1
|
Al Chalabi R, Sherbash M, Al-Marri F, Iqneibi M, Joy FE, Jochebeth A, Al-Khawaga S, Buddenkotte J, Steinhoff M. Severe atopic dermatitis in an Asian-Arabic population treated with dupilumab: A retrospective observational study. J Eur Acad Dermatol Venereol 2024; 38:e981-e983. [PMID: 38651189 DOI: 10.1111/jdv.20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Radi Al Chalabi
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed Sherbash
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
| | - Fahad Al-Marri
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Iqneibi
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Febu Elizabeth Joy
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
- Medical School, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Department of Dermatology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
- Medical School, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York City, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Hwang SM, Song JM, Choi JJ, Jung Y, Park CK, Kim YH. Functional Role of Piezo1 in the Human Eosinophil Cell Line AML14.3D10: Implications for the Immune and Sensory Nervous Systems. Biomolecules 2024; 14:1157. [PMID: 39334923 PMCID: PMC11429562 DOI: 10.3390/biom14091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.3D10. We detected Piezo1 mRNA expression, but not Piezo2 expression, in these cells, confirming the presence of the Piezo1 protein. Activation of Piezo1 with Yoda1, its specific agonist, resulted in a significant calcium influx, which was inhibited by the Piezo1-specific inhibitor Dooku1, as well as other nonspecific inhibitors (Ruthenium Red, Gd3+, and GsMTx-4). Further analysis revealed that Piezo1 activation modulated the expression and secretion of both pro-inflammatory and anti-inflammatory cytokines in AML14.3D10 cells. Notably, supernatants from Piezo1-activated AML14.3D10 cells enhanced capsaicin and ATP-induced calcium responses in the dorsal root ganglion neurons of mice. These findings elucidate the physiological role of Piezo1 in AML14.3D10 cells and suggest that factors secreted by these cells can modulate the activity of transient receptor potential 1 (TRPV1) and purinergic receptors, which are associated with pain and itch signaling. The results of this study significantly advance our understanding of the function of Piezo1 channels in the immune and sensory nervous systems.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Min Song
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jung Ju Choi
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Yosipovitch G, Canchy L, Ferreira BR, Aguirre CC, Tempark T, Takaoka R, Steinhoff M, Misery L. Integrative Treatment Approaches with Mind-Body Therapies in the Management of Atopic Dermatitis. J Clin Med 2024; 13:5368. [PMID: 39336855 PMCID: PMC11432615 DOI: 10.3390/jcm13185368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathophysiology characterized by intense pruritus, often associated with psychological stress and atopic and non-atopic comorbidities that significantly reduce quality of life. The psychological aspects of AD and the interaction between the mind and body via the skin-brain axis have led to an interest in mind-body therapies (MBT). The aim of this article is, therefore, to reinforce the importance of psychodermatological care in AD. We performed a focused literature review on holistic practices or integrative MBT in AD, including education, cognitive behavioral therapy, habit reversal, meditation, mindfulness, hypnotherapy, eye movement desensitization and reprocessing, biofeedback, progressive muscle relaxation, autonomous sensory meridian response, music therapy, massage, and touch therapy. A multidisciplinary holistic approach with MBT, in addition to conventional pharmacologic antipruritic therapies, to break the itch-scratch cycle may improve AD outcomes and psychological well-being. Although there is a paucity of rigorously designed trials, evidence shows the potential benefits of an integrative approach on pruritus, pain, psychological stress, anxiety, depressive symptoms, and sleep quality. Relaxation and various behavioral interventions, such as habit reversal therapy for replacing harmful scratching with massaging with emollient 'plus', may reduce the urge to scratch, while education may improve adherence to conventional therapies.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, University of Miami, Miami, FL 33130, USA
| | - Ludivine Canchy
- La Roche-Posay Laboratoire Dermatologique, 92300 Levallois-Perret, France
| | - Bárbara Roque Ferreira
- Laboratoire Interactions Epithéliums Neurones (LIEN), University of Brest, 29200 Brest, France
- Department of Dermatology, Algarve University Hospital Centre, ULS Algarve, 8000-386 Faro, Portugal
| | | | - Therdpong Tempark
- Department of Pediatrics, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roberto Takaoka
- Division of Dermatology, Medical School Hospital, University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Martin Steinhoff
