1
|
Chai P, Shi Y, Yu J, Liu X, Yang M, Li D, Li K, Li S, Kong X, Zhang Q, Sun X, Li J, Li L, Li D, Duan Z. An oral vaccine based on the Ad5 vector with a double-stranded RNA adjuvant protects mice against respiratory syncytial virus. Int Immunopharmacol 2024; 146:113970. [PMID: 39736241 DOI: 10.1016/j.intimp.2024.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
A safe and effective vaccine is urgently needed to prevent acute respiratory infections caused by respiratory syncytial virus (RSV). Oral administration offers several advantages, including ease of delivery, minimal stress for vaccine recipients, and greater safety than the systemic injection. In this study, we developed an oral vaccine candidate based on the human adenovirus serotype 5 (Ad5) vector, Ad5-PreF-DS2, encoding a prefusion protein of RSV with a dsRNA as an endogenous adjuvant. We evaluated the immunogenicity and protective efficacy of oral immunization against an RSV challenge in mice, comparing it with those of IM and IN immunizations. Subsequently, we performed an in-depth analysis of the B cell immune response to the oral vaccine. Our findings indicate that oral vaccines elicited a robust antibody response, T-cell response, and B-cell response, and provide effective protection against RSV infection in mice. Importantly, dsRNA adjuvants significantly enhanced T-cell immune responses and increased neutralizing antibody levels when administered via oral vaccination (P < 0.05). These preclinical data demonstrate the capacity of an oral vaccine to induce protective immunity against RSV and support further development of RSV vaccine.
Collapse
Affiliation(s)
- Pengdi Chai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junjie Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiafei Liu
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyao Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dongwei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ke Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shan Li
- Novac Beijing Biotech Co., LTD, Beijing 102206, China
| | - Xiangyu Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qin Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoman Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jinsong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - LiLi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
2
|
Jang SO, Lee JH, Chung YJ, Oh HS, Shin M, Kim SO, Hong SP. Chimeric adenovirus-based herpes zoster vaccine with the tPA signal peptide elicits a robust T-cell immune response. Virology 2024; 600:110243. [PMID: 39288613 DOI: 10.1016/j.virol.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Herpes zoster (HZ), or shingles, is caused by reactivation of the varicella-zoster virus (VZV), which remains latent in the sensory ganglia until immunity wanes with age. The representative HZ vaccine, Shingrix is efficacious but causes side effects due to vaccine adjuvants. Therefore, the development of highly efficacious vaccines with minimal side effects is required. We developed chimeric adenovirus vector (ChimAd)-based HZ vaccine candidates encoding the VZV glycoprotein E (gE). These candidates include ChimAd-tPAgE, in which the signal peptide is replaced with tissue plasminogen activator (tPA), and ChimAd-WTgE, which retains the original signal peptide. C57BL/6 mice were immunized with VZV-vaccine candidates, and cellular and humoral immune responses were evaluated using interferon-γ ELISPOT and ELISA. The ChimAd-based HZ vaccines induced high levels of gE-specific antibodies and cell-mediated immunity. ChimAd-tPAgE (optimal dose: 1 × 107 IFU) elicited a more robust gE-specific T-cell response than Shingrix and Zostavax, showing potential as HZ prophylactic vaccines.
Collapse
Affiliation(s)
- Sun Ok Jang
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Hyun Lee
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong-Ju Chung
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyun-Seok Oh
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Myeongcheol Shin
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Soo-Ok Kim
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sun Pyo Hong
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Shen CF, Rodenbrock A, Lanthier S, Burney E, Loignon M. Optimization of Culture Media and Feeding Strategy for High Titer Production of an Adenoviral Vector in HEK 293 Fed-Batch Culture. Vaccines (Basel) 2024; 12:524. [PMID: 38793775 PMCID: PMC11125598 DOI: 10.3390/vaccines12050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Adenoviruses are efficient and safe vectors for delivering target antigens and adenovirus-based vaccines have been used against a wide variety of pathogens, including tuberculosis and COVID-19. Cost-effective and scalable biomanufacturing processes are critical for the commercialization of adenovirus-vectored vaccines. Adenoviral vectors are commonly produced through the infection of batch cultures at low cell density cultures, mostly because infections at high cell densities result in reduced cell-specific virus productivity and does not improve volumetric productivity. In this study, we have investigated the feasibility of improving the volumetric productivity by infecting fed-batch cultures at high cell densities. Four commercial and one in-house developed serum-free media were first tested for supporting growth of HEK 293 cells and production of adenovirus type 5 (Ad5) in batch culture. Two best media were then selected for development of fed-batch culture to improve cell growth and virus productivity. A maximum viable cell density up to 16 × 106 cells/mL was achieved in shake flask fed-batch cultures using the selected media and commercial or in-house developed feeds. The volumetric virus productivity was improved by up to six folds, reaching 3.0 × 1010 total viral particles/mL in the fed-batch culture cultivated with the media and feeds developed in house and infected at a cell density of 5 × 106 cells/mL. Additional rounds of optimization of media and feed were required to maintain the improved titer when the fed-batch culture was scaled up in a bench scale (3 L) bioreactor. Overall, the results suggested that fed-batch culture is a simple and feasible process to significantly improve the volumetric productivity of Ad5 through optimization and balance of nutrients in culture media and feeds.
