocatalysis fields, and 4) advanced in situ/operando or multiangle/level characterization techniques to capture the dynamic reconstruction processes and real catalytic contributors. Finally, the existing major challenges and unexplored/unsolved issues on studying the reconstruction chemistry are summarized, and an outlook for the further development of complete reconstruction is briefly proposed. This review will arouse the attention on complete reconstruction materials and their applications in diverse fields.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Wen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruiting Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
14
|
Hameed A, Batool M, Iqbal W, Abbas S, Imran M, Khan IA, Nadeem MA. ZIF-12/Fe-Cu LDH Composite as a High Performance Electrocatalyst for Water Oxidation. Front Chem 2021; 9:686968. [PMID: 34249860 PMCID: PMC8264502 DOI: 10.3389/fchem.2021.686968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Layered double hydroxides (LDH) are being used as electrocatalysts for oxygen evolution reactions (OERs). However, low current densities limit their practical applications. Herein, we report a facile and economic synthesis of an iron-copper based LDH integrated with a cobalt-based metal-organic framework (ZIF-12) to form LDH-ZIF-12 composite (1) through a co-precipitation method. The as-synthesized composite 1 requires a low overpotential of 337 mV to achieve a catalytic current density of 10 mA cm-2 with a Tafel slope of 89 mV dec-1. Tafel analysis further demonstrates that 1 exhibits a slope of 89 mV dec-1 which is much lower than the slope of 284 mV dec-1 for LDH and 172 mV dec-1 for ZIF-12. The slope value of 1 is also lower than previously reported electrocatalysts, including Ni-Co LDH (113 mV dec-1) and Zn-Co LDH nanosheets (101 mV dec-1), under similar conditions. Controlled potential electrolysis and stability test experiments show the potential application of 1 as a heterogeneous electrocatalyst for water oxidation.
Collapse
Affiliation(s)
- Arslan Hameed
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mariam Batool
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waheed Iqbal
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saghir Abbas
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Inayat Ali Khan
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Pan DS, Guo ZH, Li JK, Huang S, Zhou LL, Song JL. Rational Construction of a N, F Co-doped Mesoporous Cobalt Phosphate with Rich-Oxygen Vacancies for Oxygen Evolution Reaction and Supercapacitors. Chemistry 2021; 27:7731-7737. [PMID: 33792092 DOI: 10.1002/chem.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/30/2022]
Abstract
Transition-metal phosphates have been widely applied as promising candidates for electrochemical energy storage and conversion. In this study, we report a simple method to prepare a N, F co-doped mesoporous cobalt phosphate with rich-oxygen vacancies by in-situ pyrolysis of a Co-phosphate precursor with NH4 + cations and F- anions. Due to this heteroatom doping, it could achieve a current density of 10 mA/cm2 at lower overpotential of 276 mV and smaller Tafel slope of 57.11 mV dec-1 on glassy carbon. Moreover, it could keep 92 % of initial current density for 35 h, indicating it has an excellent stability and durability. Furthermore, the optimal material applied in supercapacitor displays specific capacitance of 206.3 F g-1 at 1 A ⋅ g-1 and maintains cycling stability with 80 % after 3000 cycles. The excellent electrochemical properties should be attributed to N, F co-doping into this Co-based phosphate, which effectively modulates its electronic structure. In addition, its amorphous structure provides more active sites; moreover, its mesoporous structure should be beneficial to mass transfer and electrolyte diffusion.
Collapse
Affiliation(s)
- Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Jin-Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P. R. China
| |
Collapse
|
16
|
Hu Y, Yu H, Qi L, Dong J, Yan P, Taylor Isimjan T, Yang X. Interface Engineering of Needle-Like P-Doped MoS 2 /CoP Arrays as Highly Active and Durable Bifunctional Electrocatalyst for Overall Water Splitting. CHEMSUSCHEM 2021; 14:1565-1573. [PMID: 33484489 DOI: 10.1002/cssc.202002873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Developing a bifunctional water splitting catalyst with high efficiency and low cost are crucial in the electrolysis water industry. Here, we report a rational design and simple preparation method of MoS2 -based bifunctional electrocatalyst on carbon cloth (CC). The optimized P-doped MoS2 @CoP/CC catalyst presents low overpotentials for the hydrogen (HER) and oxygen evolution reactions (OER) of 64 and 282 mV in alkaline solution as well as 72 mV HER overpotential in H2 SO4 at a current density of 10 mA cm-2 . Furthermore, P-MoS2 @CoP/CC as a bifunctional catalyst delivered relatively low cell voltages of 1.83 and 1.97 V at high current densities of 500 and mA cm-2 in 30 % KOH. The two-electrode system showed a remarkable stability for 30 h, even outperformed the benchmark RuO2 ||Pt/C catalyst. The excellent electrochemical performance can be credited to the unique microstructure, high surface area, and the synergy between metal species. This study presents a possible alternative for noble metal-based catalysts to overcome the challenges of industrial applications.
Collapse
Affiliation(s)
- Yan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hongbo Yu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Luoluo Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiaxin Dong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|