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha 3050, Qatar
- College of Health and Life Sciences, Hamad-Bin Khalifa University-Qatar, Doha 5825, Qatar
- Department of Dermatology & Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar
| | - Laurent Misery
- Laboratoire Interactions Epithéliums Neurones (LIEN), University of Brest, 29200 Brest, France
- Department of Dermatology, University Hospital of Brest, 29200 Brest, France
| |
Collapse
|
4
|
Silverberg JI, Boguniewicz M, Quintana FJ, Clark RA, Gross L, Hirano I, Tallman AM, Brown PM, Fredericks D, Rubenstein DS, McHale KA. Tapinarof validates the aryl hydrocarbon receptor as a therapeutic target: A clinical review. J Allergy Clin Immunol 2024; 154:1-10. [PMID: 38154665 DOI: 10.1016/j.jaci.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that has wide-ranging roles, including regulation of inflammation and homeostasis. AhR is not a cell surface receptor; rather, it exists in a cytoplasmic complex that responds to a wide variety of structurally dissimilar endogenous, microbial, and environmental ligands. The ubiquitous expression of AhR, its ability to be activated by a wide range of ligands, and its capacity to act as a master regulator for gene expression and homeostasis make it a promising new therapeutic target. Clinical trials of tapinarof cream have now validated AhR agonism as a therapeutic approach that can deliver significant efficacy for treating inflammatory skin diseases, including psoriasis and atopic dermatitis. Tapinarof 1% cream is a first-in-class, nonsteroidal, topical, AhR agonist with a pharmacokinetic profile that results in localized exposure at sites of disease, avoiding systemic safety concerns, drug interactions, or off-target effects. Psoriasis and atopic dermatitis both involve epidermal inflammation, cellular immune responses, dysregulation of skin barrier protein expression, and oxidative stress. On the basis of the clinical effectiveness of tapinarof cream for treating inflammatory skin diseases, we review how targeting AhR may offer a significant opportunity in other conditions that share key aspects of pathogenesis, including asthma, inflammatory bowel disease, eosinophilic esophagitis, ophthalmic, and nervous system diseases.
Collapse
Affiliation(s)
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | | | - Lara Gross
- Dallas Allergy and Asthma Center, and the Allergy and Immunology Division, Baylor University Medical Center, Dallas, Tex
| | - Ikuo Hirano
- Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | | | | | | | | |
Collapse
|
5
|
Croft M, Esfandiari E, Chong C, Hsu H, Kabashima K, Kricorian G, Warren RB, Wollenberg A, Guttman-Yassky E. OX40 in the Pathogenesis of Atopic Dermatitis-A New Therapeutic Target. Am J Clin Dermatol 2024; 25:447-461. [PMID: 38236520 PMCID: PMC11070399 DOI: 10.1007/s40257-023-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Atopic dermatitis (AD) is a chronic, heterogeneous, inflammatory disease characterized by skin lesions, pruritus, and pain. Patients with moderate-to-severe AD experience chronic symptoms, intensified by unpredictable flares, and often have comorbidities and secondary complications, which can result in significant clinical burden that impacts the patient's overall quality of life. The complex interplay of immune dysregulation and skin barrier disruption drives AD pathogenesis, of which T-cell-dependent inflammation plays a critical role in patients with AD. Despite new targeted therapies, many patients with moderate-to-severe AD fail to achieve or sustain their individual treatment goals and/or may not be suitable for or tolerate these therapies. There remains a need for a novel, efficacious, well-tolerated therapeutic option that can deliver durable benefits across a heterogeneous AD patient population. Expression of OX40 [tumor necrosis factor receptor superfamily, member 4 (TNFRSF4)], a prominent T-cell co-stimulatory molecule, and its ligand [OX40L; tumor necrosis factor superfamily, member 4 (TNFSF4)] is increased in AD. As the OX40 pathway is critical for expansion, differentiation, and survival of effector and memory T cells, its targeting might be a promising therapeutic approach to provide sustained inhibition of pathogenic T cells and associated inflammation and broad disease control. Antibodies against OX40 [rocatinlimab (AMG 451/KHK4083) and telazorlimab (GBR 830)] or OX40L [amlitelimab (KY1005)] have shown promising results in early-phase clinical studies of moderate-to-severe AD, highlighting the importance of OX40 signaling as a new therapeutic target in AD.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| | | | | | | | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Richard B Warren
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Munich, Germany
- Department of Dermatology and Allergy, University Hospital Augsburg, Augsburg, Germany
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1047, New York, NY, 10029-6574, USA.
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Krupka-Olek M, Bożek A, Aebisher D, Bartusik-Aebisher D, Cieślar G, Kawczyk-Krupka A. Potential Aspects of the Use of Cytokines in Atopic Dermatitis. Biomedicines 2024; 12:867. [PMID: 38672221 PMCID: PMC11048200 DOI: 10.3390/biomedicines12040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Atopic dermatitis (AD) is an abnormal inflammatory response in the skin to food, environmental IgE, or non-IgE allergens. This disease belongs to a group of inflammatory diseases that affect both children and adults. In highly developed countries, AD is diagnosed twice as often in children than in adults, which may possibly be connected to increased urbanization. The immune system's pathomechanisms of AD involve humoral mechanisms with IgE, cellular T lymphocytes, dendritic cells occurring in the dermis, Langerhans cells occurring in the epidermis, and other cells infiltrating the site of inflammation (eosinophils, macrophages, mast cells, neutrophils, and basophils). Cytokines are small proteins that affect the interaction and communication between cells. This review characterizes cytokines and potential aspects of the treatment of atopic dermatitis, as well as new strategies that are currently being developed, including targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.B.)
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.B.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland;
| |
Collapse
|
7
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
8
|
Mahmoud RH, Brooks SG, Yosipovitch G. Current and emerging drugs for the treatment of pruritus: an update of the literature. Expert Opin Pharmacother 2024; 25:655-672. [PMID: 38682595 DOI: 10.1080/14656566.2024.2349193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Pruritus, particularly in its chronic form, often imposes significant suffering and reductions in patients' quality of life. The pathophysiology of itch is varied depending on disease context, creating opportunities for unique drug development and multimodal therapy. AREAS COVERED The purpose of this article is to provide an update of the literature regarding current and emerging therapeutics in itch. We review the multitudes of drug targets available and corresponding drugs that have shown efficacy in clinical trials, with a particular emphasis on phase 2 and 3 trials and beyond. Broadly, these targets include therapies directed against type 2 inflammation (i.e. Th2 cytokines, JAK/STAT, lipid mediators, T-cell mediators, and other enzymes and receptors) and neural receptors and targets (i.e. PARs, TRP channels, opioid receptors, MRGPRs, GABA receptors, and cannabinoid receptors). EXPERT OPINION Therapeutics for itch are emerging at a remarkable pace, and we are entering an era with more and more specialized therapies. Increasingly, these treatments are able to relieve itch beyond their effect on inflammation by directly targeting the neurosensory system.
Collapse
Affiliation(s)
- Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| |
Collapse
|
9
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
10
|
Ma EZ, Deng J, Parthasarathy V, Lee KK, Pritchard T, Guo S, Zhang C, Kwatra MM, Le A, Kwatra SG. Integrated plasma metabolomic and cytokine analysis reveals a distinct immunometabolic signature in atopic dermatitis. Front Immunol 2024; 15:1354128. [PMID: 38558806 PMCID: PMC10978712 DOI: 10.3389/fimmu.2024.1354128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Importance Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures Fold changes of metabolites in AD vs healthy control plasma. Results In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.
Collapse
Affiliation(s)
- Emily Z. Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kevin K. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas Pritchard
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shenghao Guo
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cissy Zhang
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madan M. Kwatra
- Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Anne Le
- Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shawn G. Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Yang Y, Chen H, Jiang Q, Yang L, Zhu R, Huang N. Genome-wide identification of dysregulated alternative splicing and RNA-binding proteins involved in atopic dermatitis. Front Genet 2024; 15:1287111. [PMID: 38495671 PMCID: PMC10940350 DOI: 10.3389/fgene.2024.1287111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Objectives: We explored the role and molecular mechanisms of RNA-binding proteins (RBPs) and their regulated alternative splicing events (RASEs) in the pathogenesis of atopic dermatitis (AD). Methods: We downloaded RNA-seq data (GSE121212) from 10 healthy control skin samples (healthy, Ctrl), 10 non-lesional skin samples with AD damage (non-lesional, NL), and 10 lesional skin samples with AD damage (lesional, LS). We performed the analysis of differentially expressed genes (DEGs), differentially expressed RBPs (DE-RBPs), alternative splicing (AS), functional enrichment, the co-expression of RBPs and RASEs, and quantitative polymerase chain reaction (qPCR). Results: We identified 60 DE-RBP genes by intersecting 2141 RBP genes from existing reports with overall 2697 DEGs. Most of the DE-RBP genes were found to be upregulated in the AD LS group and related to immune and apoptosis pathways. We observed different ASEs and RASEs among the healthy, AD NL, and AD LS groups. In particular, alt3p and alt5p were the main ASEs and RASEs in AD NL and AD LS groups, compared to the healthy group. Furthermore, we constructed co-expression networks of DE-RBPs and RAS, with particular enrichment in biological pathways including cytoskeleton organization, inflammation, and immunity. Subsequently, we selected seven genes that are commonly present in these three pathways to assess their expression levels in the peripheral blood mononuclear cells (PBMCs) from both healthy individuals and AD patients. The results demonstrated the upregulation of four genes (IFI16, S100A9, PKM, and ENO1) in the PBMCs of AD patients, which is highly consistent with DE-RBP genes analysis. Finally, we selected four RAS genes regulated by RBPs that were related to immune pathways and examined their RASEs in PBMCs from both AD patients and healthy controls. The results revealed an increased percentage of RASEs in the DDX60 gene in AD, which is highly consistent with AS analysis. Conclusion: Dysregulated RBPs and their associated RASEs may have a significant regulatory role in the development of AD and could be potential therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Steinhoff M, Kwatra S, Misery L. Editorial: Itch treatments. Front Med (Lausanne) 2024; 11:1373702. [PMID: 38468751 PMCID: PMC10926530 DOI: 10.3389/fmed.2024.1373702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- School of Life Sciences, Hamad-bin-Khalifa University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Shawn Kwatra
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| | - Laurent Misery
- Department of Dermatology, Venereology, and Allergology, University Hospital of Brest, Brest, France
- French Expert Centre on Pruritus, Brest, France
- Univ. Brest, LIEN, Brest, France
| |
Collapse
|
13
|
Akhtar S, Alsayed RKME, Ahmad F, AlHammadi A, Al-Khawaga S, AlHarami SMAM, Alam MA, Al Naama KAHN, Buddenkotte J, Uddin S, Steinhoff M, Ahmad A. Epigenetic control of inflammation in Atopic Dermatitis. Semin Cell Dev Biol 2024; 154:199-207. [PMID: 37120405 DOI: 10.1016/j.semcdb.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is a common but also complex chronic, itchy skin condition with underlying inflammation of the skin. This skin ailment is prevalent worldwide and affects people of all ages, particularly children below five years of age. The itching and resulting rashes in AD patients are often the result of inflammatory signals, thus necessitating a closer look at the inflammation-regulating mechanisms for putative relief, care and therapy. Several chemical- as well as genetically-induced animal models have established the importance of targeting pro-inflammatory AD microenvironment. Epigenetic mechanisms are gaining attention towards a better understanding of the onset as well as the progression of inflammation. Several physiological processes with implications in pathophysiology of AD, such as, barrier dysfunction either due to reduced filaggrin / human β-defensins or altered microbiome, reprograming of Fc receptors with resulting overexpression of high affinity IgE receptors, elevated eosinophil numbers or the elevated IL-22 production by CD4 + T cells have underlying epigenetic mechanisms that include differential promoter methylation and/or regulation by non-coding RNAs. Reversing these epigenetic changes has been verified to reduce inflammatory burden through altered secretion of cytokines IL-6, IL-4, IL-13, IL-17, IL-22 etc, with benefit against AD progression in experimental models. A thorough understanding of epigenetic remodeling of inflammation in AD has the potential of opening avenues for novel diagnostic, prognostic and therapeutic options.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
14
|
Lapeere H, Speeckaert R, Baeck M, Dezfoulian B, Lambert J, Roquet-Gravy PP, Stockman A, White J, Castelijns F, Gutermuth J. Belgian atopic dermatitis guidelines. Acta Clin Belg 2024; 79:62-74. [PMID: 37997950 DOI: 10.1080/17843286.2023.2285576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/13/2023] [Indexed: 11/25/2023]
Abstract
Atopic dermatitis (AD) is one of the most common, bothersome and difficult to treat skin disorders. Recent introduction of new systemic treatments has revolutionized the management of AD. The goal of this guideline is to provide evidence-based recommendations for the management of patients suffering from atopic dermatitis that easily can be implemented in clinical practice. These recommendations were developed by 11 Belgian AD experts. Comments of all experts on the proposed statements were gathered, followed by an online voting session. The most relevant strategies for the management and treatment of AD in the context of the Belgian health care landscape are discussed. General measures, patient education and adequate topical treatment remain the cornerstones of AD management. For moderate to severe AD, the introduction of biologics and JAK inhibitors show unprecedented efficacy, although currently access is limited to a subgroup of patients meeting the reimbursement criteria.
Collapse
Affiliation(s)
- Hilde Lapeere
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | - Marie Baeck
- Department of Dermatology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Bita Dezfoulian
- Department of Dermatology, Liège University Hospital, Liège, Belgium
| | - Julien Lambert
- Department of Dermatology, University Hospital Antwerp (UZA), Edegem, Belgium
| | | | - Annelies Stockman
- Department of Dermatology, AZ Delta campus Rembert Torhout, Torhout, Belgium
| | - Jonathan White
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Yosipovitch G, Gooderham MJ, Ständer S, Fonacier L, Szepietowski JC, Deleuran M, Girolomoni G, Su JC, Bushmakin AG, Cappelleri JC, Feeney C, Chan G, Thorpe AJ, Valdez H, Biswas P, Rojo R, DiBonaventura M, Myers DE. Interpreting the Relationship Among Itch, Sleep, and Work Productivity in Patients with Moderate-to-Severe Atopic Dermatitis: A Post Hoc Analysis of JADE MONO-2. Am J Clin Dermatol 2024; 25:127-138. [PMID: 37624488 PMCID: PMC10796557 DOI: 10.1007/s40257-023-00810-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Abrocitinib, an oral, once-daily Janus kinase 1-selective inhibitor, improved itch severity, sleep, and work productivity versus placebo in patients with moderate-to-severe atopic dermatitis. OBJECTIVE The aim of this study was to investigate relationships among itch, sleep, and work productivity in the phase III JADE MONO-2 clinical trial. METHODS A repeated-measures longitudinal model was used to examine relationships between itch (using the Peak Pruritus Numerical Rating Scale [PP-NRS] or Nighttime Itch Scale [NTIS]) and sleep disturbance/loss (using the Patient-Oriented Eczema Measure sleep item and SCORing AD Sleep Loss Visual Analog Scale) and, separately, between itch and work productivity (using the Work Productivity and Activity Impairment-Atopic Dermatitis Version 2.0 questionnaire). Mediation modelling was used to investigate the effect of treatment (abrocitinib vs placebo) on work impairment via improvements in itch and sleep. RESULTS The relationships between itch/sleep and itch/work productivity were approximately linear. PP-NRS scores of 0, 4-6, and 10 were associated with 0 days, 3-4 days, and 7 days per week of disturbed sleep, respectively. PP-NRS or NTIS scores of 0-1, 4-5, and 10 were associated with 0-10%, 20-30%, and >50% overall work impairment, respectively. Seventy-five percent of the effect of abrocitinib on reducing work impairment was indirectly mediated by improvement in itch, followed by sleep. CONCLUSION These results quantitatively demonstrate that reducing itch severity is associated with improvements in sleep and work productivity. Empirical evidence for the mechanism of action of abrocitinib showed that itch severity is improved, which reduces sleep loss/sleep disruption and, in turn, improves work productivity. CLINICAL TRIAL REGISTRATION NCT03575871.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Department of Dermatology, Miami Itch Center, Miami, FL, USA
| | | | - Sonja Ständer
- Department of Dermatology, Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| | - Luz Fonacier
- NYU Langone Hospital-Long Island Allergy and Immunology, Mineola, NY, USA
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Mette Deleuran
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - John C Su
- Department of Paediatrics, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, Australia
- Department of Dermatology, Monash University, Eastern Health, Box Hill, VIC, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ständer S, Luger T, Kim B, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Yosipovitch G. Cutaneous Components Leading to Pruritus, Pain, and Neurosensitivity in Atopic Dermatitis: A Narrative Review. Dermatol Ther (Heidelb) 2024; 14:45-57. [PMID: 38182845 PMCID: PMC10828226 DOI: 10.1007/s13555-023-01081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic, relapsing immunoinflammatory skin condition characterized by sensations such as pruritis, pain, and neuronal hypersensitivity. The mechanisms underlying these sensations are multifactorial and involve complex crosstalk among several cutaneous components. This review explores the role these components play in the pathophysiology of atopic dermatitis. In the skin intercellular spaces, sensory nerves interact with keratinocytes and immune cells via myriad mediators and receptors. These interactions generate action potentials that transmit pruritis and pain signals from the peripheral nervous system to the brain. Keratinocytes, the most abundant cell type in the epidermis, are key effector cells, triggering crosstalk with immune cells and sensory neurons to elicit pruritis, pain, and inflammation. Filaggrin expression by keratinocytes is reduced in atopic dermatitis, causing a weakened skin barrier and elevated skin pH. Fibroblasts are the main cell type in the dermis and, in atopic dermatitis, appear to reduce keratinocyte differentiation, further weakening the skin barrier. Fibroblasts and mast cells promote inflammation while dermal dendritic cells appear to attenuate inflammation. Inflammatory cytokines and chemokines play a major role in AD pathogenesis. Type 2 immune responses typically generate pruritis, and the type 1 and type 3 responses generate pain. Type 2 responses and increased skin pH contribute to barrier dysfunction and promote dysbiosis of the skin microbiome, causing the proliferation of Staphyloccocus aureus. In conclusion, understanding the dynamic interactions between cutaneous components in AD could drive the development of therapies to improve the quality of life for patients with AD.
