1
|
Alric H, Mathieu N, Sebbagh A, Peré G, Demarquay C, Cronemberger A, Berger A, Marcel B, Wilhelm C, Gazeau F, Mariani A, Karoui M, Clément O, Araujo-Filho I, Silva AKA, Rahmi G. Thermoresponsive gel embedding extracellular vesicles from adipose stromal cells improves the healing of colonic anastomoses following irradiation in rats. Commun Biol 2024; 7:1673. [PMID: 39702754 DOI: 10.1038/s42003-024-07364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Anastomotic leak occurrence is a severe complication after colorectal surgery. Considering the difficulty of treating these leaks and their impact on patient care, there is a strong need for an efficient prevention strategy. We evaluated a combination of extracellular vesicles (EVs) from rat adipose-derived stromal cells with a thermoresponsive gel, Pluronic® F127 (PF-127) to prevent anastomotic leaks. The pro-regenerative and immunomodulatory potencies of EVs are assessed in vitro. In vivo efficacy are assessed in rat with a colonic anastomosis model after irradiation. Endoscopic, anatomical and histological data show a consistent effect of EVs + gel on the healing of colonic anastomosis. These results are illustrated by a smaller anastomotic ulcer size, less fibrosis and less inflammatory infiltrations in the EVs + gel group. This multi-modal investigation is the first to point-out the translational potential of EVs combined with PF-127 for the healing of high-risk colorectal anastomosis.
Collapse
Affiliation(s)
- Hadrien Alric
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France.
- Service d'Hépato-Gastro-Entérologie et Endoscopies Digestives, Hôpital Européen Georges Pompidou, APHP.Centre-Université Paris Cité, Paris, France.
| | - Noëlle Mathieu
- Laboratoire de Radiobiologie des Expositions Médicales, Institut de Radioprotection et de Sureté Nucléaire, Fontenay-Aux-Roses, France
| | - Anna Sebbagh
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, Université Paris Cité, Paris, France
| | - Guillaume Peré
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France
- Service de Chirurgie Digestive, Centre-Hospitalo-Universitaire Toulouse-Rangueil, Toulouse, France
| | - Christelle Demarquay
- Laboratoire de Radiobiologie des Expositions Médicales, Institut de Radioprotection et de Sureté Nucléaire, Fontenay-Aux-Roses, France
| | - André Cronemberger
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, Université Paris Cité, Paris, France
| | - Arthur Berger
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre-Hospitalo-Universitaire Bordeaux, Bordeaux, France
| | - Benjamin Marcel
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, Université Paris Cité, Paris, France
| | - Claire Wilhelm
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, Université Paris Cité, Paris, France
| | - Antoine Mariani
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France
- Service de Chirurgie Digestive, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mehdi Karoui
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France
- Service de Chirurgie Digestive, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Clément
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France
- Service d'Imagerie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Irami Araujo-Filho
- Department of Surgery, Federal University of Rio Grande do Norte. Institute of Teaching, Research, and Innovation, Liga Contra o Cancer, Natal, Brazil
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, Université Paris Cité, Paris, France
| | - Gabriel Rahmi
- Laboratoire de Recherche en Imagerie du Vivant, PARCC, INSERM U970, Université Paris Cité, Paris, France
- Service d'Hépato-Gastro-Entérologie et Endoscopies Digestives, Hôpital Européen Georges Pompidou, APHP.Centre-Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Chen HT, Yi Y, Huang WY, Wu MY, Xiong Q, Wang XR, Liu M, Wu X, Jiang GL, Zhuang HW, Chen KT, Xiong GX, Fang SB. Characterization of the components in plasma EVs unveiling the link between EVs-derived complement C3 with the severity and initial treatment response of profound sudden sensorineural hearing loss. Int Immunopharmacol 2024; 141:112944. [PMID: 39153308 DOI: 10.1016/j.intimp.2024.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is characterized by rapid, unexplained loss of hearing within a 72-hour period and exhibits a high incidence globally. Despite this, the outcomes of therapeutic interventions remain largely unpredictable, especially for those with profound hearing loss. Extracellular vesicles (EVs), nano-sized entities containing biological materials, are implicated in the development of numerous diseases. The specific relationship between EVs and both the severity and treatment effectiveness of SSNHL, however, is not well understood. METHODS This study involved the analysis of medical records from the Department of Otolaryngology (September 1, 2020 - December 31, 2022) of patients diagnosed with SSNHL according to the 2015 Guidelines for Diagnosis and Treatment of Sudden Deafness in China. Peripheral blood samples from patients with various types of SSNHL before and after treatment were collected, alongside samples from healthy volunteers serving as controls. Plasma EVs were isolated using gel rejection chromatography and analyzed for concentration, marker presence, and morphology using Nanosight, Western blot, and transmission electron microscopy (TEM), respectively. Proteomics and miRNA assessments were conducted to identify differentially expressed proteins and miRNAs in the plasma EVs of SSNHL patients and healthy volunteers. Key proteins were further validated through Western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was utilized to determine the levels of complement C3 in plasma EVs, and correlation analyses were performed with audiological data pre- and post-treatment. RESULTS Plasma from SSNHL patients of varying types was collected and their EVs were successfully isolated and characterized. Proteomic analysis revealed that complement C3 levels in the plasma EVs of patients with profound SSNHL were significantly higher compared to healthy controls. Differential expression of miRNAs in plasma EVs and their related functions were also identified. The study found that the level of complement C3 in plasma EVs, but not the total plasma complement C3, positively correlated with the severity of SSNHL in patients exhibiting positive therapeutic responses, particularly in those with initially lower levels of EV-associated complement C3. After treatment, complement C3 level was decreased in patients with initially higher levels of EV-associated complement C3. No significant correlation was observed between changes in plasma EV-derived complement C3 levels and the degree of hearing loss in either responders or non-responders among patients with profound SSNHL. CONCLUSION Differential profiles of proteins and miRNAs were identified in patients with profound SSNHL. Notably, plasma EV-derived complement C3 was linked to both the severity and early treatment effectiveness of patients with profound SSNHL.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Ying Yi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Wan-Yi Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Min-Yu Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Qin Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Xian-Ren Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Min Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Xuan Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Guang-Li Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Hui-Wen Zhuang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Kai-Tian Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China.
| | - Guan-Xia Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China.
| | - Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China.
| |
Collapse
|
3
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
4
|
Chen A, Qu J, You Y, Pan J, Scheper V, Lin Y, Tian X, Shu F, Luo Y, Tang J, Zhang H. Intratympanic injection of MSC-derived small extracellular vesicles protects spiral ganglion neurons from degeneration. Biomed Pharmacother 2024; 179:117392. [PMID: 39232388 DOI: 10.1016/j.biopha.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Sensorineural hearing loss is one of the most prevalent sensory deficits. Spiral ganglion neurons (SGNs) exhibit very limited regeneration capacity and their degeneration leads to profound hearing loss. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have been demonstrated to repair tissue damage in various degenerative diseases. However, the effects of MSC-sEV on SGN degeneration remain unclear. In this study, we investigated the efficacy of MSC-sEV for protection against ouabain-induced SGN degeneration. MSC-sEV were derived from rat bone marrow and their components related to neuron growth were determined by proteomic analysis. In primary culture SGNs, MSC-sEV significantly promoted neurite growth and growth cone development. The RNA-Seq analysis of SGNs showed that enriched pathways include neuron development and axon regeneration, consistent with proteomics. In ouabain induced SGN degeneration rat model, MSC-sEV administration via intratympanic injection significantly enhanced SGN survival and mitigated hearing loss. Furthermore, after ouabain treatment, SGNs displayed evident signs of apoptosis, including nuclei condensation and fragmentation, with numerous cells exhibiting TUNEL-positive. However, administration of MSC-sEV effectively decreased the number of TUNEL-positive cells and reduced caspase-3 activation. In conclusion, our findings demonstrate the potential of MSC-sEV in preventing SGN degeneration and promoting neural growth, suggesting intratympanic injection of MSC-sEV is a specific and efficient strategy for neural hearing loss.
Collapse
Affiliation(s)
- Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiaxi Qu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yunyou You
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Pan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence "Hearing4all", German Research Foundation, Hannover Medical School, Hannover 30625, Germany
| | - Yongdong Lin
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuexin Tian
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fan Shu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanjing Luo
- Department of Otolaryngology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence "Hearing4all", German Research Foundation, Hannover Medical School, Hannover 30625, Germany
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
5
|
Takakura Y, Hanayama R, Akiyoshi K, Futaki S, Hida K, Ichiki T, Ishii-Watabe A, Kuroda M, Maki K, Miura Y, Okada Y, Seo N, Takeuchi T, Yamaguchi T, Yoshioka Y. Quality and Safety Considerations for Therapeutic Products Based on Extracellular Vesicles. Pharm Res 2024; 41:1573-1594. [PMID: 39112776 PMCID: PMC11362369 DOI: 10.1007/s11095-024-03757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/28/2024] [Indexed: 08/30/2024]
Abstract
Extracellular vesicles (EVs) serve as an intrinsic system for delivering functional molecules within our body, playing significant roles in diverse physiological phenomena and diseases. Both native and engineered EVs are currently the subject of extensive research as promising therapeutics and drug delivery systems, primarily due to their remarkable attributes, such as targeting capabilities, biocompatibility, and low immunogenicity and mutagenicity. Nevertheless, their clinical application is still a long way off owing to multiple limitations. In this context, the Science Board of the Pharmaceuticals and Medical Devices Agency (PMDA) of Japan has conducted a comprehensive assessment to identify the current issues related to the quality and safety of EV-based therapeutic products. Furthermore, we have presented several examples of the state-of-the-art methodologies employed in EV manufacturing, along with guidelines for critical processes, such as production, purification, characterization, quality evaluation and control, safety assessment, and clinical development and evaluation of EV-based therapeutics. These endeavors aim to facilitate the clinical application of EVs and pave the way for their transformative impact in healthcare.
Collapse
Affiliation(s)
- Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Biology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Japan
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency, Chiyoda-ku, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yoshiaki Okada
- Department of Transfusion Medicine and Cell Transplantation, Saitama Medical University Hospital, Kawagoe, Japan
| | - Naohiro Seo
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Toshihide Takeuchi
- Life Science Research Institute, Kindai University, Higashi-osaka, Japan
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjuku, Japan
| |
Collapse
|
6
|
Amiri M, Kaviari MA, Rostaminasab G, Barimani A, Rezakhani L. A novel cell-free therapy using exosomes in the inner ear regeneration. Tissue Cell 2024; 88:102373. [PMID: 38640600 DOI: 10.1016/j.tice.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Cellular and molecular alterations associated with hearing loss are now better understood with advances in molecular biology. These changes indicate the participation of distinct damage and stress pathways that are unlikely to be fully addressed by conventional pharmaceutical treatment. Sensorineural hearing loss is a common and debilitating condition for which comprehensive pharmacologic intervention is not available. The complex and diverse molecular pathology that underlies hearing loss currently limits our ability to intervene with small molecules. The present review focuses on the potential for the use of extracellular vesicles in otology. It examines a variety of inner ear diseases and hearing loss that may be treatable using exosomes (EXOs). The role of EXOs as carriers for the treatment of diseases related to the inner ear as well as EXOs as biomarkers for the recognition of diseases related to the ear is discussed.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Barimani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
8
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
9
|
Pan X, Huang P, Ali SS, Renslo B, Hutchinson TE, Erwin N, Greenberg Z, Ding Z, Li Y, Warnecke A, Fernandez NE, Staecker H, He M. CRISPR-Cas9 Engineered Extracellular Vesicles for the Treatment of Dominant Progressive Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557853. [PMID: 38168224 PMCID: PMC10760051 DOI: 10.1101/2023.09.14.557853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clinical translation of gene therapy has been challenging, due to limitations in current delivery vehicles such as traditional viral vectors. Herein, we report the use of gRNA:Cas9 ribonucleoprotein (RNP) complexes engineered extracellular vesicles (EVs) for in vivo gene therapy. By leveraging a novel high-throughput microfluidic droplet-based electroporation system (μDES), we achieved 10-fold enhancement of loading efficiency and more than 1000-fold increase in processing throughput on loading RNP complexes into EVs (RNP-EVs), compared with conventional bulk electroporation. The flow-through droplets serve as enormous bioreactors for offering millisecond pulsed, low-voltage electroporation in a continuous-flow and scalable manner, which minimizes the Joule heating influence and surface alteration to retain natural EV stability and integrity. In the Shaker-1 mouse model of dominant progressive hearing loss, we demonstrated the effective delivery of RNP-EVs into inner ear hair cells, with a clear reduction of Myo7ash1 mRNA expression compared to RNP-loaded lipid-like nanoparticles (RNP-LNPs), leading to significant hearing recovery measured by auditory brainstem responses (ABR).
Collapse
Affiliation(s)
- Xiaoshu Pan
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Samantha S. Ali
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Bryan Renslo
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Tarun E Hutchinson
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Nina Erwin
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Zachary Greenberg
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Zuo Ding
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, 32610, United States
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia E. Fernandez
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Mei He
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Min X, Deng XH, Lao H, Wu ZC, Chen Y, Luo Y, Wu H, Wang J, Fu QL, Xiong H. BDNF-enriched small extracellular vesicles protect against noise-induced hearing loss in mice. J Control Release 2023; 364:546-561. [PMID: 37939851 DOI: 10.1016/j.jconrel.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Noise-induced hearing loss (NIHL) is one of the most prevalent acquired sensorineural hearing loss etiologies and is characterized by the loss of cochlear hair cells, synapses, and nerve terminals. Currently, there are no agents available for the treatment of NIHL because drug delivery to the inner ear is greatly limited by the blood-labyrinth barrier. In this study, we used mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) as nanoscale vehicles to deliver brain-derived neurotrophic factor (BDNF) and evaluated their protective effects in a mouse model of NIHL. Following intravenous administration, BDNF-loaded sEVs (BDNF-sEVs) efficiently increased the expression of BDNF protein in the cochlea. Systemic application of sEVs and BDNF-sEVs significantly attenuated noise-induced cochlear hair cell loss and NIHL in CBA/J mice. BDNF-sEVs also alleviated noise-induced loss of inner hair cell ribbon synapses and cochlear nerve terminals. In cochlear explants, sEVs and BDNF-sEVs effectively protected hair cells against H2O2-induced cell loss. Additionally, BDNF-sEVs remarkably ameliorated H2O2-induced oxidative stress, cell apoptosis, and cochlear nerve terminal degeneration. Transcriptomic analysis revealed that many mRNAs and miRNAs were involved in the protective actions of BDNF-sEVs against oxidative stress. Collectively, our findings reveal a novel therapeutic strategy of MSC-sEVs-mediated BDNF delivery for the treatment of NIHL.
Collapse
Affiliation(s)
- Xin Min
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Huilin Lao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yi Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yuelian Luo
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Haoyang Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China.
| |
Collapse
|
11
|
Delaney DS, Liew LJ, Lye J, Atlas MD, Wong EYM. Overcoming barriers: a review on innovations in drug delivery to the middle and inner ear. Front Pharmacol 2023; 14:1207141. [PMID: 37927600 PMCID: PMC10620978 DOI: 10.3389/fphar.2023.1207141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in the development of therapeutics for hearing loss, drug delivery to the middle and inner ear remains a challenge. As conventional oral or intravascular administration are ineffective due to poor bioavailability and impermeability of the blood-labyrinth-barrier, localized delivery is becoming a preferable approach for certain drugs. Even then, localized delivery to the ear precludes continual drug delivery due to the invasive and potentially traumatic procedures required to access the middle and inner ear. To address this, the preclinical development of controlled release therapeutics and drug delivery devices have greatly advanced, with some now showing promise clinically. This review will discuss the existing challenges in drug development for treating the most prevalent and damaging hearing disorders, in particular otitis media, perforation of the tympanic membrane, cholesteatoma and sensorineural hearing loss. We will then address novel developments in drug delivery that address these including novel controlled release therapeutics such as hydrogel and nanotechnology and finally, novel device delivery approaches such as microfluidic systems and cochlear prosthesis-mediated delivery. The aim of this review is to investigate how drugs can reach the middle and inner ear more efficiently and how recent innovations could be applied in aiding drug delivery in certain pathologic contexts.
Collapse
Affiliation(s)
- Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Lawrence J. Liew
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
12
|
Fang Q, Wei Y, Zhang Y, Cao W, Yan L, Kong M, Zhu Y, Xu Y, Guo L, Zhang L, Wang W, Yu Y, Sun J, Yang J. Stem cells as potential therapeutics for hearing loss. Front Neurosci 2023; 17:1259889. [PMID: 37746148 PMCID: PMC10512725 DOI: 10.3389/fnins.2023.1259889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Hearing impairment is a global health problem. Stem cell therapy has become a cutting-edge approach to tissue regeneration. In this review, the recent advances in stem cell therapy for hearing loss have been discussed. Nanomaterials can modulate the stem cell microenvironment to augment the therapeutic effects further. The potential of combining nanomaterials with stem cells for repairing and regenerating damaged inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) has also been discussed. Stem cell-derived exosomes can contribute to the repair and regeneration of damaged tissue, and the research progress on exosome-based hearing loss treatment has been summarized as well. Despite stem cell therapy's technical and practical limitations, the findings reported so far are promising and warrant further investigation for eventual clinical translation.
