1
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang M, Zhao X, Ding W, Xie W, Kong H. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation. J Transl Med 2024; 22:954. [PMID: 39434134 PMCID: PMC11492558 DOI: 10.1186/s12967-024-05753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a serious interstitial lung disease with no viable treatment except for lung transplantation. Glucagon-like peptide-1 receptor (GLP-1R), commonly regarded as an antidiabetic target, exerts antifibrotic effects on various types of organ fibrosis. However, whether GLP-1R modulates the development and progression of pulmonary fibrosis remains unclear. In this study, we investigated the antifibrotic effect of GLP-1R using in vitro and in vivo models of pulmonary fibrosis. METHODS A silica-induced pulmonary fibrosis mouse model was established to evaluate the protective effects of activating GLP-1R with liraglutide in vivo. Primary cultured lung fibroblasts treated with TGF-β1 combined with IL-1β (TGF-β1 + IL-1β) were used to explore the specific effects of liraglutide, MCC950, and 3PO on fibroblast activation in vitro. Cell metabolism assay was performed to determine the glycolytic rate and mitochondrial respiration. RNA sequencing was utilized to analyse the underlying molecular mechanisms by which liraglutide affects fibroblast activation. ChIP‒qPCR was used to evaluate histone lactylation at the promoters of profibrotic genes in TGF-β1 + IL-1β- or exogenous lactate-stimulated lung fibroblasts. RESULTS Activating GLP-1R with liraglutide attenuated pulmonary inflammation and fibrosis in mice exposed to silica. Pharmacological inhibition of the NLRP3 inflammasome suppressed PFKFB3-driven glycolysis and vice versa, resulting in decreased lactate production in TGF-β1 + IL-1β-stimulated lung fibroblasts. Activating GLP-1R inhibited TGF-β1 + IL-1β-induced fibroblast activation by disrupting the interaction between the NLRP3 inflammasome and PFKFB3-driven glycolysis and subsequently prevented lactate-mediated histone lactylation to reduce pro-fibrotic gene expression. In addition, activating GLP-1R protected mitochondria against the TGF-β1 + IL-1β-induced increase in oxidative phosphorylation in fibroblasts. In exogenous lactate-treated lung fibroblasts, activating GLP-1R not only repressed NLRP3 inflammasome activation but also alleviated p300-mediated histone lactylation. Finally, GLP-1R activation blocked silica-treated macrophage-conditioned media-induced lung fibroblast activation. CONCLUSIONS The antifibrotic effects of GLP-1R activation on pulmonary fibrosis could be attributed to the inhibition of the interaction between NLRP3 inflammasome and PFKFB3-driven glycolysis, and histone lactylation in lung fibroblasts. Thus, GLP-1R is a specific therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qun Zhang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Hong Zhou
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Linling Jin
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, P. R. China
| | - Xinyun Zhao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Wenqiu Ding
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
2
|
Yang F, Zhang Q, Wang X, Hu Y, Chen S. Forsythiaside A ameliorates bleomycin-induced pulmonary fibrosis by inhibiting oxidative stress and apoptosis. Immun Inflamm Dis 2024; 12:e70006. [PMID: 39172055 PMCID: PMC11340632 DOI: 10.1002/iid3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common clinically critical disease characterized by high morbidity and high mortality. Forsythiaside A (FA) is a phenylethanol glycoside component in Forsythia suspensa, which has anti-inflammatory, antioxidant, and antiviral activities. However, the effects of FA on bleomycin (BLM)-induced PF are unclear. PURPOSE The present study explored the role of FA in the amelioration of oxidative stress and apoptosis in BLM-induced PF as well as the possible underlying mechanisms, in vivo and in vitro. METHODS Network pharmacology was used to collect the effects of FA on BLM-induced PF. Subsequently, further observation of the effects of FA on mice with PF by pulmonary pathological changes, transmission electron microscopy, real-time polymerase chain reaction, Western blot analysis, immunofluorescence, and immunohistochemistry. An in vitro model was constructed by inducing A549 with transforming growth factor beta-1 (TGF-β1) to observe the effect of FA on epithelial cell apoptosis. RESULTS Network pharmacology predicted signaling pathways such as IL-17 signaling pathway and Relaxin signaling pathway. The results of in vivo studies showed that FA ameliorated BLM-induced PF through inhibition of fibrosis, modulation of apoptosis, and oxidative stress. In addition, FA promoted TGF-β1-induced apoptosis in A549 cells. CONCLUSIONS The results of our study suggested that FA could protect mice against BLM-induced PF by regulating oxidative stress and apoptosis as well as the Epithelial mesenchymal transition pathway.
