1
|
Pinzone MR, Shan L. Pharmacological approaches to promote cell death of latent HIV reservoirs. Curr Opin HIV AIDS 2024; 19:56-61. [PMID: 38169429 PMCID: PMC10872923 DOI: 10.1097/coh.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW HIV requires lifelong antiviral treatment due to the persistence of a reservoir of latently infected cells. Multiple strategies have been pursued to promote the death of infected cells. RECENT FINDINGS Several groups have focused on multipronged approaches to induce apoptosis of infected cells. One approach is to combine latency reversal agents with proapoptotic compounds and cytotoxic T cells to first reactivate and then clear infected cells. Other strategies include using natural killer cells or chimeric antigen receptor cells to decrease the size of the reservoir.A novel strategy is to promote cell death by pyroptosis. This mechanism relies on the activation of the caspase recruitment domain-containing protein 8 (CARD8) inflammasome by the HIV protease and can be potentiated by nonnucleoside reverse transcriptase inhibitors. SUMMARY The achievement of a clinically significant reduction in the size of the reservoir will likely require a combination strategy since none of the approaches pursued so far has been successful on its own in clinical trials. This discrepancy between promising in vitro findings and modest in vivo results highlights the hurdles of identifying a universally effective strategy given the wide heterogeneity of the HIV reservoirs in terms of tissue location, capability to undergo latency reversal and susceptibility to cell death.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
3
|
Duette G, Hiener B, Morgan H, Mazur FG, Mathivanan V, Horsburgh BA, Fisher K, Tong O, Lee E, Ahn H, Shaik A, Fromentin R, Hoh R, Bacchus-Souffan C, Nasr N, Cunningham AL, Hunt PW, Chomont N, Turville SG, Deeks SG, Kelleher AD, Schlub TE, Palmer S. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest 2022; 132:154422. [PMID: 35133986 PMCID: PMC8970682 DOI: 10.1172/jci154422] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Morgan
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fernando G. Mazur
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bethany A. Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haelee Ahn
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ansari Shaik
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Charline Bacchus-Souffan
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Pinzone MR, Weissman S, Pasternak AO, Zurakowski R, Migueles S, O'Doherty U. Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight 2021; 6:e150794. [PMID: 34228640 PMCID: PMC8409977 DOI: 10.1172/jci.insight.150794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, naive cells have been considered inconsequential to HIV persistence. Here, we compared the contributions of naive and memory cells to the reservoirs of individuals with a spectrum of reservoir sizes and variable immunological control. We performed proviral sequencing of approximately 6000 proviruses from cellular subsets of 5 elite controllers (ECs) off antiretroviral therapy (ART) and 5 chronic progressors (CPs) on ART. The levels of naive infection were barely detectable in ECs and approximately 300-fold lower compared with those in CPs. Moreover, the ratio of infected naive to memory cells was significantly lower in ECs. Overall, the naive infection level increased as reservoir size increased, such that naive cells were a major contributor to the intact reservoir of CPs, whose reservoirs were generally very diverse. In contrast, the reservoirs of ECs were dominated by proviral clones. Critically, the fraction of proviral clones increased with cell differentiation, with naive infection predicting reservoir diversity. Longitudinal sequencing revealed that the reservoir of ECs was less dynamic compared with that of CPs. Naive cells play a critical role in HIV persistence. Their infection level predicts reservoir size and diversity. Moreover, the diminishing diversity of the reservoir as cellular subsets mature suggests that naive T cells repopulate the memory compartment and that direct infection of naive T cells occurs in vivo.
Collapse
Affiliation(s)
- Marilia R Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander O Pasternak
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam, Netherlands
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Stephen Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Ren Y, Huang SH, Patel S, Alberto WDC, Magat D, Ahimovic D, Macedo AB, Durga R, Chan D, Zale E, Mota TM, Truong R, Rohwetter T, McCann CD, Kovacs CM, Benko E, Wimpelberg A, Cannon C, Hardy WD, Bosque A, Bollard CM, Jones RB. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J Clin Invest 2020; 130:2542-2559. [PMID: 32027622 PMCID: PMC7191002 DOI: 10.1172/jci132374] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.
Collapse
Affiliation(s)
- Yanqin Ren
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Szu Han Huang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dean Magat
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dughan Ahimovic
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Amanda B. Macedo
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Ryan Durga
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Dora Chan
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Elizabeth Zale
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Talia M. Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ronald Truong
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Thomas Rohwetter
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Chase D. McCann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | | | | | - W. David Hardy
- Whitman-Walker Health, Washington, DC, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4 + T Cells. J Virol 2019; 93:JVI.00969-19. [PMID: 31578289 PMCID: PMC6880164 DOI: 10.1128/jvi.00969-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells. During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal. IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.
Collapse
|
8
|
Huang SH, McCann CD, Mota TM, Wang C, Lipkin SM, Jones RB. Have Cells Harboring the HIV Reservoir Been Immunoedited? Front Immunol 2019; 10:1842. [PMID: 31447850 PMCID: PMC6691121 DOI: 10.3389/fimmu.2019.01842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunoediting is an important concept in oncology, delineating the mechanisms through which tumors are selected for resistance to immune-mediated elimination. The recent emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer therapy has intensified interest in immunoediting as a constraint limiting the efficacy of these approaches. Immunoediting manifests at a number of levels for different cancers, for example through the establishment of immunosuppressive microenvironments within solid tumors. Of particular interest to the current review, selection also occurs at the cellular level; and recent studies have revealed novel mechanisms by which tumor cells acquire intrinsic resistance to immune recognition and elimination. While the selection of escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic HIV infection, can be considered a form of immunoediting, few studies have considered the possibility that HIV-infected cells themselves may parallel tumors in having differential intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level of an infected cell, may not play a significant role in untreated HIV, where infection is propagated by high levels of cell-free virus produced by cells that quickly succumb to viral cytopathicity. However, it may play an unappreciated role in individuals treated with effective antiretroviral therapy where viral replication is abrogated. In this context, an "HIV reservoir" persists, comprising long-lived infected cells which undergo extensive and dynamic clonal expansion. The ability of these cells to persist in infected individuals has generally been attributed to viral latency, thought to render them invisible to immune recognition, and/or to their compartmentalization in anatomical sites that are poorly accessible to immune effectors. Recent data from ex vivo studies have led us to propose that reservoir-harboring cells may additionally have been selected for intrinsic resistance to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here, we draw on knowledge from tumor immunoediting to discuss potential mechanisms by which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The establishment of such parallels may provide a premise for testing therapeutics designed to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at curing HIV infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chase D. McCann
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Talia M. Mota
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chao Wang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
9
|
Clayton KL, Collins DR, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, Walker BD. Resistance of HIV-infected macrophages to CD8 + T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol 2018; 19:475-486. [PMID: 29670239 PMCID: PMC6025741 DOI: 10.1038/s41590-018-0085-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
CD4+ T lymphocytes are the principal target of human immunodeficiency virus (HIV), but infected macrophages also contribute to viral pathogenesis. The killing of infected cells by CD8+ cytotoxic T lymphocytes (CTLs) leads to control of viral replication. Here we found that the killing of macrophages by CTLs was impaired relative to the killing of CD4+ T cells by CTLs, and this resulted in inefficient suppression of HIV. The killing of macrophages depended on caspase-3 and granzyme B, whereas the rapid killing of CD4+ T cells was caspase independent and did not require granzyme B. Moreover, the impaired killing of macrophages was associated with prolonged effector cell-target cell contact time and higher expression of interferon-γ by CTLs, which induced macrophage production of pro-inflammatory chemokines that recruited monocytes and T cells. Similar results were obtained when macrophages presented other viral antigens, suggestive of a general mechanism for macrophage persistence as antigen-presenting cells that enhance inflammation and adaptive immunity. Inefficient killing of macrophages by CTLs might contribute to chronic inflammation, a hallmark of chronic disease caused by HIV.
Collapse
Affiliation(s)
| | - David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Josh Lengieza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Farokh Dotiwala
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Susceptibility to CD8 T-cell-mediated killing influences the reservoir of latently HIV-1-infected CD4 T cells. J Acquir Immune Defic Syndr 2014; 65:1-9. [PMID: 23846565 DOI: 10.1097/qai.0b013e3182a1bc81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND HIV-1 establishes a lifelong infection in the human body, but host factors that influence viral persistence remain poorly understood. Cell-intrinsic characteristics of CD4 T cells, the main target cells for HIV-1, may affect the composition of the latent viral reservoir by altering the susceptibility to CD8 T-cell-mediated killing. RESULTS We observed that susceptibilities of CD4 T cells to CD8 T-cell-mediated killing, as determined in direct ex vivo assays, were significantly higher in persons with natural control of HIV-1 (elite controllers) than in individuals effectively treated with antiretroviral therapy. These differences were most pronounced in naive and in terminally differentiated CD4 T cells and corresponded to a reduced viral reservoir size in elite controllers. Interestingly, the highest susceptibility to CD8 T-cell-mediated killing and lowest reservoirs of cell-associated HIV-1 DNA was consistently observed in elite controllers expressing the protective HLA class I allele B57. CONCLUSIONS These data suggest that the functional responsiveness of host CD4 T cells to cytotoxic effects of HIV-1-specific CD8 T cells can contribute to shaping the structure and composition of the latently infected CD4 T-cell pool.
Collapse
|
11
|
Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia 2010; 24:1901-9. [DOI: 10.1038/leu.2010.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Epitope-specific regulatory CD4 T cells reduce virus-induced illness while preserving CD8 T-cell effector function at the site of infection. J Virol 2010; 84:10501-9. [PMID: 20686045 DOI: 10.1128/jvi.00963-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of epitope-specific regulatory CD4 T cells in modulating CD8 T-cell-mediated immunopathology during acute viral infection has not been well defined. In the murine model of respiratory syncytial virus (RSV) infection, CD8 T cells play an important role in both viral clearance and immunopathology. We have previously characterized two RSV epitope-specific CD4 T-cell responses with distinct phenotypic properties. One of them, the IA(b)M(209)-specific subset, constitutively expresses FoxP3 and modulates CD8 T-cell function in vitro. We show here that the IA(b)M(209)-specific CD4 T-cell response regulates CD8 T-cell function in vivo and is associated with diminished RSV-induced illness without affecting viral clearance at the site of infection. Achieving the optimal balance of regulatory and effector T-cell function is an important consideration for designing future vaccines.
Collapse
|
13
|
Mittag A, Tárnok A. Basics of standardization and calibration in cytometry--a review. JOURNAL OF BIOPHOTONICS 2009; 2:470-481. [PMID: 19504519 DOI: 10.1002/jbio.200910033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Standardization, calibration, and controls (negative and positive controls) are essential for quality assurance. Cytometers are capable of reliable and repeatable cellular analyses. However, a prerequisite is instrument calibration and standardized preanalytics. Calibration is often done by beads. Beads are available for different quality control applications, e.g. calibration of size and measuring scale, compensation, absolute cell counting, and laser alignment. Results can be standardized by converting MFI values into MESF or ABC values. Standardized data allow comparison of experiments over a long period of time and between different instruments and laboratories. Alterations in the sensitivity of the cytometer can be detected by routinely performing quality control. The process of quality assurance quantifies and helps manage the variance from the desired value. Results can thus be compared objectively with those of other laboratories. Standardization is the basis of cytometry and a prerequisite for obtaining reliable data.
Collapse
Affiliation(s)
- Anja Mittag
- Dept. of Pediatric Cardiology, Heart Center Leipzig, University of Leipzig, Strümpelstr. 39, 04275 Leipzig, Germany.
| | | |
Collapse
|
14
|
Characterization of respiratory syncytial virus M- and M2-specific CD4 T cells in a murine model. J Virol 2009; 83:4934-41. [PMID: 19264776 DOI: 10.1128/jvi.02140-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M(213-223) (FKYIKPQSQFI) and M2(27-37) (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-gamma), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-A(b)-restricted pattern. Construction of fluorochrome-conjugated peptide-I-A(b) class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-gamma expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M(209-223) peptide-activated CD4 T cells reduced IFN-gamma and IL-2 production in M- and M2-specific CD8 T-cell responses to D(b)-M(187-195) and K(d)-M2(82-90) peptides more than M2(25-39) peptide-stimulated CD4 T cells. This correlated with the fact that I-A(b)-M(209-223) tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-A(b)-M2(26-39) tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-A(b) tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.
Collapse
|
15
|
Chattopadhyay PK, Hogerkorp CM, Roederer M. A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 2009; 125:441-9. [PMID: 19137647 DOI: 10.1111/j.1365-2567.2008.02989.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiparameter flow cytometry has matured tremendously since the 1990s, giving rise to a technology that allows us to study the immune system in unprecedented detail. In this article, we review the development of hardware, reagents, and data analysis tools for multiparameter flow cytometry and discuss future advances in the field. Finally, we highlight new applications that use this technology to reveal previously unappreciated aspects of cell biology and immunity.
Collapse
Affiliation(s)
- Pratip K Chattopadhyay
- ImmunoTechnology Section, Laboratory of Immunology, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3015, USA.
| | | | | |
Collapse
|
16
|
Sack U, Gerling F, Tárnok A. Age-Related Lymphocyte Subset Changes in the Peripheral Blood of Healthy Children – a Meta-Study. Transfus Med Hemother 2007. [DOI: 10.1159/000101357] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|