Collapse
Affiliation(s)
- Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengdie Kong
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiqing Wang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yafeng Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Toh WS, Yarani R, El Andaloussi S, Cho BS, Choi C, Corteling R, De Fougerolles A, Gimona M, Herz J, Khoury M, Robbins PD, Williams D, Weiss DJ, Rohde E, Giebel B, Lim SK. A report on the International Society for Cell & Gene Therapy 2022 Scientific Signature Series, "Therapeutic advances with native and engineered human extracellular vesicles". Cytotherapy 2023; 25:810-814. [PMID: 36931996 DOI: 10.1016/j.jcyt.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
The International Society for Cell & Gene Therapy Scientific Signature Series event "Therapeutic Advances With Native and Engineered Human EVs" took place as part of the International Society for Cell & Gene Therapy 2022 Annual Meeting, held from May 4 to 7, 2022, in San Francisco, California, USA. This was the first signature series event on extracellular vesicles (EVs) and a timely reflection of the growing interest in EVs, including both native and engineered human EVs, for therapeutic applications. The event successfully gathered academic and industrial key opinion leaders to discuss the current state of the art in developing and understanding native and engineered EVs and applying our knowledge toward advancing EV therapeutics. Latest advancements in understanding the mechanisms by which native and engineered EVs exert their therapeutic effects against different diseases in animal models were presented, with some diseases such as psoriasis and osteoarthritis already reaching clinical testing of EVs. The discussion also covered various aspects relevant to advancing the clinical translation of EV therapies, including EV preparation, manufacturing, consistency, site(s) of action, route(s) of administration, and luminal cargo delivery of RNA and other compounds.
Collapse
Affiliation(s)
- Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center, Copenhagen, Denmark
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford, UK
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul, South Korea
| | - Chulhee Choi
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | | | - Mario Gimona
- Good Manufacturing Practice Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Josephine Herz
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maroun Khoury
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Eva Rohde
- Good Manufacturing Practice Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
14
|
Nieland L, Mahjoum S, Grandell E, Breyne K, Breakefield XO. Engineered EVs designed to target diseases of the CNS. J Control Release 2023; 356:493-506. [PMID: 36907561 DOI: 10.1016/j.jconrel.2023.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Diseases of the central nervous system (CNS) are challenging to treat, mainly due to the blood-brain barrier (BBB), which restricts drugs in circulation from entering target regions in the brain. To address this issue extracellular vesicles (EVs) have gained increasing scientific interest as carriers able to cross the BBB with multiplex cargos. EVs are secreted by virtually every cell, and their escorted biomolecules are part of an intercellular information gateway between cells within the brain and with other organs. Scientists have undertaken efforts to safeguard the inherent features of EVs as therapeutic delivery vehicles, such as protecting and transferring functional cargo, as well as loading them with therapeutic small molecules, proteins, and oligonucleotides and targeting them to specific cell types for the treatment of CNS diseases. Here, we review current emerging approaches that engineer the EV surface and cargo to improve targeting and functional responses in the brain. We summarize existing applications of engineered EVs as a therapeutic delivery platform for brain diseases, some of which have been evaluated clinically.
Collapse
Affiliation(s)
- Lisa Nieland
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden 2300 RC, the Netherlands.
| | - Shadi Mahjoum
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Emily Grandell
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Koen Breyne
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xandra O Breakefield
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Yildiz E, Gadenstaetter AJ, Gerlitz M, Landegger LD, Liepins R, Nieratschker M, Glueckert R, Staecker H, Honeder C, Arnoldner C. Investigation of inner ear drug delivery with a cochlear catheter in piglets as a representative model for human cochlear pharmacokinetics. Front Pharmacol 2023; 14:1062379. [PMID: 36969846 PMCID: PMC10034346 DOI: 10.3389/fphar.2023.1062379] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Hearing impairment is the most common sensory disorder in humans, and yet hardly any medications are licensed for the treatment of inner ear pathologies. Intricate pharmacokinetic examinations to better understand drug distribution within this complex organ could facilitate the development of novel therapeutics. For such translational research projects, animal models are indispensable, but differences in inner ear dimensions and other anatomical features complicate the transfer of experimental results to the clinic. The gap between rodents and humans may be bridged using larger animal models such as non-human primates. However, their use is challenging and impeded by administrative, regulatory, and financial hurdles. Other large animal models with more human-like inner ear dimensions are scarce. In this study, we analyzed the inner ears of piglets as a potential representative model for the human inner ear and established a surgical approach for intracochlear drug application and subsequent apical sampling. Further, controlled intracochlear delivery of fluorescein isothiocyanate-dextran (FITC-d) was carried out after the insertion of a novel, clinically applicable CE-marked cochlear catheter through the round window membrane. Two, six, and 24 hours after a single injection with this device, the intracochlear FITC-d distribution was determined in sequential perilymph samples. The fluorometrically assessed concentrations two hours after injection were compared to the FITC-d content in control groups, which either had been injected with a simple needle puncture through the round window membrane or the cochlear catheter in combination with a stapes vent hole. Our findings demonstrate not only significantly increased apical FITC-d concentrations when using the cochlear catheter but also higher total concentrations in all perilymph samples. Additionally, the concentration decreased after six and 24 hours and showed a more homogenous distribution compared to shorter observation times.
Collapse
Affiliation(s)
- Erdem Yildiz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Anselm J. Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas D. Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Rudolfs Liepins
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael Nieratschker
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas, KS, United States
| | - Clemens Honeder
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- *Correspondence: Christoph Arnoldner,
| |
Collapse
|
16
|
Arambula AM, Gu S, Warnecke A, Schmitt HA, Staecker H, Hoa M. In Silico Localization of Perilymph Proteins Enriched in Meńier̀e Disease Using Mammalian Cochlear Single-cell Transcriptomics. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e027. [PMID: 38516320 PMCID: PMC10950140 DOI: 10.1097/ono.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 03/23/2024]
Abstract
Hypothesis Proteins enriched in the perilymph proteome of Meńier̀e disease (MD) patients may identify affected cell types. Utilizing single-cell transcriptome datasets from the mammalian cochlea, we hypothesize that these enriched perilymph proteins can be localized to specific cochlear cell types. Background The limited understanding of human inner ear pathologies and their associated biomolecular variations hinder efforts to develop disease-specific diagnostics and therapeutics. Perilymph sampling and analysis is now enabling further characterization of the cochlear microenvironment. Recently, enriched inner ear protein expression has been demonstrated in patients with MD compared to patients with other inner ear diseases. Localizing expression of these proteins to cochlear cell types can further our knowledge of potential disease pathways and subsequent development of targeted therapeutics. Methods We compiled previously published data regarding differential perilymph proteome profiles amongst patients with MD, otosclerosis, enlarged vestibular aqueduct, sudden hearing loss, and hearing loss of undefined etiology (controls). Enriched proteins in MD were cross-referenced against published single-cell/single-nucleus RNA-sequencing datasets to localize gene expression to specific cochlear cell types. Results In silico analysis of single-cell transcriptomic datasets demonstrates enrichment of a unique group of perilymph proteins associated with MD in a variety of intracochlear cells, and some exogeneous hematologic and immune effector cells. This suggests that these cell types may play an important role in the pathology associated with late MD, suggesting potential future areas of investigation for MD pathophysiology and treatment. Conclusions Perilymph proteins enriched in MD are expressed by specific cochlear cell types based on in silico localization, potentially facilitating development of disease-specific diagnostic markers and therapeutics.
Collapse
Affiliation(s)
- Alexandra M. Arambula
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Athanasia Warnecke
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Heike A. Schmitt
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
17
|
Jenner F, Wagner A, Gerner I, Ludewig E, Trujanovic R, Rohde E, von Rechenberg B, Gimona M, Traweger A. Evaluation of the Potential of Umbilical Cord Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles to Improve Rotator Cuff Healing: A Pilot Ovine Study. Am J Sports Med 2023; 51:331-342. [PMID: 36645050 DOI: 10.1177/03635465221145958] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Despite significant advancements in surgical techniques to repair rotator cuff (RC) injuries, failure rates remain high and novel approaches to adequately overcome the natural biological limits of tendon and enthesis regeneration of the RC are required. Small extracellular vesicles (sEVs) derived from the secretome of human multipotent mesenchymal stromal cells (MSCs) have been demonstrated to modulate inflammation and reduce fibrotic adhesions, and therefore their local application could improve outcomes after RC repair. PURPOSE In this pilot study, we evaluated the efficacy of clinical-grade human umbilical cord (hUC) MSC-derived sEVs (hUC-MSC-sEVs) loaded onto a type 1 collagen scaffold in an ovine model of acute infraspinatus tendon injury to improve RC healing. STUDY DESIGN Controlled laboratory study. METHODS sEVs were enriched from hUC-MSC culture media and were characterized by surface marker profiling. The immunomodulatory capacity was evaluated in vitro by T-cell proliferation assays, and particle count was determined by nanoparticle tracking analysis. Twelve skeletally mature sheep were subjected to partial infraspinatus tenotomy and enthesis debridement. The defects of 6 animals were treated with 2 × 1010 hUC-MSC-sEVs loaded onto a type 1 collagen sponge, whereas 6 animals received only a collagen sponge, serving as controls. Six weeks postoperatively, the healing of the infraspinatus tendon and the enthesis was evaluated by magnetic resonance imaging (MRI) and hard tissue histology. RESULTS CD3/CD28-stimulated T-cell proliferation was significantly inhibited by hUC-MSC-sEVs (P = .015) that displayed the typical surface marker profile, including the presence of the MSC marker proteins CD44 and melanoma-associated chondroitin sulfate proteoglycan. The local application of hUC-MSC-sEVs did not result in any marked systemic adverse events. Histologically, significantly improved Watkins scores (P = .031) indicated improved tendon and tendon-to-bone insertion repair after sEV treatment and lower postcontrast signal of the tendon and adjacent structures on MRI suggested less residual inflammation at the defect area. Furthermore, the formation of osteophytes at the injury site was significantly attenuated (P = .037). CONCLUSION A local, single-dose application of hUC-MSC-sEVs promoted tendon and enthesis healing in an ovine model of acute RC injury. CLINICAL RELEVANCE Surgical repair of RC tears generally results in a clinical benefit for the patient; however, considerable rerupture rates have been reported. sEVs have potential as a cell-free biotherapeutic to improve healing outcomes after RC injury.
Collapse
Affiliation(s)
- Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Eberhard Ludewig
- Diagnostic Imaging Unit, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robert Trujanovic
- Clinical Unit of Anaesthesiology and Perioperative Intensive Care, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Rohde
- Department of Transfusion Medicine, Salzburger Landeskliniken GesmbH, Paracelsus Medical University, Salzburg, Austria.,GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program "Nanovesicular Therapies," Paracelsus Medical University, Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
18
|
Warnecke A, Staecker H, Rohde E, Gimona M, Giesemann A, Szczepek AJ, Di Stadio A, Hochmair I, Lenarz T. Extracellular Vesicles in Inner Ear Therapies-Pathophysiological, Manufacturing, and Clinical Considerations. J Clin Med 2022; 11:jcm11247455. [PMID: 36556073 PMCID: PMC9788356 DOI: 10.3390/jcm11247455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Sensorineural hearing loss is a common and debilitating condition. To date, comprehensive pharmacologic interventions are not available. The complex and diverse molecular pathology that underlies hearing loss may limit our ability to intervene with small molecules. The current review foccusses on the potential for the use of extracellular vesicles in neurotology. (2) Methods: Narrative literature review. (3) Results: Extracellular vesicles provide an opportunity to modulate a wide range of pathologic and physiologic pathways and can be manufactured under GMP conditions allowing for their application in the human inner ear. The role of inflammation in hearing loss with a focus on cochlear implantation is shown. How extracellular vesicles may provide a therapeutic option for complex inflammatory disorders of the inner ear is discussed. Additionally, manufacturing and regulatory issues that need to be addressed to develop EVs as advanced therapy medicinal product for use in the inner ear are outlined. (4) Conclusion: Given the complexities of inner ear injury, novel therapeutics such as extracellular vesicles could provide a means to modulate inflammation, stress pathways and apoptosis in the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
- Correspondence:
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Rainbow Blvd., Kansas City, KS 66160, USA
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Research Program “Nanovesicular Therapies”, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Giesemann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95124 Catania, Italy
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
| |
Collapse
|
19
|
Lau H, Han DW, Park J, Lehner E, Kals C, Arzt C, Bayer E, Auer D, Schally T, Grasmann E, Fang H, Lee J, Lee HS, Han J, Gimona M, Rohde E, Bae S, Oh SW. GMP-compliant manufacturing of biologically active cell-derived vesicles produced by extrusion technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e70. [PMID: 38938599 PMCID: PMC11080851 DOI: 10.1002/jex2.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) released by a variety of cell types have been shown to act as a natural delivery system for bioactive molecules such as RNAs and proteins. EV therapy holds great promise as a safe and cell-free therapy for many immunological and degenerative diseases. However, translation to clinical application is limited by several factors, including insufficient large-scale manufacturing technologies and low yield. We have developed a novel drug delivery platform technology, BioDrone™, based on cell-derived vesicles (CDVs) produced from diverse cell sources by using a proprietary extrusion process. This extrusion technology generates nanosized vesicles in far greater numbers than naturally obtained EVs. We demonstrate that the CDVs are surrounded by a lipid bilayer membrane with a correct membrane topology. Physical, biochemical and functional characterisation results demonstrate the potential of CDVs to act as effective therapeutics. Umbilical cord mesenchymal stem cell (UCMSC)-derived CDVs exhibit a biological activity that is similar to UCMSCs or UCMSC-derived EVs. Lastly, we present the establishment of a GMP-compliant process to allow the production of a large number of UCMSC-CDVs in a reproducible manner. GMP-compliant manufacturing of CDVs will facilitate the preclinical and clinical evaluation of these emerging therapeutics in anti-inflammatory or regenerative medicine. This study also represents a crucial step in the development of this novel drug delivery platform based on CDVs.
Collapse
Affiliation(s)
| | - Dong Woo Han
- BioDrone Research InstituteMDimune Inc.SeoulKorea
| | - Jinhee Park
- BioDrone Research InstituteMDimune Inc.SeoulKorea
| | - Edwine Lehner
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Carina Kals
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Claudia Arzt
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
| | - Elisabeth Bayer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Tanja Schally
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Eva Grasmann
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
| | - Han Fang
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
| | - Jae‐Young Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Hyun Soo Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Jinah Han
- BioDrone Therapeutics Inc.SeattleUSA
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
- Research Program “Nanovesicular Therapies”Paracelsus Medical UniversitySalzburgAustria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical UniversitySalzburgAustria
| | - Shingyu Bae
- BioDrone Research InstituteMDimune Inc.SeoulKorea
| | - Seung Wook Oh
- BioDrone Research InstituteMDimune Inc.SeoulKorea
- BioDrone Therapeutics Inc.SeattleUSA
| |
Collapse
|
20
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
21
|
Mahshid SS, Higazi AM, Ogier JM, Dabdoub A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104033. [PMID: 34957708 PMCID: PMC8948604 DOI: 10.1002/advs.202104033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Rapid diagnostic testing has become a mainstay of patient care, using easily obtained samples such as blood or urine to facilitate sample analysis at the point-of-care. These tests rely on the detection of disease or organ-specific biomarkers that have been well characterized for a particular disorder. Currently, there is no rapid diagnostic test for hearing loss, which is one of the most prevalent sensory disorders in the world. In this review, potential biomarkers for inner ear-related disorders, their detection, and quantification in bodily fluids are described. The authors discuss lesion-specific changes in cell-free deoxyribonucleic acids (DNAs), micro-ribonucleic acids (microRNAs), proteins, and metabolites, in addition to recent biosensor advances that may facilitate rapid and precise detection of these molecules. Ultimately, these biomarkers may be used to provide accurate diagnostics regarding the site of damage in the inner ear, providing practical information for individualized therapy and assessment of treatment efficacy in the future.
Collapse
Affiliation(s)
- Sahar Sadat Mahshid
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Aliaa Monir Higazi
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Clinical and Chemical PathologyMinia UniversityMinia61519Egypt
| | - Jacqueline Michelle Ogier
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Alain Dabdoub
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Otolaryngology–Head & Neck SurgeryUniversity of TorontoTorontoONM5G 2C4Canada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM5S 1A8Canada
| |
Collapse
|
22
|
Romanelli P, Bieler L, Heimel P, Škokić S, Jakubecova D, Kreutzer C, Zaunmair P, Smolčić T, Benedetti B, Rohde E, Gimona M, Hercher D, Dobrivojević Radmilović M, Couillard-Despres S. Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury. Front Cell Neurosci 2022; 15:795008. [PMID: 35046776 PMCID: PMC8762366 DOI: 10.3389/fncel.2021.795008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.
Collapse
Affiliation(s)
- Pasquale Romanelli
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Innovacell AG, Innsbruck, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tomislav Smolčić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
23
|
Aubertin K, Piffoux M, Sebbagh A, Gauthier J, Silva AKA, Gazeau F. [Therapeutic applications of extracellular vesicles]. Med Sci (Paris) 2021; 37:1146-1157. [PMID: 34928219 DOI: 10.1051/medsci/2021207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles, secreted spontaneously or in response to stress by all cell types, are proposed as alternative biotherapies to cellular therapies and to synthetic nanomedicines. Their logistical advantages (storage, stability, availability, tolerance), their ability to cross biological barriers, to deliver their contents (proteins, lipids and nucleic acids) in order to modify their target cells, as well as their immunomodulatory and regenerative activities, are of growing interest for a very wide spectrum of diseases. Here we review the challenges to bring these biotherapies to the clinic and discuss some promising applications in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| | - Max Piffoux
- Service d'Oncologie médicale, Centre Léon Bérard, Lyon, France - Oncologie médicale, Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), CITOHL, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Anna Sebbagh
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| | | | - Amanda K A Silva
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| | - Florence Gazeau
- Laboratoire matière et systèmes complexes (MSC), université de Paris, CNRS UMR7057, 45 rue des Saints Pères, 75006 Paris, France
| |
Collapse
|
24
|
Prospects of Extracellular Vesicles in Otorhinolaryngology, Head and Neck Surgery. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2040013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The diagnostic and therapeutic potential of extracellular vesicles (EVs) has been recognised in many fields of medicine for several years. More recently, it has become a topic of increasing interest in otorhinolaryngology, head and neck surgery (ORL-HNS). With this narrative review, we have aspired to determine different aspects of those nanometrically sized theranostic particles, which seem to have promising potential as biomarkers in some of the most common diseases of the ORL-HNS by being available via less invasive diagnostic methods. At the same time, a better understanding of their activity provides us with new possibilities for developing specific target treatments. So far, most research has been oriented towards the role of EVs in the progression of head and neck cancer, notably head and neck squamous cell cancer. Nonetheless, some of this research has focused on chronic diseases of the ears, nose and paranasal sinuses. However, most research is still in the preclinical or experimental phase. It therefore requires a further and more profound understanding of EV content and behaviour to utilise their nanotheranostic capacities to their fullest potential.
Collapse
|
25
|
Warnecke A, Harre J, Shew M, Mellott AJ, Majewski I, Durisin M, Staecker H. Successful Treatment of Noise-Induced Hearing Loss by Mesenchymal Stromal Cells: An RNAseq Analysis of Protective/Repair Pathways. Front Cell Neurosci 2021; 15:656930. [PMID: 34887728 PMCID: PMC8650824 DOI: 10.3389/fncel.2021.656930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are an adult derived stem cell-like population that has been shown to mediate repair in a wide range of degenerative disorders. The protective effects of MSCs are mainly mediated by the release of growth factors and cytokines thereby modulating the diseased environment and the immune system. Within the inner ear, MSCs have been shown protective against tissue damage induced by sound and a variety of ototoxins. To better understand the mechanism of action of MSCs in the inner ear, mice were exposed to narrow band noise. After exposure, MSCs derived from human umbilical cord Wharton's jelly were injected into the perilymph. Controls consisted of mice exposed to sound trauma only. Forty-eight hours post-cell delivery, total RNA was extracted from the cochlea and RNAseq performed to evaluate the gene expression induced by the cell therapy. Changes in gene expression were grouped together based on gene ontology classification. A separate cohort of animals was treated in a similar fashion and allowed to survive for 2 weeks post-cell therapy and hearing outcomes determined. Treatment with MSCs after severe sound trauma induced a moderate hearing protective effect. MSC treatment resulted in an up-regulation of genes related to immune modulation, hypoxia response, mitochondrial function and regulation of apoptosis. There was a down-regulation of genes related to synaptic remodeling, calcium homeostasis and the extracellular matrix. Application of MSCs may provide a novel approach to treating sound trauma induced hearing loss and may aid in the identification of novel strategies to protect hearing.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation (EXC 2177/1), Oldenburg, Germany
| | - Jennifer Harre
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation (EXC 2177/1), Oldenburg, Germany
| | - Matthew Shew
- Department of Otolaryngology–Head & Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | | | - Igor Majewski
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
| | - Martin Durisin
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology–Head & Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| |
Collapse
|
26
|
Priglinger E, Strasser J, Buchroithner B, Weber F, Wolbank S, Auer D, Grasmann E, Arzt C, Sivun D, Grillari J, Jacak J, Preiner J, Gimona M. Label-free characterization of an extracellular vesicle-based therapeutic. J Extracell Vesicles 2021; 10:e12156. [PMID: 34669269 PMCID: PMC8528092 DOI: 10.1002/jev2.12156] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Interest in mesenchymal stem cell derived extracellular vesicles (MSC-EVs) as therapeutic agents has dramatically increased over the last decade. Current approaches to the characterization and quality control of EV-based therapeutics include particle tracking techniques, Western blotting, and advanced cytometry, but standardized methods are lacking. In this study, we established and verified quartz crystal microbalance (QCM) as highly sensitive label-free immunosensing technique for characterizing clinically approved umbilical cord MSC-EVs enriched by tangential flow filtration and ultracentrifugation. Using QCM in conjunction with common characterization methods, we were able to specifically detect EVs via EV (CD9, CD63, CD81) and MSC (CD44, CD49e, CD73) markers. Furthermore, analysis of QCM dissipation versus frequency allowed us to quantitatively determine the ratio of marker-specific EVs versus non-vesicular particles (NVPs) - a parameter that cannot be obtained by any other technique so far. Additionally, we characterized the topography and elasticity of these EVs by atomic force microscopy (AFM), enabling us to distinguish between EVs and NVPs in our EV preparations. This measurement modality makes it possible to identify EV sub-fractions, discriminate between EVs and NVPs, and to characterize EV surface proteins, all with minimal sample preparation and using label-free measurement devices with low barriers of entry for labs looking to widen their spectrum of characterization techniques. Our combination of QCM with impedance measurement (QCM-I) and AFM measurements provides a robust multi-marker approach to the characterization of clinically approved EV therapeutics and opens the door to improved quality control.
Collapse
Affiliation(s)
- Eleni Priglinger
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyLinz/ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Juergen Strasser
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Boris Buchroithner
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Florian Weber
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Susanne Wolbank
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyLinz/ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Daniela Auer
- GMP UnitSpinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Research Program “Nanovesicular Therapies”Paracelsus Medical UniversitySalzburgAustria
| | - Eva Grasmann
- Transfer Center for Extracellular Vesicles Theralytic Technologies (EV‐TT)Paracelsus Medical UniversitySalzburgAustria
| | - Claudia Arzt
- Transfer Center for Extracellular Vesicles Theralytic Technologies (EV‐TT)Paracelsus Medical UniversitySalzburgAustria
| | - Dmitry Sivun
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Johannes Grillari
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyLinz/ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Dept. of BiotechnologyBOKU – University of Natural Resources and Life SciencesInstitute of Molecular BiotechnologyViennaAustria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Johannes Preiner
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Mario Gimona
- GMP UnitSpinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Research Program “Nanovesicular Therapies”Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Transfer Center for Extracellular Vesicles Theralytic Technologies (EV‐TT)Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
27
|
Chen L, Qu J, Mei Q, Chen X, Fang Y, Chen L, Li Y, Xiang C. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine. Stem Cell Res Ther 2021; 12:433. [PMID: 34344458 PMCID: PMC8330084 DOI: 10.1186/s13287-021-02511-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Menstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials. However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1 diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan, 415000, People's Republic of China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
28
|
Park DJ, Park JE, Lee SH, Eliceiri BP, Choi JS, Kim SK, Seo YJ. Protective effect of MSC-derived exosomes against cisplatin-induced apoptosis via heat shock protein 70 in auditory explant model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 38:102447. [PMID: 34314868 DOI: 10.1016/j.nano.2021.102447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
Therapeutics based on stem cell technology, including stem cell-derived exosomes, have emerged in recent years for the treatment of what were otherwise considered incurable diseases. In this study, we evaluated the efficacy of human MSC-derived exosomes for protection against cisplatin induced ototoxic hearing loss. Incubation of cochlear explants with MSC-derived exosomes prior to addition of cisplatin induced a reduction in cisplatin-induced drug toxicity in auditory hair cells but not when the exosomes were introduced simultaneously with or after cisplatin. The delivery of MSC-derived exosomes to cochlear explants was confirmed by the increasing protein levels of the exosome markers CD63 and HSP70 to reduce apoptosis. These results were consistent with those from a model in which MSC-derived exosomes protect auditory hair cells from cisplatin-induced drug toxicity in an ex vivo cochlear explant model and support future studies into the therapeutic benefits of stem cell-derived exosomes in clinical applications.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Surgery, University of California San Diego Medical Center Hillcrest, San Diego, CA, USA
| | - Jeong-Eun Park
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Su Hoon Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego Medical Center Hillcrest, San Diego, CA, USA
| | - Jin Sil Choi
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung Kyun Kim
- Department of Otorhinolaryngology Head and Neck Surgery, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, Hwaseong, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea; Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
29
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
30
|
Warnecke A, Prenzler N, Harre J, Köhl U, Gärtner L, Lenarz T, Laner-Plamberger S, Wietzorrek G, Staecker H, Lassacher T, Hollerweger J, Gimona M, Rohde E. First-in-human intracochlear application of human stromal cell-derived extracellular vesicles. J Extracell Vesicles 2021; 10:e12094. [PMID: 34136108 PMCID: PMC8178433 DOI: 10.1002/jev2.12094] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) derived from the secretome of human mesenchymal stromal cells (MSC) contain numerous factors that are known to exert anti‐inflammatory effects. MSC‐EVs may serve as promising cell‐based therapeutics for the inner ear to attenuate inflammation‐based side effects from cochlear implantation which represents an unmet clinical need. In an individual treatment performed on a ‘named patient basis’, we intraoperatively applied allogeneic umbilical cord‐derived MSC‐EVs (UC‐MSC‐EVs) produced according to good manufacturing practice. A 55‐year‐old patient suffering from Menière's disease was treated with intracochlear delivery of EVs prior to the insertion of a cochlear implant. This first‐in‐human use of UC‐MSC‐EVs demonstrates the feasibility of this novel adjuvant therapeutic approach. The safety and efficacy of intracochlear EV‐application to attenuate side effects of cochlea implants have to be determined in controlled clinical trials.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Nils Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Ulrike Köhl
- Institute for Cellular Therapeutics Hannover and Institute of Clinical Immunology Hannover Medical School University of Leipzig as well as Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig Germany
| | - Lutz Gärtner
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery Hannover Medical School Hannover Germany
| | - Sandra Laner-Plamberger
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria
| | - Georg Wietzorrek
- Institute of Molecular and Cellular Pharmacology Medical University of Innsbruck Innsbruck Austria
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery University of Kansas School of Medicine Kansas City Kansas USA
| | - Teresa Lassacher
- GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria
| | - Julia Hollerweger
- GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria
| | - Mario Gimona
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria.,GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research Program Nanovesicular Therapeutics Paracelsus Medical University (PMU) Salzburg Austria.,Research and Transfer Centre for Extracellular Vesicle Theralytic Technologies Salzburg Austria
| | - Eva Rohde
- Department of Transfusion Medicine University Hospital Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU) Salzburg Austria.,GMP Unit Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS) Paracelsus Medical University (PMU) Salzburg Austria.,Research and Transfer Centre for Extracellular Vesicle Theralytic Technologies Salzburg Austria
| |
Collapse
|
31
|
Gimona M, Brizzi MF, Choo ABH, Dominici M, Davidson SM, Grillari J, Hermann DM, Hill AF, de Kleijn D, Lai RC, Lai CP, Lim R, Monguió-Tortajada M, Muraca M, Ochiya T, Ortiz LA, Toh WS, Yi YW, Witwer KW, Giebel B, Lim SK. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2021; 23:373-380. [PMID: 33934807 DOI: 10.1016/j.jcyt.2021.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.
Collapse
Affiliation(s)
- Mario Gimona
- Good Manufacturing Practice Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg and Research Program Nanovesicular Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Maria Felice Brizzi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Andre Boon Hwa Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Massimo Dominici
- Technopole Mario Veronesi, Mirandola, Italy; Division of Medical Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Department of Biotechnology, Christian Doppler Laboratory on Biotechnology of Skin Aging, Institute for Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Dominique de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ruenn Chai Lai
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Rebecca Lim
- Department of Obstetrics and Gynecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Victoria, Australia
| | - Marta Monguió-Tortajada
- ICREC Research Program and REMAR-IVECAT group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, and Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Luis A Ortiz
- Department of Environmental and Occupational Health, Division of Environmental and Occupational Medicine, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Weon Yi
- ExoCoBio Exosome Institute, ExoCoBio Inc., Seoul, Korea
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
Andrade AC, Wolf M, Binder HM, Gomes FG, Manstein F, Ebner-Peking P, Poupardin R, Zweigerdt R, Schallmoser K, Strunk D. Hypoxic Conditions Promote the Angiogenic Potential of Human Induced Pluripotent Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22083890. [PMID: 33918735 PMCID: PMC8070165 DOI: 10.3390/ijms22083890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.
Collapse
Affiliation(s)
- André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Heide-Marie Binder
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Fausto Gueths Gomes
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (K.S.)
| | - Felix Manstein
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625 Hannover, Germany; (F.M.); (R.Z.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625 Hannover, Germany; (F.M.); (R.Z.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (K.S.)
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (A.C.A.); (M.W.); (H.-M.B.); (P.E.-P.); (R.P.)
- Correspondence:
| |
Collapse
|