Collapse
Affiliation(s)
- Fan Yang
- Henan University of Chinese MedicineZhengzhouChina
- Henan Key Laboratory of Chinese Medicine Resources and ChemistryZhengzhouChina
| | - Qinqin Zhang
- Henan University of Chinese MedicineZhengzhouChina
- Henan Key Laboratory of Chinese Medicine Resources and ChemistryZhengzhouChina
| | - Xi Wang
- Henan University of Chinese MedicineZhengzhouChina
| | - Yingbo Hu
- Henan University of Chinese MedicineZhengzhouChina
| | - Suiqing Chen
- Henan University of Chinese MedicineZhengzhouChina
- Henan Key Laboratory of Chinese Medicine Resources and ChemistryZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoHenan University of Chinese MedicineZhengzhouHenan ProvinceChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R.Henan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
3
|
Lauer D, Magnin CY, Kolly LR, Wang H, Brunner M, Chabria M, Cereghetti GM, Gabryś HS, Tanadini-Lang S, Uldry AC, Heller M, Verleden SE, Klein K, Sarbu AC, Funke-Chambour M, Ebner L, Distler O, Maurer B, Gote-Schniering J. Radioproteomics stratifies molecular response to antifibrotic treatment in pulmonary fibrosis. JCI Insight 2024; 9:e181757. [PMID: 39012714 PMCID: PMC11383602 DOI: 10.1172/jci.insight.181757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed 2 distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry readouts, which showed a more uniform response. Integrative analysis of delta radiomics and proteomics demonstrated that these phenotypes reflected different treatment response states, as further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures paralleled disease- and drug-related biological pathway activity with high specificity, including extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM remodeling, in a cohort of nintedanib-treated fibrosing patients with ILD, accurately stratified patients based on their extent of lung function decline. In conclusion, delta radiomics has great potential to serve as a noninvasive and readily accessible surrogate of molecular response phenotypes in fibrosing ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.
Collapse
Affiliation(s)
- David Lauer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cheryl Y Magnin
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Luca R Kolly
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Huijuan Wang
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matthias Brunner
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mamta Chabria
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Grazia M Cereghetti
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hubert S Gabryś
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility (PMSCF), DBMR, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility (PMSCF), DBMR, University of Bern, Bern, Switzerland
| | - Stijn E Verleden
- Department of ASTARC, University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Kerstin Klein
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Adela-Cristina Sarbu
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
| | - Manuela Funke-Chambour
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Radiology, Cantonal Hospital Lucerne, Luzern, Switzerland
- Institute for Radiology, Hirslanden Bern Klinik Beau-Site, Bern, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Janine Gote-Schniering
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, and
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Hussein ZA, Abu-Raghif AR, Fawzi HA. The mitigating effect of para-hydroxycinnamic acid in bleomycin-induced pulmonary fibrosis in mice through targeting oxidative, inflammatory and fibrotic pathways. Basic Clin Pharmacol Toxicol 2024; 135:23-42. [PMID: 38745367 DOI: 10.1111/bcpt.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
This study investigated the therapeutic benefits of para-hydroxycinnamic acid in mice with bleomycin-induced lung fibrosis. Forty male BALB/c mice were randomly assigned to four groups: normal, which received 0.9% normal saline; induced, which received a single dose of bleomycin (5 mg/kg) by oropharyngeal challenge; pirfenidone-treated; and para-hydroxycinnamic acid-treated, which challenged with bleomycin and received a daily oral dose of 300 and 50 mg/kg, respectively, from day 7 to day 21. Tissue pro-fibrotic and inflammatory cytokines, oxidative indicators, pulmonary histopathology, immunohistochemistry of fibrotic proteins and the assessment of gene expression by RT-qPCR were evaluated on day 22 after euthanizing animals. Pirfenidone and para-hydroxycinnamic acid managed to alleviate the fibrotic endpoints by statistically improving the weight index, histopathological score and reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. They also managed to alleviate tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators. para-Hydroxycinnamic acid enhanced the expression of crucial genes associated with oxidative stress, inflammation and fibrosis in vivo. para-Hydroxycinnamic acid has demonstrated similar effectiveness to pirfenidone, suggesting it could be a promising treatment for fibrotic lung conditions by inhibiting the TGF-β1/Smad3 pathway or through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Zeena A Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Pharmacology & Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed R Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
