1
|
Ujlaky-Nagy L, Szöllősi J, Vereb G. Disrupting EGFR-HER2 Transactivation by Pertuzumab in HER2-Positive Cancer: Quantitative Analysis Reveals EGFR Signal Input as Potential Predictor of Therapeutic Outcome. Int J Mol Sci 2024; 25:5978. [PMID: 38892166 PMCID: PMC11173106 DOI: 10.3390/ijms25115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.
Collapse
Affiliation(s)
- László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Danielsson BE, George Abraham B, Mäntylä E, Cabe JI, Mayer CR, Rekonen A, Ek F, Conway DE, Ihalainen TO. Nuclear lamina strain states revealed by intermolecular force biosensor. Nat Commun 2023; 14:3867. [PMID: 37391402 PMCID: PMC10313699 DOI: 10.1038/s41467-023-39563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bobin George Abraham
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carl R Mayer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anna Rekonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Frans Ek
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
3
|
Qiao L, Sinha S, Abd El‐Hafeez AA, Lo I, Midde KK, Ngo T, Aznar N, Lopez‐Sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. Mol Syst Biol 2023; 19:e11127. [PMID: 36856068 PMCID: PMC10090951 DOI: 10.15252/msb.202211127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Amer Ali Abd El‐Hafeez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer InstituteCairo UniversityCairoEgypt
| | - I‐Chung Lo
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Krishna K Midde
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Nicolas Aznar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Inmaculada Lopez‐Sanchez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Vijay Gupta
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Comprehensive Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Veterans Affairs Medical CenterLa JollaCAUSA
| |
Collapse
|
4
|
Li T, Liu C, Li R, Huang X, Qi X, Mi X, Bai T, Xing S. Luminescent AgGaSe 2/ZnSe nanocrystals: rapid synthesis, color tunability, aqueous phase transfer, and bio-labeling application. Dalton Trans 2023; 52:4554-4561. [PMID: 36938844 DOI: 10.1039/d2dt03979f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The unique optoelectronic properties of I-III-VI2 nanocrystals (NCs) have attracted extensive attention. Herein, element Se in oleylamine reduced by alkythiol, which has been demonstrated to generate highly reactive alkylammonium selenide, was selected as the Se precursor by us to successfully synthesize high-quality tetragonal AgGaSe2 NCs via a facile colloidal method in just 2 minutes. Further, the photoluminescence (PL) properties of the as-synthesized AgGaSe2 NCs were systematically optimized through utilizing one Zn precursor to integrate shell coating and anionic/cationic alloying strategies into our reactive system, resulting in not only the obvious improvement of PL intensity but also tunable PL color from blue to red. Furthermore, the ligand exchange approach was adopted for the aqueous phase transfer of the oleophilic AgGaSe2/ZnSe NCs. Our data suggest that either metalated mercaptopropionic acid (Zn-MPA) short- or 11-mercaptoundecanoic acid long-chain ligand exchanged NCs all could maintain the original high crystallinity, present good water solubility, and retain up to nearly 95% and 70% of the initial PL intensity, respectively. Benefiting from the low cytotoxicity, the water-soluble AgGaSe2/ZnSe NCs can be applied as a fluorescent probe in cell imaging and signal labels for the fluoroimmunoassay of prostate-specific antigen, implying their potential in biological application.
Collapse
Affiliation(s)
- Tong Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China. .,Department of Laboratory, Xi'an No. 3 Hospital, the Affiliate Hospital of Northwest University, Xi'an 710018, P. R. China
| | - Cong Liu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Ruyi Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaofei Qi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaohan Mi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
5
|
Rebenku I, Lloyd CB, Szöllősi J, Vereb G. Pixel-by-pixel autofluorescence corrected FRET in fluorescence microscopy improves accuracy for samples with spatially varied autofluorescence to signal ratio. Sci Rep 2023; 13:2934. [PMID: 36804608 PMCID: PMC9941493 DOI: 10.1038/s41598-023-30098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The actual interaction between signaling species in cellular processes is often more important than their expression levels. Förster resonance energy transfer (FRET) is a popular tool for studying molecular interactions, since it is highly sensitive to proximity in the range of 2-10 nm. Spectral spillover-corrected quantitative (3-cube) FRET is a cost effective and versatile approach, which can be applied in flow cytometry and various modalities of fluorescence microscopy, but may be hampered by varying levels of autofluorescence. Here, we have implemented pixel-by-pixel autofluorescence correction in microscopy FRET measurements, exploiting cell-free calibration standards void of autofluorescence that allow the correct determination of all spectral spillover factors. We also present an ImageJ/Fiji plugin for interactive analysis of single images as well as automatic creation of quantitative FRET efficiency maps from large image sets. For validation, we used bead and cell based FRET models covering a range of signal to autofluorescence ratios and FRET efficiencies and compared the approach with conventional average autofluorescence/background correction. Pixel-by-pixel autofluorescence correction proved to be superior in the accuracy of results, particularly for samples with spatially varying autofluorescence and low fluorescence to autofluorescence ratios, the latter often being the case for physiological expression levels.
Collapse
Affiliation(s)
- István Rebenku
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary ,grid.7122.60000 0001 1088 8582ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - Cameron B. Lloyd
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - János Szöllősi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary ,grid.7122.60000 0001 1088 8582ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032 Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary. .,ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary. .,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Li Y, Duan H, Yi J, Wang G, Cheng W, Feng L, Liu J. Kv4.2 phosphorylation by PKA drives Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization. Am J Physiol Cell Physiol 2022; 323:C190-C201. [PMID: 35508186 DOI: 10.1152/ajpcell.00307.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic regulation of the Kv4.2 transient outward potassium current is critical for the acute electrical and contractile response of the myocardium under physiological and pathological conditions. Previous studies have suggested that KChIP2, the key auxiliary subunit of Kv4 channels, is required for the sympathetic regulation of Kv4.2 current densities. Of interest, Kv4.2 and KChIP2, and key components mediating acute sympathetic signaling transduction are present in lipid rafts, which are profoundly involved in regulation of Ito densities in rat ventricular myocytes. However, little is known about the mechanisms of Kv4.2-raft association and its connection with acute sympathetic regulation. With the aid of high-resolution fluorescent microscope, we demonstrate that KChIP2 assists Kv4.2 localization in lipid rafts in HEK293 cells. Moreover, PKA-mediated Kv4.2 phosphorylation, the downstream signaling event of acute sympathetic stimulation, induced dissociation between Kv4.2 and KChIP2, resulting in Kv4.2 shifting out of lipid rafts in KChIP2-expressed HEK293.The mutation that mimics Kv4.2 phosphorylation by PKA similarly disrupted Kv4.2 interaction with KChIP2 and also decreased the surface stability of Kv4.2. The attenuated Kv4.2-KChIP2 interaction was also observed in native neonatal rat ventricular myocytes (NRVMs) upon acute adrenergic stimulation with phenylephrine (PE). Furthermore, PE accelerated internalization of Kv4.2 in native NRVMs, but disruption of lipid rafts dampens this reaction. In conclusion, KChIP2 contributes to targeting Kv4.2 to lipid rafts. Acute adrenergic stimulation induces Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization, reinforcing the critical role of Kv4.2-lipid raft association in the essential physiological response of Ito to acute sympathetic regulation.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Haixia Duan
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Gang Wang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Wanwen Cheng
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|
8
|
Kang C, Kim S, Lee E, Ryu J, Lee M, Kwon Y. Genetically Encoded Sensor Cells for the Screening of Glucocorticoid Receptor (GR) Effectors in Herbal Extracts. BIOSENSORS-BASEL 2021; 11:bios11090341. [PMID: 34562931 PMCID: PMC8465347 DOI: 10.3390/bios11090341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023]
Abstract
Although in vitro sensors provide facile low-cost ways to screen for biologically active targets, their results may not accurately represent the molecular interactions in biological systems. Cell-based sensors have emerged as promising platforms to screen targets in biologically relevant environments. However, there are few examples where cell-based sensors have been practically applied for drug screening. Here, we used engineered cortisol-detecting sensor cells to screen for natural mimetics of cortisol. The sensor cells were designed to report the presence of a target through signal peptide activation and subsequent fluorescence signal translocation. The developed sensor cells were able to detect known biological targets from human-derived analytes as well as natural product extracts, such as deer antlers and ginseng. The multi-use capability and versatility to screen in different cellular environments were also demonstrated. The sensor cells were used to identify novel GR effectors from medicinal plant extracts. Our results suggest that decursin from dongquai had the GR effector function as a selective GR agonist (SEGRA), making it a potent drug candidate with anti-inflammatory activity. We demonstrated the superiority of cell-based sensing technology over in vitro screening, proving its potential for practical drug screening applications that leads to the function-based discovery of target molecules.
Collapse
Affiliation(s)
- Chungwon Kang
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeahee Ryu
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Minhyeong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea; (C.K.); (S.K.); (E.L.); (J.R.); (M.L.)
- Correspondence: ; Tel.: +82-31-961-5151
| |
Collapse
|
9
|
Venkatramanan S, Ibar C, Irvine KD. TRIP6 is required for tension at adherens junctions. J Cell Sci 2021; 134:jcs247866. [PMID: 33558314 PMCID: PMC7970510 DOI: 10.1242/jcs.247866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.
Collapse
Affiliation(s)
- Srividya Venkatramanan
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
10
|
Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P. Quo vadis FRET? Förster's method in the era of superresolution. Methods Appl Fluoresc 2020; 8:032003. [PMID: 32521530 DOI: 10.1088/2050-6120/ab9b72] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the theoretical foundations of Förster resonance energy transfer (FRET) were laid in the 1940s as part of the quantum physical revolution of the 20th century, it was only in the 1970s that it made its way to biology as a result of the availability of suitable measuring and labeling technologies. Thanks to its ease of application, FRET became widely used for studying molecular associations on the nanometer scale. The development of superresolution techniques at the turn of the millennium promised an unprecedented insight into the structure and function of molecular complexes. Without downplaying the significance of superresolution microscopies this review expresses our view that FRET is still a legitimate tool in the armamentarium of biologists for studying molecular associations since it offers distinct advantages and overcomes certain limitations of superresolution approaches.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary. MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
11
|
Senarisoy M, Barette C, Lacroix F, De Bonis S, Stelter M, Hans F, Kleman JP, Fauvarque MO, Timmins J. Förster Resonance Energy Transfer Based Biosensor for Targeting the hNTH1-YB1 Interface as a Potential Anticancer Drug Target. ACS Chem Biol 2020; 15:990-1003. [PMID: 32125823 DOI: 10.1021/acschembio.9b01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Y-box binding protein 1 (YB1) is an established metastatic marker: high expression and nuclear localization of YB1 correlate with tumor aggressiveness, drug resistance, and poor patient survival in various tumors. In the nucleus, YB1 interacts with and regulates the activities of several nuclear proteins, including the DNA glycosylase, human endonuclease III (hNTH1). In the present study, we used Förster resonance energy transfer (FRET) and AlphaLISA technologies to further characterize this interaction and define the minimal regions of hNTH1 and YB1 required for complex formation. This work led us to design an original and cost-effective FRET-based biosensor for the rapid in vitro high-throughput screening for potential inhibitors of the hNTH1-YB1 complex. Two pilot screens were carried out, allowing the selection of several promising compounds exhibiting IC50 values in the low micromolar range. Interestingly, two of these compounds bind to YB1 and sensitize drug-resistant breast tumor cells to the chemotherapeutic agent, cisplatin. Taken together, these findings demonstrate that the hNTH1-YB1 interface is a druggable target for the development of new therapeutic strategies for the treatment of drug-resistant tumors. Moreover, beyond this study, the simple design of our biosensor defines an innovative and efficient strategy for the screening of inhibitors of therapeutically relevant protein-protein interfaces.
Collapse
Affiliation(s)
- Muge Senarisoy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, INSERM, BGE, F-38000 Grenoble, France
| | | | | | - Meike Stelter
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Fabienne Hans
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
12
|
A Software Tool for High-Throughput Real-Time Measurement of Intensity-Based Ratio-Metric FRET. Cells 2019; 8:cells8121541. [PMID: 31795419 PMCID: PMC6952787 DOI: 10.3390/cells8121541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Förster resonance energy transfer (FRET) is increasingly used for non-invasive measurement of fluorescently tagged molecules in live cells. In this study, we have developed a freely available software tool MultiFRET, which, together with the use of a motorised microscope stage, allows multiple single cells to be studied in one experiment. MultiFRET is a Java plugin for Micro-Manager software, which provides real-time calculations of ratio-metric signals during acquisition and can simultaneously record from multiple cells in the same experiment. It can also make other custom-determined live calculations that can be easily exported to Excel at the end of the experiment. It is flexible and can work with multiple spectral acquisition channels. We validated this software by comparing the output of MultiFRET to that of a previously established and well-documented method for live ratio-metric FRET experiments and found no significant difference between the data produced with the use of the new MultiFRET and other methods. In this validation, we used several cAMP FRET sensors and cell models: i) isolated adult cardiomyocytes from transgenic mice expressing the cytosolic epac1-camps and targeted pmEpac1 and Epac1-PLN sensors, ii) isolated neonatal mouse cardiomyocytes transfected with the AKAP79-CUTie sensor, and iii) human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) transfected with the Epac-SH74 sensor. The MultiFRET plugin is an open source freely available package that can be used in a wide area of live cell imaging when live ratio-metric calculations are required.
Collapse
|
13
|
Qin Q, Laub S, Shi Y, Ouyang M, Peng Q, Zhang J, Wang Y, Lu S. Fluocell for Ratiometric and High-Throughput Live-Cell Image Visualization and Quantitation. FRONTIERS IN PHYSICS 2019; 7:154. [PMID: 33163483 PMCID: PMC7646842 DOI: 10.3389/fphy.2019.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spatiotemporal regulation of molecular activities dictates cellular function and fate. Investigation of dynamic molecular activities in live cells often requires the visualization and quantitation of fluorescent ratio image sequences with subcellular resolution and in high throughput. Hence, there is a great need for convenient software tools specifically designed with these capabilities. Here we describe a well-characterized open-source software package, Fluocell, customized to visualize pixelwise ratiometric images and calculate ratio time courses with subcellular resolution and in high throughput. Fluocell also provides group statistics and kinetic analysis functions for the quantified time courses, as well as 3D structure and function visualization for ratio images. The application of Fluocell is demonstrated by the ratiometric analysis of intensity images for several single-chain Förster (or fluorescence) resonance energy transfer (FRET)-based biosensors, allowing efficient quantification of dynamic molecular activities in a heterogeneous population of single live cells. Our analysis revealed distinct activation kinetics of Fyn kinase in the cytosolic and membrane compartments, and visualized a 4D spatiotemporal distribution of epigenetic signals in mitotic cells. Therefore, Fluocell provides an integrated environment for ratiometric live-cell image visualization and analysis, which generates high-quality single-cell dynamic data and allows the quantitative machine-learning of biophysical and biochemical computational models for molecular regulations in cells and tissues.
Collapse
Affiliation(s)
- Qin Qin
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Shannon Laub
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yiwen Shi
- Department of Mathematics, Center of Computational Mathematics, University of California, San Diego, San Diego, CA, United State
| | - Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Mathematics, Center of Computational Mathematics, University of California, San Diego, San Diego, CA, United State
| |
Collapse
|
14
|
Real time quantification of intracellular nickel using genetically encoded FRET-based nanosensor. Int J Biol Macromol 2019; 138:648-657. [DOI: 10.1016/j.ijbiomac.2019.07.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
|
15
|
IL-2 receptors preassemble and signal in the ER/Golgi causing resistance to antiproliferative anti-IL-2Rα therapies. Proc Natl Acad Sci U S A 2019; 116:21120-21130. [PMID: 31570576 DOI: 10.1073/pnas.1901382116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their β- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.
Collapse
|
16
|
Duman JG, Mulherkar S, Tu YK, Erikson KC, Tzeng CP, Mavratsas VC, Ho TSY, Tolias KF. The adhesion-GPCR BAI1 shapes dendritic arbors via Bcr-mediated RhoA activation causing late growth arrest. eLife 2019; 8:47566. [PMID: 31461398 PMCID: PMC6713510 DOI: 10.7554/elife.47566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor architecture profoundly impacts neuronal connectivity and function, and aberrant dendritic morphology characterizes neuropsychiatric disorders. Here, we identify the adhesion-GPCR BAI1 as an important regulator of dendritic arborization. BAI1 loss from mouse or rat hippocampal neurons causes dendritic hypertrophy, whereas BAI1 overexpression precipitates dendrite retraction. These defects specifically manifest as dendrites transition from growth to stability. BAI1-mediated growth arrest is independent of its Rac1-dependent synaptogenic function. Instead, BAI1 couples to the small GTPase RhoA, driving late RhoA activation in dendrites coincident with growth arrest. BAI1 loss lowers RhoA activation and uncouples it from dendrite dynamics, causing overgrowth. None of BAI1's known downstream effectors mediates BAI1-dependent growth arrest. Rather, BAI1 associates with the Rho-GTPase regulatory protein Bcr late in development and stimulates its cryptic RhoA-GEF activity, which functions together with its Rac1-GAP activity to terminate arborization. Our results reveal a late-acting signaling pathway mediating a key transition in dendrite development.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Yen-Kuei Tu
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
| | - Kelly C Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Christopher P Tzeng
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Vasilis C Mavratsas
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Rice University, Houston, United States
| | - Tammy Szu-Yu Ho
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
17
|
Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci