1
|
Borghys H, Schwab A, Keppler B. Middle-aged dogs with low and high Aβ CSF concentrations show differences in energy and stress related metabolic profiles in CSF. Heliyon 2024; 10:e39104. [PMID: 39498015 PMCID: PMC11532822 DOI: 10.1016/j.heliyon.2024.e39104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Amyloid beta (Aβ) accumulation in the brain is one of the earliest findings in Alzheimer's disease (AD). The dog is a natural animal model for amyloid processing and early brain amyloid pathology. The goal of this study is to examine which differences in metabolomic profiles in cerebrospinal fluid (CSF) could be detected in dogs with a difference in CSF Aβ concentrations before amyloid accumulation occurs. Method Metabolic profiling was performed on CSF from 4 to 8 year old dogs with different CSF Aβ concentrations. Results Metabolomic profiling of CSF showed differences in brain energy metabolism. More specifically, increases in N-acetylation of amino acids and amino sugars, creatine and pentose metabolism, and a decrease in tricarboxylic acid (TCA) cycle were seen in dogs with a high CSF Aβ concentration. In addition, signs of elevated oxidative stress, higher methionine, lipid and nucleotide metabolism and increased levels of cysteine, myo-inositol and trimethylamine N-oxide were noted in these animals. Conclusions Differences in energy metabolism and stress mediated metabolic changes are seen in the brain of dogs with different CSF Aβ concentrations, before any amyloid deposition occurs. Similar metabolic changes, as in the high Aβ dogs, have been described in AD in humans and/or transgenic AD mice, some of them in very early phases. General significance The differences observed in metabolomic profiles could help in identifying potential biomarkers for an increased risk of developing amyloid pathology in the brain and open the door to the evaluation of preventive treatments for amyloid pathology in humans.
Collapse
Affiliation(s)
- Herman Borghys
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | | | | |
Collapse
|
2
|
Verdoodt F, Bhatti SFM, Kragic K, Van Ham L, Vanhaecke L, Hesta M, Hemeryck LY. Towards a better understanding of idiopathic epilepsy through metabolic fingerprinting of cerebrospinal fluid in dogs. Sci Rep 2024; 14:14750. [PMID: 38926488 PMCID: PMC11208596 DOI: 10.1038/s41598-024-64777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Cerebrospinal fluid metabolomics is a promising research technology in the elucidation of nervous system disorders. Therefore, in this work, a cerebrospinal fluid (CSF) metabolomics method using liquid chromatography coupled to mass spectrometry was optimized and validated to cover a wide range of metabolites. An acceptable coefficient of variance regarding instrumental, within-lab and intra-assay precision was found for 95, 70 and 96 of 102 targeted metabolites, together with 1256, 676 and 976 untargeted compounds, respectively. Moreover, approximately 75% of targeted metabolites and 50% of untargeted compounds displayed good linearity across different dilution ranges. Consequently, metabolic alterations in CSF of dogs with idiopathic epilepsy (IE) were studied by comparing CSF of dogs diagnosed with IE (Tier II) to dogs with non-brain related disease. Targeted metabolome analysis revealed higher levels of cortisol, creatinine, glucose, hippuric acid, mannose, pantothenol, and 2-phenylethylamine (P values < 0.05) in CSF of dogs with IE, whereas CSF of dogs with IE showed lower levels of spermidine (P value = 0.02). Untargeted CSF metabolic fingerprints discriminated dogs with IE from dogs with non-brain related disease using Orthogonal Partial Least Squares Discriminant Analysis (R2(Y) = 0.997, Q2(Y) = 0.828), from which norepinephrine was putatively identified as an important discriminative metabolite.
Collapse
Affiliation(s)
- Fien Verdoodt
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Karla Kragic
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Myriam Hesta
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieselot Y Hemeryck
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
3
|
Lu M, Wang X, Sun N, Huang S, Yang L, Li D. Metabolomics of cerebrospinal fluid reveals candidate diagnostic biomarkers to distinguish between spinal muscular atrophy type II and type III. CNS Neurosci Ther 2024; 30:e14718. [PMID: 38615366 PMCID: PMC11016346 DOI: 10.1111/cns.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS Classification of spinal muscular atrophy (SMA) is associated with the clinical prognosis; however, objective classification markers are scarce. This study aimed to identify metabolic markers in the cerebrospinal fluid (CSF) of children with SMA types II and III. METHODS CSF samples were collected from 40 patients with SMA (27 with type II and 13 with type III) and analyzed for metabolites. RESULTS We identified 135 metabolites associated with SMA types II and III. These were associated with lysine degradation and arginine, proline, and tyrosine metabolism. We identified seven metabolites associated with the Hammersmith Functional Motor Scale: 4-chlorophenylacetic acid, adb-chminaca,(+/-)-, dodecyl benzenesulfonic acid, norethindrone acetate, 4-(undecan-5-yl) benzene-1-sulfonic acid, dihydromaleimide beta-d-glucoside, and cinobufagin. Potential typing biomarkers, N-cyclohexylformamide, cinobufagin, cotinine glucuronide, N-myristoyl arginine, 4-chlorophenylacetic acid, geranic acid, 4-(undecan-5-yl) benzene, and 7,8-diamino pelargonate, showed good predictive performance. Among these, N-myristoyl arginine was unaffected by the gene phenotype. CONCLUSION This study identified metabolic markers are promising candidate prognostic factors for SMA. We also identified the metabolic pathways associated with the severity of SMA. These assessments can help predict the outcomes of screening SMA classification biomarkers.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xueying Wang
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Na Sun
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Shaoping Huang
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Dan Li
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
4
|
Xu D, Dai X, Zhang L, Cai Y, Chen K, Wu J, Dong L, Shen L, Yang J, Zhao J, Zhou Y, Mei Z, Wei W, Zhang Z, Xiong N. Mass spectrometry for biomarkers, disease mechanisms, and drug development in cerebrospinal fluid metabolomics. Trends Analyt Chem 2024; 173:117626. [DOI: 10.1016/j.trac.2024.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
5
|
Bhinderwala F, Roth HE, Filipi M, Jack S, Powers R. Potential Metabolite Biomarkers of Multiple Sclerosis from Multiple Biofluids. ACS Chem Neurosci 2024; 15:1110-1124. [PMID: 38420772 PMCID: PMC11586083 DOI: 10.1021/acschemneuro.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive neurological disorder without a cure, but early intervention can slow disease progression and improve the quality of life for MS patients. Obtaining an accurate diagnosis for MS is an arduous and error-prone task that requires a combination of a detailed medical history, a comprehensive neurological exam, clinical tests such as magnetic resonance imaging, and the exclusion of other possible diseases. A simple and definitive biofluid test for MS does not exist, but is highly desirable. To address this need, we employed NMR-based metabolomics to identify potentially unique metabolite biomarkers of MS from a cohort of age and sex-matched samples of cerebrospinal fluid (CSF), serum, and urine from 206 progressive MS (PMS) patients, 46 relapsing-remitting MS (RRMS) patients, and 99 healthy volunteers without a MS diagnosis. We identified 32 metabolites in CSF that varied between the control and PMS patients. Utilizing patient-matched serum samples, we were able to further identify 31 serum metabolites that may serve as biomarkers for PMS patients. Lastly, we identified 14 urine metabolites associated with PMS. All potential biomarkers are associated with metabolic processes linked to the pathology of MS, such as demyelination and neuronal damage. Four metabolites with identical profiles across all three biofluids were discovered, which demonstrate their potential value as cross-biofluid markers of PMS. We further present a case for using metabolic profiles from PMS patients to delineate biomarkers of RRMS. Specifically, three metabolites exhibited a variation from healthy volunteers without MS through RRMS and PMS patients. The consistency of metabolite changes across multiple biofluids, combined with the reliability of a receiver operating characteristic classification, may provide a rapid diagnostic test for MS.