5
|
Henneke I, Pilz C, Wilhelm J, Alexopoulos I, Ezaddoustdar A, Mukhametshina R, Weissmann N, Ghofrani HA, Grimminger F, Seeger W, Schermuly RT, Wygrecka M, Kojonazarov B. Microscopic computed tomography with AI-CNN-powered image analysis: the path to phenotype bleomycin-induced lung injury. Am J Physiol Cell Physiol 2024; 326:C1637-C1647. [PMID: 38646782 DOI: 10.1152/ajpcell.00708.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Bleomycin (BLM)-induced lung injury in mice is a valuable model for investigating the molecular mechanisms that drive inflammation and fibrosis and for evaluating potential therapeutic approaches to treat the disease. Given high variability in the BLM model, it is critical to accurately phenotype the animals in the course of an experiment. In the present study, we aimed to demonstrate the utility of microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation for rapid phenotyping of BLM mice. µCT was performed in freely breathing C57BL/6J mice under isoflurane anesthesia on days 7 and 21 after BLM administration. Terminal invasive lung function measurement and histological assessment of the left lung collagen content were conducted as well. µCT image analysis demonstrated gradual and time-dependent development of lung injury as evident by alterations in the lung density, air-to-tissue volume ratio, and lung aeration in mice treated with BLM. The right and left lung were unequally affected. µCT-derived parameters such as lung density, air-to-tissue volume ratio, and nonaerated lung volume correlated well with the invasive lung function measurement and left lung collagen content. Our study demonstrates the utility of AI-CNN-powered µCT image analysis for rapid and accurate phenotyping of BLM mice in the course of disease development and progression.NEW & NOTEWORTHY Microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation is a rapid and powerful tool for noninvasive phenotyping of bleomycin mice over the course of the disease. This, in turn, allows earlier and more reliable identification of therapeutic effects of new drug candidates, ultimately leading to the reduction of unnecessary procedures in animals in pharmacological research.
Collapse
Affiliation(s)
- Ingrid Henneke
- Experimental Lung Disease Models Platform, Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
| | - Christina Pilz
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
| | - Jochen Wilhelm
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Genomics and Bioinformatics Platform, Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Multyscale Imaging Platform, Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
| | - Aysan Ezaddoustdar
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Center for Infection and Genomics of the Lung (CIGL), Faculty of Medicine, Justus Liebig University (JLU), Giessen, Germany
| | - Regina Mukhametshina
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Small Animal Imaging Platform, Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
| | - Norbert Weissmann
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
| | - Malgorzata Wygrecka
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Center for Infection and Genomics of the Lung (CIGL), Faculty of Medicine, Justus Liebig University (JLU), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Baktybek Kojonazarov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Murburg Lung Center (UGMLC), Justus Liebig University (JLU), Giessen, Germany
- Small Animal Imaging Platform, Institute for Lung Health (ILH), Justus Liebig University (JLU), Giessen, Germany
| |
Collapse
|
6
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
7
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
8
|
Gandhi S, Tonelli R, Murray M, Samarelli AV, Spagnolo P. Environmental Causes of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16481. [PMID: 38003670 PMCID: PMC10671449 DOI: 10.3390/ijms242216481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common and severe of the idiopathic interstitial pneumonias, is a chronic and relentlessly progressive disease, which occurs mostly in middle-aged and elderly males. Although IPF is by definition "idiopathic", multiple factors have been reported to increase disease risk, aging being the most prominent one. Several occupational and environmental exposures, including metal dust, wood dust and air pollution, as well as various lifestyle variables, including smoking and diet, have also been associated with an increased risk of IPF, probably through interaction with genetic factors. Many of the predisposing factors appear to act also as trigger for acute exacerbations of the disease, which herald a poor prognosis. The more recent literature on inhalation injuries has focused on the first responders in the World Trade Center attacks and military exposure. In this review, we present an overview of the environmental and occupational causes of IPF and its pathogenesis. While our list is not comprehensive, we have selected specific exposures to highlight based on their overall disease burden.
Collapse
Affiliation(s)
- Sheiphali Gandhi
- Division of Occupational and Environmental Medicine, University of California San Francisco, San Francisco, CA 94143-0924, USA; (S.G.); (M.M.)
| | - Roberto Tonelli
- Respiratory Disease Unit, University Hospital of Modena, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 42125 Modena, Italy; (R.T.); (A.V.S.)
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Margaret Murray
- Division of Occupational and Environmental Medicine, University of California San Francisco, San Francisco, CA 94143-0924, USA; (S.G.); (M.M.)
| | - Anna Valeria Samarelli
- Respiratory Disease Unit, University Hospital of Modena, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 42125 Modena, Italy; (R.T.); (A.V.S.)
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
9
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Bonatti M, Pitozzi V, Caruso P, Pontis S, Pittelli MG, Frati C, Mangiaracina C, Lagrasta CAM, Quaini F, Cantarella S, Ottonello S, Villetti G, Civelli M, Montanini B, Trevisani M. Time-course transcriptome analysis of a double challenge bleomycin-induced lung fibrosis rat model uncovers ECM homoeostasis-related translationally relevant genes. BMJ Open Respir Res 2023; 10:e001476. [PMID: 37730279 PMCID: PMC10510891 DOI: 10.1136/bmjresp-2022-001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an irreversible disorder with a poor prognosis. The incomplete understanding of IPF pathogenesis and the lack of accurate animal models is limiting the development of effective treatments. Thus, the selection of clinically relevant animal models endowed with similarities with the human disease in terms of lung anatomy, cell biology, pathways involved and genetics is essential. The bleomycin (BLM) intratracheal murine model is the most commonly used preclinical assay to evaluate new potential therapies for IPF. Here, we present the findings derived from an integrated histomorphometric and transcriptomic analysis to investigate the development of lung fibrosis in a time-course study in a BLM rat model and to evaluate its translational value in relation to IPF. METHODS Rats were intratracheally injected with a double dose of BLM (days 0-4) and sacrificed at days 7, 14, 21, 28 and 56. Histomorphometric analysis of lung fibrosis was performed on left lung sections. Transcriptome profiling by RNAseq was performed on the right lung lobes and results were compared with nine independent human gene-expression IPF studies. RESULTS The histomorphometric and transcriptomic analyses provided a detailed overview in terms of temporal gene-expression regulation during the establishment and repair of the fibrotic lesions. Moreover, the transcriptomic analysis identified three clusters of differentially coregulated genes whose expression was modulated in a time-dependent manner in response to BLM. One of these clusters, centred on extracellular matrix (ECM)-related process, was significantly correlated with histological parameters and gene sets derived from human IPF studies. CONCLUSIONS The model of lung fibrosis presented in this study lends itself as a valuable tool for preclinical efficacy evaluation of new potential drug candidates. The main finding was the identification of a group of persistently dysregulated genes, mostly related to ECM homoeostasis, which are shared with human IPF.