Collapse
Affiliation(s)
- Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany.
| | | | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | - Amy Cha
- Pfizer Inc, New York, NY, USA
| | - Gil Yosipovitch
- Pfizer Inc, New York, NY, USA
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
17
|
Tang KW, Hsu CY, Aljuffali IA, Alalaiwe A, Lai WN, Gu PY, Tseng CH, Fang JY. Skin delivery of synthetic benzoyl pterostilbenes suppresses atopic dermatitis-like inflammation through the inhibition of keratinocyte and macrophage activation. Biomed Pharmacother 2024; 170:116073. [PMID: 38159374 DOI: 10.1016/j.biopha.2023.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin autoimmune diseases needing continuous anti-inflammatory management. Pterostilbene is reported to exhibit anti-inflammatory activity with higher bioavailability and stability than its parent compound, resveratrol. In this study, a series of synthetic pterostilbene analogs were designed by the hybridization of pterostilbene with chalcones or benzoyl chloride. Seventeen analogs derived from pterostilbene were synthesized with differences in the positions of hydroxyl, methoxyl, or fluoro moieties. These compounds were screened by the inhibitory effect on the overexpressed Th2-associated cytokines/chemokines in the activated human keratinocytes (HaCaT). The anti-IL-5 and anti-CCL5 activity of these compounds led to the identification of three effective compounds: 3a ((E)- 4-(3,5-dimethoxystyryl)phenyl benzoate), 3d ((E)- 4-(3,5-dimethoxystyryl)phenyl 2-methoxybenzoate), and 3g ((E)- 4-(3,5-dimethoxystyryl)phenyl 2-fluorobenzoate). These benzoyl pterostilbenes also significantly decreased Th1/Th17-associated proinflammatory mediators in the activated macrophages (differentiated THP-1). The result showed that the conditioned medium of benzoyl pterostilbene-treated macrophages reduced the phosphorylated STAT3 in the keratinocytes, indicating the blockade of crosstalk between resident and immune cells. Compounds 3d and 3g generally showed greater skin absorption than 3a. The flux of 3g across barrier-defective skins mimicking the AD skin was 3-fold higher than that of across intact skin. The dinitrochlorobenzene (DNCB)-induced AD mouse model manifested that topical delivery with 3g improved the pathological signs through inhibiting cytokines/chemokines (IL-5, TNF-α, CCL17, and CCL22) and macrophage recruitment. The epidermal thickness was reduced from 76 to 55 µm after topical 3g delivery. The therapeutic activity of 3g was comparable to that of tacrolimus (TAC) used as a positive control. The benzoyl pterostilbenes attenuated the inflammation via the MAPK and c-Jun signaling. Furthermore, this study provided experimental evidence of benzoyl pterostilbene analogs for therapeutic potential on AD.
Collapse
Affiliation(s)
- Kai-Wei Tang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Drug Discovery, Research and Development Department, Anti-Microbial Savior BioteQ Co., Ltd., Kaohsiung, Taiwan
| | - Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Wang-Ni Lai
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Gu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Hayoun M, Misery L. Pain Management in Dermatology. Dermatology 2023; 239:675-684. [PMID: 37433287 DOI: 10.1159/000531758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The dermatologist has to deal with many situations where the patient feels pain and must therefore know how to manage it. SUMMARY The aim of this review was to explore the treatments available to manage pain in dermatology in different circumstances, with an emphasis on pharmacological and non-pharmacological interventions specifically studied in dermatology.
Collapse
Affiliation(s)
- Mathilde Hayoun
- Department of Dermatology, University Hospital of Brest, Brest, France
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest, Brest, France
- LIEN, University Brest, Brest, France
| |
Collapse
|
19
|
Abstract
Atopic dermatitis (AD) is a pruritic inflammatory skin disease that disproportionately affects skin of color patients. African American, Asian, and Hispanic patients carry disproportionate disease burdens, with increased prevalence, disease severity, and health care utilization. AD has a unique clinical presentation in skin of color patients, often with greater extensor involvement, dyspigmentation, and papular and lichenified presentations. Erythema is also more difficult to appreciate and can result in an underappreciation of disease severity in skin of color patients. In this review, we highlight the important manifestations of AD across all skin types, including nuances in treatment.
Collapse
Affiliation(s)
- Waleed Adawi
- Department of Dermatology, Johns Hopkins University School of Medicine
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine
| | - Shanae Henry
- Department of Dermatology, Johns Hopkins University School of Medicine
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine.
| |
Collapse
|
20
|
Koumaki D, Gregoriou S, Evangelou G, Krasagakis K. Pruritogenic Mediators and New Antipruritic Drugs in Atopic Dermatitis. J Clin Med 2023; 12:2091. [PMID: 36983094 PMCID: PMC10054239 DOI: 10.3390/jcm12062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common highly pruritic chronic inflammatory skin disorder affecting 5-20% of children worldwide, while the prevalence in adults varies from 7 to 10%. Patients with AD experience intense pruritus that could lead to sleep disturbance and impaired quality of life. Here, we analyze the pathophysiology of itchiness in AD. We extensively review the histamine-dependent and histamine-independent pruritogens. Several receptors, substance P, secreted molecules, chemokines, and cytokines are involved as mediators in chronic itch. We also, summarize the new emerging antipruritic drugs in atopic dermatitis.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stamatios Gregoriou
- Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | |
Collapse
|
21
|
Role of Omega-Hydroxy Ceramides in Epidermis: Biosynthesis, Barrier Integrity and Analyzing Method. Int J Mol Sci 2023; 24:ijms24055035. [PMID: 36902463 PMCID: PMC10003399 DOI: 10.3390/ijms24055035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.
Collapse
|
22
|
Marek-Jozefowicz L, Nedoszytko B, Grochocka M, Żmijewski MA, Czajkowski R, Cubała WJ, Slominski AT. Molecular Mechanisms of Neurogenic Inflammation of the Skin. Int J Mol Sci 2023; 24:5001. [PMID: 36902434 PMCID: PMC10003326 DOI: 10.3390/ijms24055001] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The skin, including the hypodermis, is the largest body organ and is in constant contact with the environment. Neurogenic inflammation is the result of the activity of nerve endings and mediators (neuropeptides secreted by nerve endings in the development of the inflammatory reaction in the skin), as well as interactions with other cells such as keratinocytes, Langerhans cells, endothelial cells and mast cells. The activation of TRPV-ion channels results in an increase in calcitonin gene-related peptide (CGRP) and substance P, induces the release of other pro-inflammatory mediators and contributes to the maintenance of cutaneous neurogenic inflammation (CNI) in diseases such as psoriasis, atopic dermatitis, prurigo and rosacea. Immune cells present in the skin (mononuclear cells, dendritic cells and mast cells) also express TRPV1, and their activation directly affects their function. The activation of TRPV1 channels mediates communication between sensory nerve endings and skin immune cells, increasing the release of inflammatory mediators (cytokines and neuropeptides). Understanding the molecular mechanisms underlying the generation, activation and modulation of neuropeptide and neurotransmitter receptors in cutaneous cells can aid in the development of effective treatments for inflammatory skin disorders.
Collapse
Affiliation(s)
- Luiza Marek-Jozefowicz
- Department of Dermatology and Venerology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
- Molecular Laboratory, Invicta Fertility and Reproductive Centre, 81-740 Sopot, Poland
| | - Małgorzata Grochocka
- Department of Dermatology and Venerology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Michał A. Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Wiesław J. Cubała
- Department of Psychiatry, Medical University of Gdansk, Debinki St. 7 Build. 25, 80-952 Gdansk, Poland
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, 500 22nd Street South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue, Birmingham, AL 35294, USA
| |
Collapse
|
23
|
Samuel C, Cornman H, Kambala A, Kwatra SG. A Review on the Safety of Using JAK Inhibitors in Dermatology: Clinical and Laboratory Monitoring. Dermatol Ther (Heidelb) 2023; 13:729-749. [PMID: 36790724 PMCID: PMC9930707 DOI: 10.1007/s13555-023-00892-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Janus kinase (JAK) inhibitors are disease-modifying agents with efficacy in treating a spectrum of burdensome dermatologic conditions. The US Food and Drug Administration (FDA) recently placed a black box warning on this class of medications due to safety concerns based on data from studies investigating tofacitinib in patients with rheumatoid arthritis. Here we provide an overview of the timeline of FDA approval of JAK inhibitors in dermatology. We also discuss the available safety profiles of approved oral JAK1 inhibitors, namely abrocitinib and upadacitinib, oral baricitinib, a JAK1/2 inhibitor, deucravacitinib, a Tyk2 inhibitor, and the topical JAK1/2 inhibitor ruxolitinib in dermatology patients. Additionally, we offer suggestions for initial screening and laboratory monitoring for patients receiving JAK inhibitors. We found that the rates of venous thromboembolism reported in trials ranged from no events to 0.1-0.5% in dermatology-specific phase 3 clinical trials compared with no events in the placebo. The rates of cardiovascular events ranged from no events to 0.4-1.2% compared with no events to 0.5-1.2% in the placebo. The rates of serious infections were 0.4-4.8% compared with no events to 0.5-1.3% in the placebo. The rates of nonmelanoma skin cancer (NMSC) ranged from no event to 0.6-0.9% compared with no events in the placebo. The rates of non-NMSC ranged from no event to 0.2-0.7% compared with no event to 0.6% in the placebo. Most patients who developed these adverse events had risk factors for the specific event. The most common adverse events of oral JAK inhibitors included upper respiratory infections, nasopharyngitis, nausea, headache, and acne. Dermatologists should consider patients' baseline risk factors for developing serious complications when prescribing oral JAK inhibitors.