Collapse
Affiliation(s)
- Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Current Affiliation - University of Pittsburgh School of Medicine, Department of Structural Biology, Pittsburgh, PA 15213
| | - Heidi E. Roth
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| | - Mary Filipi
- Multiple Sclerosis Clinic, Saunders Medical Center, Wahoo, NE 68066
| | - Samantha Jack
- Multiple Sclerosis Clinic, Saunders Medical Center, Wahoo, NE 68066
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304
| |
Collapse
|
6
|
Talavera Andújar B, Mary A, Venegas C, Cheng T, Zaslavsky L, Bolton EE, Heneka MT, Schymanski EL. Can Small Molecules Provide Clues on Disease Progression in Cerebrospinal Fluid from Mild Cognitive Impairment and Alzheimer's Disease Patients? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4181-4192. [PMID: 38373301 PMCID: PMC10919072 DOI: 10.1021/acs.est.3c10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease, which is currently diagnosed via clinical symptoms and nonspecific biomarkers (such as Aβ1-42, t-Tau, and p-Tau) measured in cerebrospinal fluid (CSF), which alone do not provide sufficient insights into disease progression. In this pilot study, these biomarkers were complemented with small-molecule analysis using non-target high-resolution mass spectrometry coupled with liquid chromatography (LC) on the CSF of three groups: AD, mild cognitive impairment (MCI) due to AD, and a non-demented (ND) control group. An open-source cheminformatics pipeline based on MS-DIAL and patRoon was enhanced using CSF- and AD-specific suspect lists to assist in data interpretation. Chemical Similarity Enrichment Analysis revealed a significant increase of hydroxybutyrates in AD, including 3-hydroxybutanoic acid, which was found at higher levels in AD compared to MCI and ND. Furthermore, a highly sensitive target LC-MS method was used to quantify 35 bile acids (BAs) in the CSF, revealing several statistically significant differences including higher dehydrolithocholic acid levels and decreased conjugated BA levels in AD. This work provides several promising small-molecule hypotheses that could be used to help track the progression of AD in CSF samples.
Collapse
Affiliation(s)
- Begoña Talavera Andújar
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Arnaud Mary
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Carmen Venegas
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Tiejun Cheng
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Leonid Zaslavsky
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Evan E. Bolton
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Michael T. Heneka
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| |
Collapse
|
7
|
Liu Y, Li W, Wang C, Chen S, Wang G. The prognostic value of the NPT test combined with amplitude integrated electroencephalogram in children with VE and its bioreliability analysis. J Med Biochem 2024; 43:63-71. [PMID: 38496014 PMCID: PMC10943470 DOI: 10.5937/jomb0-43317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/15/2023] [Indexed: 03/19/2024] Open
Abstract
Background Viral encephalitis (VE) is one of the common diseases of children with intracranial infection, it has come on urgent, progress is fast, and the clinical features of severe cases may even lead to disability, death, and other serious adverse prognostic outcomes, so seek in early diagnosis and prognosis of efficiency of the relevant indicators to stop in time and take effective means to prevent the further development is of great significance. Neopterin (NPT), as a factor that plays an important role in the process of validation development, has been relatively rarely studied in children with VE. Methods In this study, 127 cases of children with VE were retrieved from the TCGA database by bioinformatics, and their amplitude integrated electroencephalogram (AEEG) related information was collected at the same time. The neurodevelopmental status of VE children was evaluated according to the Gesell scale and divided into the good group (n=88) and the poor group (n=39). The differences in NPT expression and AEEG score between them were observed. In addition, the clinical data of 100 children without VE were screened from the database, and the differences in NPT expression and AEEG score between VE children and non-VE children were compared. The ROC curve was used to evaluate the clinical efficacy of NPT combined with AEEG in diagnosis and prognosis prediction. Kaplan-Meier was used to observe the effect of NPT high expression and low expression on poor prognosis of VE children.
Collapse
Affiliation(s)
- Yinghong Liu
- Children's Hospital Affiliated to Shanxi Medical University, Pediatric Intense Care Unit, Taiyuan, China
| | - Wenjuan Li
- Shanxi Cancer Hospital, Intensive Care Unit, Taiyuan, China
| | - Chaohai Wang
- Children's Hospital of Shanxi Province (Shanxi Maternal and Child Health Care Hospital), Pediatric Intense Care Unit, Taiyuan, China
| | - Shuyun Chen
- Children's Hospital of Shanxi Province (Shanxi Maternal and Child Health Care Hospital), Department of Neurology, Taiyuan, China
| | - Gaiqing Wang
- Shanxi Medical University, Department of Neurology, Taiyuan, China
| |
Collapse
|
8
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
9
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
10
|
Liu K, Qu Y, Li B, Zeng N, Yao G, Wu X, Xu H, Yan C, Wu L. GRP94 in cerebrospinal fluid may contribute to a potential biomarker of depression: Based on proteomics. J Psychiatr Res 2024; 169:328-340. [PMID: 38081093 DOI: 10.1016/j.jpsychires.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The present study was designed to investigate potential biomarkers of depression and targets of antidepressants from the perspective of hippocampal endoplasmic reticulum stress (ERS) based on cerebrospinal fluid (CSF) proteomics. Firstly, a six-week depression model was established and treated with fluoxetine (FLX). We found antidepressant-FLX could ameliorate depression-like behaviors and cognition in depressed rats caused by chronic unpredictable mild stress (CUMS). FLX significantly increased neuronal numbers in dentate gyrus (DG) and CA3 regions of hippocampus. CSF proteome data revealed thirty-seven differentially expressed proteins (DEPs) co-regulated by CUMS and FLX, including GRP94 and EIF2α. Results of Gene Oncology (GO) annotation and KEGG pathway enrichment for DEPs mainly included PERK-mediated unfolded protein response, endoplasmic reticulum, and translational initiation. The expression levels of GRP94, p-PERK, p-EIF2α, CHOP and Caspase-12 were increased in hippocampus of CUMS rats, and FLX worked the opposite way. FLX had strong affinity and binding activity with GRP94 protein, and four key proteins on the PERK pathway (PERK, EIF2α, p-EIF2α, CHOP). We proposed that FLX may exert antidepressant effects and neuroprotective action by alleviating excessive activation of the hippocampal PERK pathway and reducing neuronal deficits in depressed rats. PERK, EIF2α, p-EIF2α, and CHOP may be potential targets for antidepressant-FLX. GRP94 in CSF may be a potential biomarker of depression and the therapeutic effects of antidepressants.
Collapse
Affiliation(s)
- Kaige Liu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Qu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bozhi Li
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ningxi Zeng
- Department of Rehabilitation Medicine, The People's Hospital of Longhua District, Shenzhen, 518109, China
| | - Gaolei Yao
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaofeng Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hanfang Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lili Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Kozioł A, Pupek M, Lewandowski Ł. Application of metabolomics in diagnostics and differentiation of meningitis: A narrative review with a critical approach to the literature. Biomed Pharmacother 2023; 168:115685. [PMID: 37837878 DOI: 10.1016/j.biopha.2023.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Due to its high mortality rate associated with various life-threatening sequelae, meningitis poses a vital problem in contemporary medicine. Numerous algorithms, many of which were derived with the aid of artificial intelligence, were brought up in a strive for perfection in predicting the status of sepsis-related survival or exacerbation. This review aims to provide key insights on the contextual utilization of metabolomics. The aim of this the metabolomic approach set of methods can be used to investigate both bacterial and host metabolite sets from both the host and its microbes in several types of specimens - even in one's breath, mainly with use of two methods - Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR). Metabolomics, and has been used to elucidate the mechanisms underlying disease development and metabolic identification changes in a wide range of metabolite contents, leading to improved methods of diagnosis, treatment, and prognosis of meningitis. Mass spectrometry (MS) and Nuclear Magnetic Resonance (NMR) are the main analytical platforms used in metabolomics. Its high sensitivity accounts for the usefulness of metabolomics in studies into meningitis, its sequelae, and concomitant comorbidities. Metabolomics approaches are a double-edged sword, due to not only their flexibility, but also - high complexity, as even minor changes in the multi-step methods can have a massive impact on the results. Information on the differential diagnosis of meningitis act as a background in presenting the merits and drawbacks of the use of metabolomics in context of meningeal infections.
Collapse
Affiliation(s)
- Agata Kozioł
- Department of Immunochemistry and Chemistry, Wrocław Medical University, M. Skłodowskiej-Curie Street 48/50, 50-369 Wrocław, Poland
| | - Małgorzata Pupek
- Department of Immunochemistry and Chemistry, Wrocław Medical University, M. Skłodowskiej-Curie Street 48/50, 50-369 Wrocław, Poland.
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wrocław Medical University, T. Chałubińskiego Street 10, 50-368 Wrocław, Poland
| |
Collapse
|
12
|
Židó M, Kačer D, Valeš K, Zimová D, Štětkářová I. Metabolomics of Cerebrospinal Fluid Amino and Fatty Acids in Early Stages of Multiple Sclerosis. Int J Mol Sci 2023; 24:16271. [PMID: 38003464 PMCID: PMC10671192 DOI: 10.3390/ijms242216271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.
Collapse
Affiliation(s)
- Michal Židó
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - David Kačer
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
| | - Karel Valeš
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; (D.K.); (K.V.)
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Denisa Zimová
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Department of Neurology, Faculty Hospital Královské Vinohrady, 100 34 Prague, Czech Republic;
| |
Collapse
|
13
|
Reus LM, Boltz T, Francia M, Bot M, Ramesh N, Koromina M, Pijnenburg YAL, den Braber A, van der Flier WM, Visser PJ, van der Lee SJ, Tijms BM, Teunissen CE, Loohuis LO, Ophoff RA. Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559021. [PMID: 37808647 PMCID: PMC10557608 DOI: 10.1101/2023.09.26.559021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Genomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms in vivo , measuring 5,543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n=490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n=487). We performed metabolite quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, representing 65 unique CSF metabolites across 51 independent loci. To better understand the role of CSF mQTLs in brain-related disorders, we performed a metabolome-wide association study (MWAS), identifying 40 associations between CSF metabolites and brain traits. Similarly, over 90% of significant mQTLs demonstrated colocalized associations with brain-specific gene expression, unveiling potential neurobiological pathways.
Collapse
|
14
|
Borrajo A, Pérez-Rodríguez D, Fernández-Pereira C, Prieto-González JM, Agís-Balboa RC. Genomic Factors and Therapeutic Approaches in HIV-Associated Neurocognitive Disorders: A Comprehensive Review. Int J Mol Sci 2023; 24:14364. [PMID: 37762667 PMCID: PMC10531836 DOI: 10.3390/ijms241814364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) still persist despite improved life expectancy, reduced viral loads, and decreased infection severity. The number of patients affected by HANDs ranges from (30 to 50) % of HIV-infected individuals. The pathological mechanisms contributing to HANDs and the most serious manifestation of the disease, HIV-associated dementia (HAD), are not yet well understood. Evidence suggests that these mechanisms are likely multifactorial, producing neurocognitive complications involving disorders such as neurogenesis, autophagy, neuroinflammation, and mitochondrial dysfunction. Over the years, multiple pharmacological approaches with specific mechanisms of action acting upon distinct targets have been approved. Although these therapies are effective in reducing viral loading to undetectable levels, they also present some disadvantages such as common side effects, the need for administration with a very high frequency, and the possibility of drug resistance. Genetic studies on HANDs provide insights into the biological pathways and mechanisms that contribute to cognitive impairment in people living with HIV-1. Furthermore, they also help identify genetic variants that increase susceptibility to HANDs and can be used to tailor treatment approaches for HIV-1 patients. Identification of the genetic markers associated with disease progression can help clinicians predict which individuals require more aggressive management and by understanding the genetic basis of the disorder, it will be possible to develop targeted therapies to mitigate cognitive impairment. The main goal of this review is to provide details on the epidemiological data currently available and to summarise the genetic (specifically, the genetic makeup of the immune system), transcriptomic, and epigenetic studies available on HANDs to date. In addition, we address the potential pharmacological therapeutic strategies currently being investigated. This will provide valuable information that can guide clinical care, drug development, and our overall understanding of these diseases.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Daniel Pérez-Rodríguez
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Facultade de Bioloxía, Universidade de Vigo (UVigo), Campus Universitario Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| | - Carlos Fernández-Pereira
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Area Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Rare Disease and Pediatric Medicine Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - José María Prieto-González
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain; (D.P.-R.); (C.F.-P.); (J.M.P.-G.)
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Dale RC, Thomas T, Patel S, Han VX, Kothur K, Troedson C, Gupta S, Gill D, Malone S, Waak M, Calvert S, Subramanian G, Andrews PI, Kandula T, Menezes MP, Ardern‐Holmes S, Mohammad S, Bandodkar S, Yan J. CSF neopterin and quinolinic acid are biomarkers of neuroinflammation and neurotoxicity in FIRES and other infection-triggered encephalopathy syndromes. Ann Clin Transl Neurol 2023; 10:1417-1432. [PMID: 37340737 PMCID: PMC10424664 DOI: 10.1002/acn3.51832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE Infection-triggered encephalopathy syndromes (ITES) are potentially devastating neuroinflammatory conditions. Although some ITES syndromes have recognisable MRI neuroimaging phenotypes, there are otherwise few biomarkers of disease. Early detection to enable immune modulatory treatments could improve outcomes. METHODS We measured CSF neopterin, quinolinic acid, kynurenine and kynurenine/tryptophan ratio using a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) system. The CSF of 18 children with ITES were compared with acute encephalitis (n = 20), and three control groups, namely epilepsy (n = 20), status epilepticus (n = 18) and neurogenetic controls (n = 20). RESULTS The main ITES phenotypes in 18 patients were acute encephalopathy with biphasic seizures and late restricted diffusion (AESD, n = 4), febrile infection-related epilepsy syndrome (FIRES n = 4) and other ITES phenotypes. Influenza A was the most common infectious trigger (n = 5), and 50% of patients had a preceding notable neurodevelopmental or family history. CSF neopterin, quinolinic acid and kynurenine were elevated in ITES group compared to the three control groups (all p < 0.0002). The ROC (area under curve) for CSF neopterin (99.3%, CI 98.1-100) was significantly better than CSF pleocytosis (87.3% CI 76.4-98.2) (p = 0.028). Elevated CSF neopterin could discriminate ITES from other causes of seizures, status epilepticus and febrile status epilepticus (all p < 0.0002). The elevated CSF metabolites normalised during longitudinal testing in two patients with FIRES. INTERPRETATION CSF neopterin and quinolinic acid are neuroinflammatory and excitotoxic metabolites. This CSF metabolomic inflammatory panel can discriminate ITES from other causes of new onset seizures or status epilepticus, and rapid results (4 h) may facilitate early immune modulatory therapy.
Collapse
Affiliation(s)
- Russell C. Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Terrence Thomas
- Department of Paediatrics, Neurology ServiceKK Women's and Children's HospitalSingaporeSingapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Velda X. Han
- Khoo Teck Puat‐National University Children's Medical InstituteNational University Health SystemSingaporeSingapore
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Deepak Gill
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Stephen Malone
- Department of NeuroscienceQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Michaela Waak
- Department of NeuroscienceQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Sophie Calvert
- Department of NeuroscienceQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Gopinath Subramanian
- Department of PaediatricsJohn Hunter Children's HospitalNewcastleNew South WalesAustralia
| | - P. Ian Andrews
- Department of NeurologySydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Tejaswi Kandula
- Department of NeurologySydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Manoj P. Menezes
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Simone Ardern‐Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at WestmeadThe University of SydneyWestmeadNew South WalesAustralia
| | - Sushil Bandodkar
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Department of BiochemistryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Department of BiochemistryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| |
Collapse
|
16
|
Czarniak N, Kamińska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Cerebrospinal Fluid-Basic Concepts Review. Biomedicines 2023; 11:biomedicines11051461. [PMID: 37239132 DOI: 10.3390/biomedicines11051461] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebrospinal fluid plays a crucial role in protecting the central nervous system (CNS) by providing mechanical support, acting as a shock absorber, and transporting nutrients and waste products. It is produced in the ventricles of the brain and circulates through the brain and spinal cord in a continuous flow. In the current review, we presented basic concepts related to cerebrospinal fluid history, cerebrospinal fluid production, circulation, and its main components, the role of the blood-brain barrier and the blood-cerebrospinal fluid barrier in the maintenance of cerebrospinal fluid homeostasis, and the utility of Albumin Quotient (QAlb) evaluation in the diagnosis of CNS diseases. We also discussed the collection of cerebrospinal fluid (type, number of tubes, and volume), time of transport to the laboratory, and storage conditions. Finally, we briefly presented the role of cerebrospinal fluid examination in CNS disease diagnosis of various etiologies and highlighted that research on identifying cerebrospinal fluid biomarkers indicating disease presence or severity, evaluating treatment effectiveness, and enabling understanding of pathogenesis and disease mechanisms is of great importance. Thus, in our opinion, research on cerebrospinal fluid is still necessary for both the improvement of CNS disease management and the discovery of new treatment options.
Collapse
Affiliation(s)
- Natalia Czarniak
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | |
Collapse
|
17
|
Yan J, Kothur K, Mohammad S, Chung J, Patel S, Jones HF, Keating BA, Han VX, Webster R, Ardern-Holmes S, Antony J, Menezes MP, Tantsis E, Gill D, Gupta S, Kandula T, Sampaio H, Farrar MA, Troedson C, Andrews PI, Pillai SC, Heng B, Guillemin GJ, Guller A, Bandodkar S, Dale RC. CSF neopterin, quinolinic acid and kynurenine/tryptophan ratio are biomarkers of active neuroinflammation. EBioMedicine 2023; 91:104589. [PMID: 37119734 PMCID: PMC10165192 DOI: 10.1016/j.ebiom.2023.104589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Defining the presence of acute and chronic brain inflammation remains a challenge to clinicians due to the heterogeneity of clinical presentations and aetiologies. However, defining the presence of neuroinflammation, and monitoring the effects of therapy is important given its reversible and potentially damaging nature. We investigated the utility of CSF metabolites in the diagnosis of primary neuroinflammatory disorders such as encephalitis and explored the potential pathogenic role of inflammation in epilepsy. METHODS Cerebrospinal fluid (CSF) collected from 341 paediatric patients (169 males, median age 5.8 years, range 0.1-17.1) were examined. The patients were separated into a primary inflammatory disorder group (n = 90) and epilepsy group (n = 80), who were compared with three control groups including neurogenetic and structural (n = 76), neurodevelopmental disorders, psychiatric and functional neurological disorders (n = 63), and headache (n = 32). FINDINGS There were statistically significant increases of CSF neopterin, kynurenine, quinolinic acid and kynurenine/tryptophan ratio (KYN/TRP) in the inflammation group compared to all control groups (all p < 0.0003). As biomarkers, at thresholds with 95% specificity, CSF neopterin had the best sensitivity for defining neuroinflammation (82%, CI 73-89), then quinolinic acid (57%, CI 47-67), KYN/TRP ratio (47%, CI 36-56) and kynurenine (37%, CI 28-48). CSF pleocytosis had sensitivity of 53%, CI 42-64). The area under the receiver operating characteristic curve (ROC AUC) of CSF neopterin (94.4% CI 91.0-97.7%) was superior to that of CSF pleocytosis (84.9% CI 79.5-90.4%) (p = 0.005). CSF kynurenic acid/kynurenine ratio (KYNA/KYN) was statistically decreased in the epilepsy group compared to all control groups (all p ≤ 0.0003), which was evident in most epilepsy subgroups. INTERPRETATION Here we show that CSF neopterin, kynurenine, quinolinic acid and KYN/TRP are useful diagnostic and monitoring biomarkers of neuroinflammation. These findings provide biological insights into the role of inflammatory metabolism in neurological disorders and provide diagnostic and therapeutic opportunities for improved management of neurological diseases. FUNDING Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, University of Sydney, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP 1176660 and Macquarie University.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Jason Chung
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Hannah F Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brooke A Keating
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Velda X Han
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Manoj P Menezes
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Esther Tantsis
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Deepak Gill
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - Tejaswi Kandula
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Hugo Sampaio
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Christopher Troedson
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW, Australia
| | - P Ian Andrews
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Sekhar C Pillai
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Anna Guller
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
18
|
Exploration of the Core Pathways and Potential Targets of Luteolin Treatment on Late-Onset Depression Based on Cerebrospinal Fluid Proteomics. Int J Mol Sci 2023; 24:ijms24043485. [PMID: 36834894 PMCID: PMC9958965 DOI: 10.3390/ijms24043485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cognitive deficiency is one of the fundamental characteristics of late-onset depression (LOD). Luteolin (LUT) possesses antidepressant, anti-aging, and neuroprotective properties, which can dramatically enhance cognition. The altered composition of cerebrospinal fluid (CSF), which is involved in neuronal plasticity and neurogenesis, directly reflects the physio-pathological status of the central nervous system. It is not well known whether the effect of LUT on LOD is in association with a changed CSF composition. Therefore, this study first established a rat model of LOD and then tested the therapeutic effects of LUT using several behavioral approaches. A gene set enrichment analysis (GSEA) was used to evaluate the CSF proteomics data for KEGG pathway enrichment and Gene Ontology annotation. We combined network pharmacology and differentially expressed proteins to screen for key GSEA-KEGG pathways as well as potential targets for LUT therapy for LOD. Molecular docking was adopted to verify the affinity and binding activity of LUT to these potential targets. The outcomes demonstrated that LUT improved the cognitive and depression-like behaviors in LOD rats. LUT may exert therapeutic effects on LOD through the axon guidance pathway. Five axon guidance molecules-EFNA5, EPHB4, EPHA4, SEMA7A, and NTNG-as well as UNC5B, L1CAM, and DCC, may be candidates for the LUT treatment of LOD.
Collapse
|
19
|
Mingoti MED, Bertollo AG, de Oliveira T, Ignácio ZM. Stress and Kynurenine-Inflammation Pathway in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:163-190. [PMID: 36949310 DOI: 10.1007/978-981-19-7376-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.
Collapse
Affiliation(s)
- Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tácio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
20
|
Hossain MS, Mawatari S, Fujino T. Plasmalogens inhibit neuroinflammation and promote cognitive function. Brain Res Bull 2023; 192:56-61. [PMID: 36347405 DOI: 10.1016/j.brainresbull.2022.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Neuroinflammation (NF) is defined as the activation of brain glial cells that are found in neurodegenerative diseases including Alzheimer's disease (AD). It has been known that an increase in NF could reduce the memory process in the brain but the key factors, associated with NF, behind the dysregulation of memory remained elusive. We previously reported that the NF and aging processes reduced the special phospholipids, plasmalogens (Pls), in the murine brain by a mechanism dependent on the activation of transcription factors, NF-kB and c-MYC. A similar mechanism has also been found in postmortem human brain tissues with AD pathologies and in the AD model mice. Recent evidence showed that these phospholipids enhanced memory and reduced neuro-inflammation in the murine brain. Pls can stimulate the cellular signaling molecules, ERK and Akt, by activating the membrane-bound G protein-coupled receptors (GPCRs). Therefore, recent findings suggest that plasmalogens could be one of the key phospholipids in the brain to enhance memory and inhibit NF.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan.
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan
| |
Collapse
|
21
|
Burmester DR, Madsen MK, Szabo A, Aripaka SS, Stenbæk DS, Frokjaer VG, Elfving B, Mikkelsen JD, Knudsen GM, Fisher PM. Subacute effects of a single dose of psilocybin on biomarkers of inflammation in healthy humans: An open-label preliminary investigation. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 13:100163. [PMID: 36545240 PMCID: PMC9761602 DOI: 10.1016/j.cpnec.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Rationale Psilocybin is a serotonergic psychedelic that has gained prominent attention recently as a potential therapeutic for neuropsychiatric disorders including Major Depressive Disorder. Pre-clinical and initial studies in humans suggest that serotonin 2A receptor agonists, including serotonergic psychedelics, have anti-inflammatory effects. This may contribute to its therapeutic effects as previous studies indicate a link between neuropsychiatric disorders and inflammatory processes. However, the effect of psilocybin on biomarkers of inflammation has not been evaluated in humans. Objectives Investigate the effect of a single dose of psilocybin on peripheral biomarkers of inflammation in healthy humans. Methods Blood samples were collected from 16 healthy participants before and one day after the administration of a single oral dose of psilocybin (mean dose: 0.22 mg/kg) and subsequently analyzed for concentrations of high-sensitivity C-reactive protein (hsCRP), tumor-necrosis-factor (TNF) and soluble urokinase plasminogen activator receptor (suPAR). Change in inflammatory markers was evaluated using a paired t-test where p < 0.05 was considered statistically significant. Results We did not observe statistically significant changes in any of the above biomarkers of inflammation (all Cohen's d ≤ 0.31; all p ≥ 0.23). Conclusions Our data do not support that a single dose of psilocybin reduces biomarkers of inflammation in healthy individuals one day after administration. Nevertheless, we suggest that future studies consider additional markers of inflammation, including markers of neuroinflammation, and evaluate potential anti-inflammatory effects of psilocybin therapy in clinical cohorts where more prominent effects may be observable.
Collapse
Affiliation(s)
- Daniel Rødbro Burmester
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Martin Korsbak Madsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Attila Szabo
- NORMENT Center of Excellence (CoE), Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sagar Sanjay Aripaka
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dea Siggaard Stenbæk
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medicine Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Corresponding author. Neurobiology Research Unit, Inge Lehmanns Vej 8, Rigshospitalet, Building 8057, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
22
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
23
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022; 11:2486. [PMID: 36010563 PMCID: PMC9406599 DOI: 10.3390/cells11162486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jun Pang
- Department of Computer Science, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Sabrina Fritah
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Department of Cancer Research, L-1526 Luxembourg, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
25
|
O'Brien NF, Fonseca Y, Johnson HC, Postels D, Birbeck GL, Chimalizeni Y, Seydel KB, Bernard Gushu M, Phiri T, June S, Chetcuti K, Vidal L, Goyal MS, Taylor TE. Mechanisms of Transcranial Doppler Ultrasound phenotypes in paediatric cerebral malaria remain elusive. Malar J 2022; 21:196. [PMID: 35729574 PMCID: PMC9210743 DOI: 10.1186/s12936-022-04163-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral malaria (CM) results in significant paediatric death and neurodisability in sub-Saharan Africa. Several different alterations to typical Transcranial Doppler Ultrasound (TCD) flow velocities and waveforms in CM have been described, but mechanistic contributors to these abnormalities are unknown. If identified, targeted, TCD-guided adjunctive therapy in CM may improve outcomes. Methods This was a prospective, observational study of children 6 months to 12 years with CM in Blantyre, Malawi recruited between January 2018 and June 2021. Medical history, physical examination, laboratory analysis, electroencephalogram, and magnetic resonance imaging were undertaken on presentation. Admission TCD results determined phenotypic grouping following a priori definitions. Evaluation of the relationship between haemodynamic, metabolic, or intracranial perturbations that lead to these observed phenotypes in other diseases was undertaken. Neurological outcomes at hospital discharge were evaluated using the Paediatric Cerebral Performance Categorization (PCPC) score. Results One hundred seventy-four patients were enrolled. Seven (4%) had a normal TCD examination, 57 (33%) met criteria for hyperaemia, 50 (29%) for low flow, 14 (8%) for microvascular obstruction, 11 (6%) for vasospasm, and 35 (20%) for isolated posterior circulation high flow. A lower cardiac index (CI) and higher systemic vascular resistive index (SVRI) were present in those with low flow than other groups (p < 0.003), though these values are normal for age (CI 4.4 [3.7,5] l/min/m2, SVRI 1552 [1197,1961] dscm-5m2). Other parameters were largely not significantly different between phenotypes. Overall, 118 children (68%) had a good neurological outcome. Twenty-three (13%) died, and 33 (19%) had neurological deficits. Outcomes were best for participants with hyperaemia and isolated posterior high flow (PCPC 1–2 in 77 and 89% respectively). Participants with low flow had the least likelihood of a good outcome (PCPC 1–2 in 42%) (p < 0.001). Cerebral autoregulation was significantly better in children with good outcome (transient hyperemic response ratio (THRR) 1.12 [1.04,1.2]) compared to a poor outcome (THRR 1.05 [0.98,1.02], p = 0.05). Conclusions Common pathophysiological mechanisms leading to TCD phenotypes in non-malarial illness are not causative in children with CM. Alternative mechanistic contributors, including mechanical factors of the cerebrovasculature and biologically active regulators of vascular tone should be explored.
Collapse
Affiliation(s)
- Nicole F O'Brien
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH, 43502, USA.
| | - Yudy Fonseca
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH, 43502, USA
| | - Hunter C Johnson
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH, 43502, USA
| | - Douglas Postels
- Department of Neurology, George Washington University/Children's National Medical Center, Washington, DC, USA
| | - Gretchen L Birbeck
- Department of Neurology, University of Rochester, Rochester, NY, USA.,University Teaching Hospitals Children's Hospital, Lusaka, Zambia
| | - Yamikani Chimalizeni
- Department of Pediatrics and Child Health, Kamuzu University of Health Sciences, Chichiri, Blantyre 3, Malawi
| | - Karl B Seydel
- Dept of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Montfort Bernard Gushu
- Queen Elizabeth Central Hospital, The Blantyre Malaria Project, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Tusekile Phiri
- Queen Elizabeth Central Hospital, The Blantyre Malaria Project, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Sylvester June
- Queen Elizabeth Central Hospital, The Blantyre Malaria Project, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Karen Chetcuti
- Department of Pediatrics and Child Health, Kamuzu University of Health Sciences, Chichiri, Blantyre 3, Malawi
| | - Lorenna Vidal
- Department of Radiology, Division of Neuroradiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manu S Goyal
- Washington University School of Medicine, St. Louis, MO, USA
| | - Terrie E Taylor
- Dept of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
26
|
Keen B, Cawley A, Reedy B, Fu S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test Anal 2022; 14:794-807. [PMID: 35194967 PMCID: PMC9544538 DOI: 10.1002/dta.3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Metabolomics is a multidisciplinary field providing workflows for complementary approaches to conventional analytical determinations. It allows for the study of metabolically related groups of compounds or even the study of novel pathways within the biological system. The procedural stages of metabolomics; experimental design, sample preparation, analytical determinations, data processing and statistical analysis, compound identification and validation strategies are explored in this review. The selected approach will depend on the type of study being conducted. Experimental design influences the whole metabolomics workflow and thus needs to be properly assessed to ensure sufficient sample size, minimal introduced and biological variation and appropriate statistical power. Sample preparation needs to be simple, yet potentially global in order to detect as many compounds as possible. Analytical determinations need to be optimised either for the list of targeted compounds or a universal approach. Data processing and statistical analysis approaches vary widely and need to be better harmonised for review and interpretation. This includes validation strategies that are currently deficient in many presented workflows. Common compound identification approaches have been explored in this review. Metabolomics applications are discussed for clinical and forensic toxicology, human and equine sports anti-doping and veterinary residues.
Collapse
Affiliation(s)
- Bethany Keen
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Adam Cawley
- Australian Racing Forensic LaboratoryRacing NSWSydneyNew South WalesAustralia
| | - Brian Reedy
- School of Mathematical and Physical SciencesUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| |
Collapse
|
27
|
Ndondo AP, Eley B, Wilmshurst JM, Kakooza-Mwesige A, Giannoccaro MP, Willison HJ, Cruz PMR, Heckmann JM, Bateman K, Vincent A. Post-Infectious Autoimmunity in the Central (CNS) and Peripheral (PNS) Nervous Systems: An African Perspective. Front Immunol 2022; 13:833548. [PMID: 35356001 PMCID: PMC8959857 DOI: 10.3389/fimmu.2022.833548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The direct impact and sequelae of infections in children and adults result in significant morbidity and mortality especially when they involve the central (CNS) or peripheral nervous system (PNS). The historical understanding of the pathophysiology has been mostly focused on the direct impact of the various pathogens through neural tissue invasion. However, with the better understanding of neuroimmunology, there is a rapidly growing realization of the contribution of the innate and adaptive host immune responses in the pathogenesis of many CNS and PNS diseases. The balance between the protective and pathologic sequelae of immunity is fragile and can easily be tipped towards harm for the host. The matter of immune privilege and surveillance of the CNS/PNS compartments and the role of the blood-brain barrier (BBB) and blood nerve barrier (BNB) makes this even more complex. Our understanding of the pathogenesis of many post-infectious manifestations of various microbial agents remains elusive, especially in the diverse African setting. Our exploration and better understanding of the neuroimmunology of some of the infectious diseases that we encounter in the continent will go a long way into helping us to improve their management and therefore lessen the burden. Africa is diverse and uniquely poised because of the mix of the classic, well described, autoimmune disease entities and the specifically "tropical" conditions. This review explores the current understanding of some of the para- and post-infectious autoimmune manifestations of CNS and PNS diseases in the African context. We highlight the clinical presentations, diagnosis and treatment of these neurological disorders and underscore the knowledge gaps and perspectives for future research using disease models of conditions that we see in the continent, some of which are not uniquely African and, where relevant, include discussion of the proposed mechanisms underlying pathogen-induced autoimmunity. This review covers the following conditions as models and highlight those in which a relationship with COVID-19 infection has been reported: a) Acute Necrotizing Encephalopathy; b) Measles-associated encephalopathies; c) Human Immunodeficiency Virus (HIV) neuroimmune disorders, and particularly the difficulties associated with classical post-infectious autoimmune disorders such as the Guillain-Barré syndrome in the context of HIV and other infections. Finally, we describe NMDA-R encephalitis, which can be post-HSV encephalitis, summarise other antibody-mediated CNS diseases and describe myasthenia gravis as the classic antibody-mediated disease but with special features in Africa.
Collapse
Affiliation(s)
- Alvin Pumelele Ndondo
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Brian Eley
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Jo Madeleine Wilmshurst
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Paediatric Neurology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Maria Pia Giannoccaro
- Laboratory of Neuromuscular Pathology and Neuroimmunology, Istituto di Ricovero e Cura a CarattereScientifico (IRCCS) Instiuto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation (3I), University of Glasgow, Glasgow, United Kingdom
| | - Pedro M Rodríguez Cruz
- Centro Nacional de Analisis Genomico - Centre for Genomic Regulation (CNAG-CRG ), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Neuromuscular Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom.,Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jeannine M Heckmann
- Neurology Division, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa.,The University of Cape Town (UCT) Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Kathleen Bateman
- Neurology Division, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Simintiras CA, Drum JN, Liu H, Sofia Ortega M, Spencer TE. Uterine lumen fluid is metabolically semi-autonomous. Commun Biol 2022; 5:191. [PMID: 35233029 PMCID: PMC8888695 DOI: 10.1038/s42003-022-03134-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Uterine lumen fluid (ULF) is central to successful pregnancy establishment and maintenance, and impacts offspring wellbeing into adulthood. The current dogma is that ULF composition is primarily governed by endometrial glandular epithelial cell secretions and influenced by progesterone. To investigate the hypothesis that ULF is metabolically semi-autonomous, ULF was obtained from cyclic heifers, and aliquots incubated for various durations prior to analysis by untargeted semi-quantitative metabolomic profiling. Metabolite flux was observed in these ULF isolates, supporting the idea that the biochemical makeup of ULF is semi-autonomously dynamic due to enzyme activities. Subsequent integrative analyses of these, and existing, data predict the specific reactions underpinning this phenomenon. These findings enhance our understanding of the mechanisms leading to pregnancy establishment, with implications for improving fertility and pregnancy outcomes in domestic animals as well as women.
Collapse
Affiliation(s)
| | - Jessica N Drum
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Hongyu Liu
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - M Sofia Ortega
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA.
- Division of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
29
|
Yan J, Han VX, Heng B, Guillemin GJ, Bandodkar S, Dale RC. Development of a translational inflammation panel for the quantification of cerebrospinal fluid Pterin, Tryptophan-Kynurenine and Nitric oxide pathway metabolites. EBioMedicine 2022; 77:103917. [PMID: 35279631 PMCID: PMC8914118 DOI: 10.1016/j.ebiom.2022.103917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Neuroinflammatory diseases such as encephalitis, meningitis, multiple sclerosis and other neurological diseases with inflammatory components, have demonstrated a need for diagnostic biomarkers to define treatable and reversible neuroinflammation. The development and clinical validation of a targeted translational inflammation panel using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) could provide early diagnosis, rapid treatment and insights into neuroinflammatory mechanisms. Methods An inflammation panel of 13 metabolites (neopterin, tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, picolinic acid, arginine, citrulline and methylhistamine) was measured based on a simple precipitation and filtration method using minimal CSF volume. The chromatographic separation was achieved using the Acquity UPLC BEH C18 column in combination with a gradient elution within a 12-min time frame. Acute encephalitis (n=10; myelin oligodendrocyte glycoprotein encephalitis n=3, anti-N-methyl-D-aspartate encephalitis n=2, acute disseminated encephalomyelitis n=2, herpes simplex encephalitis n=1, enteroviral encephalitis n=1) and frequency-matched non-inflammatory neurological disease controls (n=10) were examined. Findings The method exhibited good sensitivity as the limits of quantification ranged between 0.75 and 3.00 ng mL−1, good linearity (r2 > 0.99), acceptable matrix effects (<± 19.4%) and high recoveries (89.8-109.1 %). There were no interferences observed from common endogenous CSF metabolites, no carryover and concordance with well-established clinical methods. The accuracy and precision for all analytes were within tolerances, at <± 15 mean relative error and < 15 % coefficient of variation respectively. All analytes in matrix-matched pooled human CSF calibrators and human CSF extracts were stable for 24 h after extraction and two freeze-thaw cycles. Interpretation The method was successfully applied to a pilot study investigating acute brain inflammation case-control groups. Statistical discrimination between encephalitis (n=10) and control groups (n=10) was achieved using orthogonal partial least squares discriminant analysis and heatmap cluster analysis. Statistical analysis of the measured metabolites identified significant alterations of seven metabolites in the tryptophan-kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid), arginine and neopterin in presence of acute neuroinflammation. Furthermore, elevated ratios of CSF kynurenine/tryptophan ratio, quinolinic acid/kynurenic acid and anthranilic acid/3-hydroxyanthranilic acid provided strong discriminative power for neuroinflammatory conditions. Studies of large groups of neurological diseases are required to explore the sensitivity and specificity of the inflammation panel. Funding Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia
| | - Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
30
|
Abstract
Metabolomics is the laboratory analysis and scientific study of the metabolome—that is, the entire collection of small molecule chemicals in an organism. The metabolome represents the functional state of an organism and provides a multifaceted readout of the aggregate activity of endogenous (cellular) and exogenous (environmental) processes. In this review, we discuss how the integrative and dynamic properties of the metabolome create unique opportunities to study complex pathologies that evolve and oscillate over time, like epilepsy. We explain how the scientific progress and clinical applications of metabolomics remain hampered by biological and technical challenges, and we propose best practices to overcome these challenges so that metabolomics can be used in a rigorous and effective manner to further epilepsy research.
Collapse
Affiliation(s)
- Tore Eid
- Departments of Laboratory Medicine, of Neurosurgery, and of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Clinical Chemistry Laboratory, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
31
|
Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites 2021; 11:metabo11120812. [PMID: 34940570 PMCID: PMC8708401 DOI: 10.3390/metabo11120812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolomics approach represents the last downstream phenotype and is widely used in clinical studies and drug discovery. In this paper, we outline recent advances in the metabolomics research of autoimmune diseases (ADs) such as rheumatoid arthritis (RA), multiple sclerosis (MuS), and systemic lupus erythematosus (SLE). The newly discovered biomarkers and the metabolic mechanism studies for these ADs are described here. In addition, studies elucidating the metabolic mechanisms underlying these ADs are presented. Metabolomics has the potential to contribute to pharmacotherapy personalization; thus, we summarize the biomarker studies performed to predict the personalization of medicine and drug response.
Collapse
|
32
|
Wang Y, Liu Y, Chen R, Qiao L. Metabolomic Characterization of Cerebrospinal Fluid from Intracranial Bacterial Infection Pediatric Patients: A Pilot Study. Molecules 2021; 26:molecules26226871. [PMID: 34833963 PMCID: PMC8622478 DOI: 10.3390/molecules26226871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Intracranial bacterial infection remains a major cause of morbidity and mortality in neurosurgical cases. Metabolomic profiling of cerebrospinal fluid (CSF) holds great promise to gain insights into the pathogenesis of central neural system (CNS) bacterial infections. In this pilot study, we analyzed the metabolites in CSF of CNS infection patients and controls in a pseudo-targeted manner, aiming at elucidating the metabolic dysregulation in response to postoperative intracranial bacterial infection of pediatric cases. Untargeted analysis uncovered 597 metabolites, and screened out 206 differential metabolites in case of infection. Targeted verification and pathway analysis filtered out the glycolysis, amino acids metabolism and purine metabolism pathways as potential pathological pathways. These perturbed pathways are involved in the infection-induced oxidative stress and immune response. Characterization of the infection-induced metabolic changes can provide robust biomarkers of CNS bacterial infection for clinical diagnosis, novel pathways for pathological investigation, and new targets for treatment.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China;
| | - Yu Liu
- Department of Neurosurgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200062, China;
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Correspondence: (R.C.); (L.Q.)
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China;
- Correspondence: (R.C.); (L.Q.)
| |
Collapse
|
33
|
Ramanan M, Shorr A, Lipman J. Ventriculitis: Infection or Inflammation. Antibiotics (Basel) 2021; 10:antibiotics10101246. [PMID: 34680826 PMCID: PMC8532926 DOI: 10.3390/antibiotics10101246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Ventriculitis, or infection of the cerebrospinal fluid, in the presence of external ventricular drains (EVD), is an important complication and associated with substantial mortality, morbidity, and healthcare costs. Further, the conditions that require the insertion of an EVD, such as neurotrauma and subarachnoid hemorrhage, are themselves associated with inflammation of the cerebrospinal fluid. Phenotypically, patients with inflammation of the cerebrospinal fluid can present with very similar symptoms, signs, and laboratory findings to those with infection. This review examines various controversies relating to the definitions, diagnosis, challenges of differentiating infection from inflammation, prevention, and treatment of ventriculitis in patients with EVDs.
Collapse
Affiliation(s)
- Mahesh Ramanan
- Intensive Care Unit, Caboolture Hospital, Caboolture, QLD 4510, Australia
- Adult Intensive Care Services, The Prince Charles Hospital, Chermside, QLD 4032, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia;
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Newtown, NSW 1466, Australia
- Correspondence:
| | - Andrew Shorr
- Washington Hospital Center, Medical Intensive Care Unit, Washington, DC 20010, USA;
| | - Jeffrey Lipman
- School of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia;
- Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
- Nimes University Hospital, University of Montpellier, 30029 Nimes, France
| |
Collapse
|