Collapse
Affiliation(s)
- Martina Bonatti
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Department of Medicine Solna (MedS) and Center for Molecular Medicine (CMM), Karolinska Institutet, Solna, Sweden
| | - Vanessa Pitozzi
- Corporate Preclinical R&D, Chiesi Farmaceutici SpA, Parma, Italy
| | - Paola Caruso
- Corporate Preclinical R&D, Chiesi Farmaceutici SpA, Parma, Italy
| | - Silvia Pontis
- Corporate Preclinical R&D, Chiesi Farmaceutici SpA, Parma, Italy
| | | | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Cantarella
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- DKFZ - German Cancer Research Center, Heidelberg, Germany
| | - Simone Ottonello
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici SpA, Parma, Italy
| | - Maurizio Civelli
- Corporate Preclinical R&D, Chiesi Farmaceutici SpA, Parma, Italy
| | - Barbara Montanini
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| | | |
Collapse
|
11
|
Ofori M, Danquah CA, Asante J, Ativui S, Doe P, Abdul-Nasir Taribabu A, Nugbemado IN, Mensah AN. Betulin and Crinum asiaticum L. bulbs extract attenuate pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines in bleomycin-induced fibrosis mice model. Heliyon 2023; 9:e16914. [PMID: 37346329 PMCID: PMC10279834 DOI: 10.1016/j.heliyon.2023.e16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Background Pulmonary fibrosis (PF) is a lung disease characterized by scaring of lung tissue that impairs lung functions. The estimated survival time of patients with pulmonary fibrosis is 3-5 years. Bleomycin (BLM) is used clinically in the treatment of Hodgkin lymphoma and testicular germ-cell tumors. Bleomycin's mechanism of action is the inhibition of DNA and protein synthesis. This happens when leukocytes induce the release of cytokines and chemokines which increase the pro-fibrotic and pro-inflammatory cytokines such as IL-6, TNF-alpha, IL-13, IL-1β and transforming growth factor-beta 1 (TGF-β). Crinum asiaticum L. bulbs (CAE) are widely found in parts of Africa, Asia and Indian Ocean Island. It is also prevalent in southern part of Ghana and traditionally used by the indigenes to treat upper respiratory tract infections, and for wound healing. Betulin (BET) is found in the bulbs of Crinum asiaticum L. but widely isolated from the external bark of birches and sycamore trees. Betulin as a lupine type triterpenes has been researched for their pharmacological and biological activities including anticancer, anti-inflammatory, antimicrobial activities and anti-liver fibrosis effects.Aim of the study: The aim was to study the anti-pulmonary fibrosis effect of Crinum asiaticum L. bulbs extract and betulin in bleomycin-induced pulmonary fibrosis in mice. Materials and method There was a single oropharyngeal administration of bleomycin (80 mg/kg) in mice followed by the treatment of CAE and BET after 48 h of exposure to BLM. Results There was increased survival rate in CAE and BET treatment groups compared to the BLM induced group. There was a marked decreased in the levels of hydroxyproline, collagen I and III in the CAE and BET treatment groups compared to BLM-treated group. The treatment groups of CAE and BET significantly down regulated the levels of pro-fibrotic and pro-inflammatory cytokines concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increased in the BLM treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM induced pulmonary fibrosis in mice, the study showed improved lung functions with wide focal area of viable alveolar spaces and few collagen fibers deposition on lungs of treatment groups. Conclusion CAE and BET attenuated pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines as well as improving lung function. This could be a lead in drug discovery where compounds with anti-fibrotic effects could be developed for the treatment of lung injury.