Collapse
Affiliation(s)
- Christeen Samuel
- Department of Dermatology, Johns Hopkins School of Medicine, Cancer Research Building II, Suite 206, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins School of Medicine, Cancer Research Building II, Suite 206, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins School of Medicine, Cancer Research Building II, Suite 206, 1550 Orleans Street, Baltimore, MD 21231 USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins School of Medicine, Cancer Research Building II, Suite 206, 1550 Orleans Street, Baltimore, MD 21231 USA
| |
Collapse
|
24
|
Kim J, Lee SK, Jung M, Jeong SY, You H, Won JY, Han SD, Cho HJ, Park S, Park J, Kim TM, Kim S. Extracellular vesicles from IFN-γ-primed mesenchymal stem cells repress atopic dermatitis in mice. J Nanobiotechnology 2022; 20:526. [PMID: 36496385 PMCID: PMC9741801 DOI: 10.1186/s12951-022-01728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by immune dysregulation, pruritus, and abnormal epidermal barrier function. Compared with conventional mesenchymal stem cell (MSC), induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (iMSC) is recognized as a unique source for producing extracellular vesicles (EVs) because it can be obtained in a scalable manner with an enhanced homogeneity. Stimulation of iMSCs with inflammatory cytokines can improve the immune-regulatory, anti-inflammatory, and tissue-repairing potential of iMSC-derived EVs. RESULTS Proteome analysis showed that IFN-γ-iMSC-EVs are enriched with protein sets that are involved in regulating interferon responses and inflammatory pathways. In AD mice, expression of interleukin receptors for Th2 cytokines (IL-4Rα/13Rα1/31Rα) and activation of their corresponding intracellular signaling molecules was reduced. IFN-γ-iMSC-EVs decreased itching, which was supported by reduced inflammatory cell infiltration and mast cells in AD mouse skin; reduced IgE receptor expression and thymic stromal lymphopoietin and NF-kB activation; and recovered impaired skin barrier, as evidenced by upregulation of key genes of epidermal differentiation and lipid synthesis. CONCLUSIONS IFN-γ-iMSC-EVs inhibit Th2-induced immune responses, suppress inflammation, and facilitate skin barrier restoration, contributing to AD improvement.
Collapse
Affiliation(s)
- Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Minyoung Jung
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Ji-Yeon Won
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Sang-Deok Han
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Hye Jin Cho
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Somi Park
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Joonghoon Park
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea ,grid.31501.360000 0004 0470 5905Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea
| | - Tae Min Kim
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea ,grid.31501.360000 0004 0470 5905Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| |
Collapse
|
25
|
Huang IH, Chung WH, Wu PC, Chen CB. JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review. Front Immunol 2022; 13:1068260. [PMID: 36569854 PMCID: PMC9773077 DOI: 10.3389/fimmu.2022.1068260] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory, pruritic form of dermatosis with heterogeneous manifestations that can substantially affect patients' quality of life. AD has a complex pathogenesis, making treatment challenging for dermatologists. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays a central role in modulating multiple immune axes involved in the immunopathogenesis of AD. In particular, Th2 cytokines, including interleukin (IL)-4, IL-5, IL-13, IL-31, and thymic stromal lymphopoietin, which contribute to the symptoms of chronic inflammation and pruritus in AD, are mediated by JAK-STAT signal transduction. Furthermore, JAK-STAT is involved in the regulation of the epidermal barrier and the modulation of peripheral nerves related to the transduction of pruritus. Targeting the JAK-STAT pathway may attenuate these signals and show clinical efficacy through the suppression of various immune pathways associated with AD. Topical and oral JAK inhibitors with variable selectivity have emerged as promising therapeutic options for AD. Notably, topical ruxolitinib, oral upadacitinib, and oral abrocitinib were approved by the U.S. Food and Drug Administration for treating patients with AD. Accordingly, the present study reviewed the role of JAK-STAT pathways in the pathogenesis of AD and explored updated applications of JAK inhibitors in treating AD.
Collapse
Affiliation(s)
- I-Hsin Huang
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hung Chung
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China,Xiamen Chang Gung Allergology Consortium, Xiamen, Xiamen Chang Gung Hospital, Xiamen, China,College of Medicine, Chang Gung University, Taoyuan, Taiwan,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan,Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Chien Wu
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, and Keelung, Taoyuan, Taiwan,Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China,Xiamen Chang Gung Allergology Consortium, Xiamen, Xiamen Chang Gung Hospital, Xiamen, China,College of Medicine, Chang Gung University, Taoyuan, Taiwan,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan,Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan,*Correspondence: Chun-Bing Chen,
| |
Collapse
|