Collapse
Affiliation(s)
- Chun Fang Shen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | | | | | | | | |
Collapse
|
4
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
5
|
Sayedahmed EE, Elshafie NO, Zhang G, Mohammed SI, Sambhara S, Mittal SK. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front Immunol 2023; 14:1305937. [PMID: 38077380 PMCID: PMC10702558 DOI: 10.3389/fimmu.2023.1305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Gong M, Wang Y, Liu S, Li B, Du E, Gao Y. Rapid Construction of an Infectious Clone of Fowl Adenovirus Serotype 4 Isolate. Viruses 2023; 15:1657. [PMID: 37632000 PMCID: PMC10459658 DOI: 10.3390/v15081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Adenovirus vectors possess a good safety profile, an extensive genome, a range of host cells, high viral yield, and the ability to elicit broad humoral and cellular immune responses. Adenovirus vectors are widely used in infectious disease research for future vaccine development and gene therapy. In this study, we obtained a fowl adenovirus serotype 4 (FAdV-4) isolate from sick chickens with hepatitis-hydropericardium syndrome (HHS) and conducted animal regression text to clarify biological pathology. We amplified the transfer vector and extracted viral genomic DNA from infected LMH cells, then recombined the mixtures via the Gibson assembly method in vitro and electroporated them into EZ10 competent cells to construct the FAdV-4 infectious clone. The infectious clones were successfully rescued in LMH cells within 15 days of transfection. The typical cytopathic effect (CPE) and propagation titer of FAdV-4 infectious clones were also similar to those for wild-type FAdV-4. To further construct the single-cycle adenovirus (SC-Ad) vector, we constructed SC-Ad vectors by deleting the gene for IIIa capsid cement protein. The FAdV4 infectious clone vector was introduced into the ccdB cm expression cassette to replace the IIIa gene using a λ-red homologous recombination technique, and then the ccdB cm expression cassette was excised by PmeI digestion and self-ligation to obtain the resulting plasmids as SC-Ad vectors.
Collapse
Affiliation(s)
- Minzhi Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Shijia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Boshuo Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
- Yangling Carey Biotechnology Co., Ltd., Yangling 712100, China
| | - Yupeng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| |
Collapse
|
7
|
Rzymski P. Guillain-Barré syndrome and COVID-19 vaccines: focus on adenoviral vectors. Front Immunol 2023; 14:1183258. [PMID: 37180147 PMCID: PMC10169623 DOI: 10.3389/fimmu.2023.1183258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
COVID-19 vaccination is a life-saving intervention. However, it does not come up without a risk of rare adverse events, which frequency varies between vaccines developed using different technological platforms. The increased risk of Guillain-Barré syndrome (GBS) has been reported for selected adenoviral vector vaccines but not for other vaccine types, including more widely used mRNA preparations. Therefore, it is unlikely that GBS results from the cross-reactivity of antibodies against the SARS-CoV-2 spike protein generated after the COVID-19 vaccination. This paper outlines two hypotheses according to which increased risk of GBS following adenoviral vaccination is due to (1) generation of anti-vector antibodies that may cross-react with proteins involved in biological processes related to myelin and axons, or (2) neuroinvasion of selected adenovirus vectors to the peripheral nervous system, infection of neurons and subsequent inflammation and neuropathies. The rationale behind these hypotheses is outlined, advocating further epidemiological and experimental research to verify them. This is particularly important given the ongoing interest in using adenoviruses in developing vaccines against various infectious diseases and cancer immunotherapeutics.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
David SC. Technologies and therapeutics for ongoing prevention of respiratory infections. Clin Transl Immunology 2023; 12:e1442. [PMID: 36861031 PMCID: PMC9969962 DOI: 10.1002/cti2.1442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Affiliation(s)
- Shannon C David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
9
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
10
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
11
|
Zarei M, Jonveaux J, Wang P, Haller FM, Gu B, Koulov AV, Jahn M. Proteomic Analysis of Adenovirus 5 by UHPLC-MS/MS: Development of a Robust and Reproducible Sample Preparation Workflow. ACS OMEGA 2022; 7:36825-36835. [PMID: 36278084 PMCID: PMC9583333 DOI: 10.1021/acsomega.2c05325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 05/20/2023]
Abstract
Adenoviruses (AdVs) have recently become widely used therapeutic vectors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. AdVs are large, nonenveloped viruses with an icosahedral capsid formed from several proteins that encloses double-stranded DNA. These proteins are the main components and key players in initial stages of infection by the virus particles, so their heterogeneity and content must be evaluated to ensure product and process consistency. Peptide mapping can provide detailed information on these proteins, e.g., their amino acid sequences and post-translational modifications (PTMs), which is crucial for the development and optimization of the manufacturing processes. However, sample preparation remains the main bottleneck for successful proteomic analysis of the viral proteins (VPs) of AdVs due to their low concentrations and vast stoichiometric ranges. To address this problem, we have developed a fast and efficient protocol for preparing samples for proteomic analysis of VPs of AdV5 that requires no cleaning step prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The approach enabled identification of 92% of amino acids in AdV5 VPs on average and quantification of 53 PTMs in a single LC-MS/MS experiment using trypsin protease. The data obtained demonstrate the method's potential utility for supporting the development of novel AdV-based gene therapy products (GTPs).
Collapse
Affiliation(s)
- Mostafa Zarei
- Drug
Product Services, Lonza AG, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
- . Tel: +41 613168798. Fax: +41 61 316 9162
| | - Jérôme Jonveaux
- Drug
Product Services, Lonza AG, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
| | - Peng Wang
- Lonza
Houston, Inc. 14905 Kirby
Drive, Houston, Texas 77047, United States
| | | | - Bingnan Gu
- Lonza
Houston, Inc. 14905 Kirby
Drive, Houston, Texas 77047, United States
| | - Atanas V. Koulov
- Drug
Product Services, Lonza AG, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
| | - Michael Jahn
- Drug
Product Services, Lonza AG, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
12
|
Olivera-Ugarte SM, Bolduc M, Laliberté-Gagné MÈ, Blanchette LJ, Garneau C, Fillion M, Savard P, Dubuc I, Flamand L, Farnòs O, Xu X, Kamen A, Gilbert M, Rabezanahary H, Scarrone M, Couture C, Baz M, Leclerc D. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 44:102584. [PMID: 35850421 PMCID: PMC9287509 DOI: 10.1016/j.nano.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
A vaccine candidate to SARS-CoV-2 was constructed by coupling the viral receptor binding domain (RBD) to the surface of the papaya mosaic virus (PapMV) nanoparticle (nano) to generate the RBD-PapMV vaccine. Immunization of mice with the coupled RBD-PapMV vaccine enhanced the antibody titers and the T-cell mediated immune response directed to the RBD antigen as compared to immunization with the non-coupled vaccine formulation (RBD + PapMV nano). Anti-RBD antibodies, generated in vaccinated animals, neutralized SARS-CoV-2 infection in vitro against the ancestral, Delta and the Omicron variants. At last, immunization of mice susceptible to the infection by SARS-CoV-2 (K18-hACE2 transgenic mice) with the RBD-PapMV vaccine induced protection to the ancestral SARS-CoV-2 infectious challenge. The induction of the broad neutralization against SARS-CoV-2 variants induced by the RBD-PapMV vaccine demonstrate the potential of the PapMV vaccine platform in the development of efficient vaccines against viral respiratory infections.
Collapse
|
13
|
Lu M, Liu K, Peng Y, Ding Z, Li Y, Tendu A, Hu X, Gao G, Guo W, Liu H, Rao J, Zhao J, Chen M, Yuan Z, Wong G, Shan C, Yao Y, Lan J. Recombinant chimpanzee adenovirus vector vaccine expressing the spike protein provides effective and lasting protection against SARS-CoV-2 infection in mice. Virol Sin 2022; 37:581-590. [PMID: 35659605 PMCID: PMC9156438 DOI: 10.1016/j.virs.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/26/2022] [Indexed: 10/30/2022] Open
Abstract
SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.
Collapse
Affiliation(s)
- Mingqing Lu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhe Ding
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingwen Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alexander Tendu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Hu
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Juhong Rao
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Chao Shan
- State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Stolovich-Rain M, Kumari S, Friedman A, Kirillov S, Socol Y, Billan M, Pal RR, Das K, Golding P, Oiknine-Djian E, Sirhan S, Sagie MB, Cohen-Kfir E, Gold N, Fahoum J, Kumar M, Elgrably-Weiss M, Zhou B, Ravins M, Gatt YE, Bhattacharya S, Zelig O, Wiener R, Wolf DG, Elinav H, Strahilevitz J, Padawer D, Baraz L, Rouvinski A. Intramuscular mRNA BNT162b2 vaccine against SARS-CoV-2 induces neutralizing salivary IgA. Front Immunol 2022; 13:933347. [PMID: 36798518 PMCID: PMC9927016 DOI: 10.3389/fimmu.2022.933347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/21/2022] [Indexed: 02/03/2023] Open
Abstract
Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.
Collapse
Affiliation(s)
- Miri Stolovich-Rain
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sujata Kumari
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ahuva Friedman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saveliy Kirillov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,National Center for Biotechnology, Astana, Kazakhstan.,Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Yakov Socol
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Billan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ritesh Ranjan Pal
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathakali Das
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peretz Golding
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Salim Sirhan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Bejerano Sagie
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Gold
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manoj Kumar
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bing Zhou
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Zelig
- Blood Bank, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Lautenberg Centre for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Elinav
- Department of Clinical Microbiology and Infectious Diseases, Hadassah AIDS Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dan Padawer
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Pulmonary Medicine, Hadassah Medical Center, Affiliated to the Faculty of Medicine, Hebrew University Jerusalem, Jerusalem, Israel.,Department of Internal Medicine D, Hadassah Medical Center, affiliated to the Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Leah Baraz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,Hadassah Academic College Jerusalem, Jerusalem, Israel
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|