Collapse
Affiliation(s)
- Michael Ofori
- Department of Pharmaceutical Science, Dr Hilla Limann Technical University, Wa, Ghana
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | | | - Joshua Asante
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
- Department of Medical Laboratory, Diamed Diagnostic Center, Kumasi, Ghana
| | - Selase Ativui
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | - Peace Doe
- Department of Pharmaceutical Science, School of Pharmacy, Central University, Accra, Ghana
| | | | | | - Adwoa Nkrumah Mensah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| |
Collapse
|
12
|
Keshavan S, Bannuscher A, Drasler B, Barosova H, Petri-Fink A, Rothen-Rutishauser B. Comparing species-different responses in pulmonary fibrosis research: Current understanding of in vitro lung cell models and nanomaterials. Eur J Pharm Sci 2023; 183:106387. [PMID: 36652970 DOI: 10.1016/j.ejps.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc. So far, the most frequently used preclinical evaluation paradigm for PF is still animal testing. Nonetheless, there is an urgent need to understand the factors that induce PF and find novel therapeutic targets for PF in humans. In this regard, robust and realistic in vitro fibrosis models are required to understand the mechanism of adverse responses. Over the years, several in vitro and ex vivo models have been developed with the goal of mimicking the biological barriers of the lung as closely as possible. This review summarizes recent progress towards the development of experimental models suitable for predicting fibrotic responses, with an emphasis on cell culture methods, nanomaterials, and a comparison of results from studies using cells from various species.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Anne Bannuscher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Hana Barosova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland; Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | | |
Collapse
|
13
|
Moll M, Hobbs BD, Menon A, Ghosh AJ, Putman RK, Hino T, Hata A, Silverman EK, Quackenbush J, Castaldi PJ, Hersh CP, McGeachie MJ, Sin DD, Tal-Singer R, Nishino M, Hatabu H, Hunninghake GM, Cho MH. Blood gene expression risk profiles and interstitial lung abnormalities: COPDGene and ECLIPSE cohort studies. Respir Res 2022; 23:157. [PMID: 35715807 PMCID: PMC9204872 DOI: 10.1186/s12931-022-02077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Interstitial lung abnormalities (ILA) are radiologic findings that may progress to idiopathic pulmonary fibrosis (IPF). Blood gene expression profiles can predict IPF mortality, but whether these same genes associate with ILA and ILA outcomes is unknown. This study evaluated if a previously described blood gene expression profile associated with IPF mortality is associated with ILA and all-cause mortality. METHODS In COPDGene and ECLIPSE study participants with visual scoring of ILA and gene expression data, we evaluated the association of a previously described IPF mortality score with ILA and mortality. We also trained a new ILA score, derived using genes from the IPF score, in a subset of COPDGene. We tested the association with ILA and mortality on the remainder of COPDGene and ECLIPSE. RESULTS In 1469 COPDGene (training n = 734; testing n = 735) and 571 ECLIPSE participants, the IPF score was not associated with ILA or mortality. However, an ILA score derived from IPF score genes was associated with ILA (meta-analysis of test datasets OR 1.4 [95% CI: 1.2-1.6]) and mortality (HR 1.25 [95% CI: 1.12-1.41]). Six of the 11 genes in the ILA score had discordant directions of effects compared to the IPF score. The ILA score partially mediated the effects of age on mortality (11.8% proportion mediated). CONCLUSIONS An ILA gene expression score, derived from IPF mortality-associated genes, identified genes with concordant and discordant effects on IPF mortality and ILA. These results suggest shared, and unique biologic processes, amongst those with ILA, IPF, aging, and death.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Brian D Hobbs
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Aravind Menon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Auyon J Ghosh
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Takuya Hino
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Akinori Hata
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - John Quackenbush
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Peter J Castaldi
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, Canada
| | - Craig P Hersh
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Michael J McGeachie
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, and Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada
| | | | - Mizuki Nishino
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Hiroto Hatabu
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Michael H Cho
- Channing Division for Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Ciccimarra R, Bolognesi MM, Zoboli M, Cattoretti G, Stellari FF, Ravanetti F. The normal and fibrotic mouse lung classified by spatial proteomic analysis. Sci Rep 2022; 12:8742. [PMID: 35610327 PMCID: PMC9130283 DOI: 10.1038/s41598-022-12738-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Single cell classification is elucidating homeostasis and pathology in tissues and whole organs. We applied in situ spatial proteomics by multiplex antibody staining to routinely processed mouse lung, healthy and during a fibrosis model. With a limited validated antibody panel (24) we classify the normal constituents (alveolar type I and II, bronchial epithelia, endothelial, muscular, stromal and hematopoietic cells) and by quantitative measurements, we show the progress of lung fibrosis over a 4 weeks course, the changing landscape and the cell-specific quantitative variation of a multidrug transporter. An early decline in AT2 alveolar cells and a progressive increase in stromal cells seems at the core of the fibrotic process.
Collapse
Affiliation(s)
| | | | - Matteo Zoboli
- Department of Veterinary Science, Università di Parma, Parma, Italy
| | - Giorgio Cattoretti
- Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
| | - Franco F Stellari
- Corporate Preclinical R&D, Chiesi Farmaceutici S.P.A., Largo Belloli 11/A, 43122, Parma, Italy.
| | | |
Collapse
|
15
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
16
|
Kusuma GD, Li A, Zhu D, McDonald H, Inocencio IM, Chambers DC, Sinclair K, Fang H, Greening DW, Frith JE, Lim R. Effect of 2D and 3D Culture Microenvironments on Mesenchymal Stem Cell-Derived Extracellular Vesicles Potencies. Front Cell Dev Biol 2022; 10:819726. [PMID: 35237601 PMCID: PMC8882622 DOI: 10.3389/fcell.2022.819726] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Therapeutic benefits of mesenchymal stem cells (MSCs) are now widely believed to come from their paracrine signalling, i.e. secreted factors such as cytokines, chemokines, and extracellular vesicles (EVs). Cell-free therapy using EVs is an active and emerging field in regenerative medicine. Typical 2D cultures on tissue culture plastic is far removed from the physiological environment of MSCs. The application of 3D cell culture allows MSCs to adapt to their cellular environment which, in turn, influences their paracrine signalling activity. In this study we evaluated the impact of 3D MSCs culture on EVs secretion, cargo proteome composition, and functional assessment in immunomodulatory, anti-inflammatory and anti-fibrotic properties.MSC-EVs from 2D and 3D cultures expressed classical EV markers CD81, CD63, and CD9 with particle diameter of <100 nm. There were distinct changes in immunomodulatory potencies where 3D cultures exhibited reduced indoleamine 2,3-dioxygenase (IDO) activity and significantly reduced macrophage phagocytosis. Administration of 2D and 3D EVs following double dose bleomycin challenge in aged mice showed a marked increase of bodyweight loss in 3D group throughout days 7–28. Histopathological observations of lung tissues in 3D group showed increased collagen deposition, myofibroblast differentiation and leukocytes infiltrations. Assessment of lung mechanics showed 3D group did not improve lung function and instead exhibited increased resistance and tissue damping. Proteome profiling of MSC-EV composition revealed molecular enrichment of EV markers (compared to parental cells) and differential proteome between EVs from 2D and 3D culture condition associated with immune-based and fibrosis/extracellular matrix/membrane organization associated function.This study provides insight into distinct variation in EV protein composition dependent on the cellular microenvironment of the parental cells, which could have implications in their therapeutic effect and potency. Overall, this work suggests that EVs produced from 3D MSC cultures did not enhance typical MSC-EV properties expected from 2D cultures (immunomodulation, anti-fibrotic, anti-inflammatory). The outcome highlights critical differences between MSC-EVs obtained from different culture microenvironments, which should be considered when scaling up MSC culture for clinical manufacturing.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Gina D. Kusuma, ; Rebecca Lim,
| | - Anqi Li
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Hannah McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Ishmael M. Inocencio
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kenneth Sinclair
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Gina D. Kusuma, ; Rebecca Lim,
| |
Collapse
|
17
|
Haine L, Bravais J, Yegen CH, Bernaudin JF, Marchant D, Planès C, Voituron N, Boncoeur E. Sleep Apnea in Idiopathic Pulmonary Fibrosis: A Molecular Investigation in an Experimental Model of Fibrosis and Intermittent Hypoxia. Life (Basel) 2021; 11:973. [PMID: 34575121 PMCID: PMC8466672 DOI: 10.3390/life11090973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High prevalence of obstructive sleep apnea (OSA) is reported in incident and prevalent forms of idiopathic pulmonary fibrosis (IPF). We previously reported that Intermittent Hypoxia (IH), the major pathogenic element of OSA, worsens experimental lung fibrosis. Our objective was to investigate the molecular mechanisms involved. METHODS Impact of IH was evaluated on C57BL/6J mice developing lung fibrosis after intratracheal instillation of Bleomycin (BLM). Mice were Pre-exposed 14 days to IH before induction of lung fibrosis or Co-challenged with IH and BLM for 14 days. Weight loss and survival were daily monitored. After experimentations, lungs were sampled for histology, and protein and RNA were extracted. RESULTS Co-challenge or Pre-exposure of IH and BLM induced weight loss, increased tissue injury and collagen deposition, and pro-fibrotic markers. Major worsening effects of IH exposure on lung fibrosis were observed when mice were Pre-exposed to IH before developing lung fibrosis with a strong increase in sXBP1 and ATF6N ER stress markers. CONCLUSION Our results showed that IH exacerbates BLM-induced lung fibrosis more markedly when IH precedes lung fibrosis induction, and that this is associated with an enhancement of ER stress markers.
Collapse
Affiliation(s)
- Liasmine Haine
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Juliette Bravais
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Céline-Hivda Yegen
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Jean-Francois Bernaudin
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
- Faculté de Médecine, Sorbonne Université, 75012 Paris, France
| | - Dominique Marchant
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Carole Planès
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, Hôpitaux de Paris, 93000 Bobigny, France
| | - Nicolas Voituron
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
- Département STAPS, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Emilie Boncoeur
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| |
Collapse
|
18
|
Doni A, Mantovani A, Bottazzi B, Russo RC. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:676702. [PMID: 34276664 PMCID: PMC8284251 DOI: 10.3389/fimmu.2021.676702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient's life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Alberto Mantovani
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University of Milan, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Luo Y, Yi H, Huang X, Lin G, Kuang Y, Guo Y, Xie C. Inhibition of macrophage migration inhibitory factor (MIF) as a therapeutic target in bleomycin-induced pulmonary fibrosis rats. Am J Physiol Lung Cell Mol Physiol 2021; 321:L6-L16. [PMID: 33881353 DOI: 10.1152/ajplung.00288.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) inhibition can attenuate pulmonary fibrosis, but the antifibrotic mechanism is unclear. Here we investigated the antifibrotic effect of MIF knockdown in rats with bleomycin (BLM)-induced pulmonary fibrosis. The results showed that MIF inhibition attenuated lung injury and extracellular matrix deposition; significantly reduced the levels of cytokines including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hydroxyproline (hyp), fibroblast growth factor 23 (FGF23), and secreted phosphoprotein 1 (Spp1); and inhibited the expression of CD68, F4/80, and α-smooth muscle actin (α-SMA) protein. MIF inhibition is associated with reduction of proinflammatory mediators and macrophage infiltration in lungs. In addition, MIF knockdown in the day 14 group was significantly better than MIF knockdown in day 1 group in terms of the above mentioned cytokines TGF-β1, IL-17, TNF-α. MIF knockdown in day 14 group showed a better trend than MIF knockdown in day 1 group in inhibition of hyp and α-SMA formation. Furthermore, MIF inhibition downregulated the FGF23, Spp1, anti-integrin alpha 10 (Itga10), laminin subunit alpha 1 (Lama1), thrombospondin 2 (THBS2), and Serpin family B member 5 (SERPINB5) mRNA levels and the p-Smad2/3 protein level. MIF knockdown may inhibit fibrosis through the TGF-β1/Smads signaling pathway. In addition, MIF inhibition protects against vascular remodeling via Thbs2 and Serpinb5 signaling. In summary, our study showed that knockdown of MIF can significantly inhibit lung inflammation and fibrosis in rats with BLM-induced pulmonary fibrosis. The future development of inhibitors targeting MIF may contribute to the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yifeng Luo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Hui Yi
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Gengpeng Lin
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yukun Kuang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Canmao Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Prêle CM, Hoyne GF. Immunopathobiology of chronic lung disease. Clin Transl Immunology 2020; 9:e1170. [PMID: 32864129 PMCID: PMC7445230 DOI: 10.1002/cti2.1170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Cecilia M Prêle
- Centre for Respiratory HealthUniversity of Western AustraliaNedlandsWA6009Australia
- Centre for Cell Therapy and Regenerative MedicineSchool of Biomedical SciencesUniversity of Western AustraliaNedlandsWA6009Australia
- Ear Science Institute AustraliaNedlandsWA6009Australia
| | - Gerard F Hoyne
- Centre for Cell Therapy and Regenerative MedicineSchool of Biomedical SciencesUniversity of Western AustraliaNedlandsWA6009Australia
- School of Health SciencesUniversity of Notre Dame AustraliaFremantleWA6559Australia
| |
Collapse
|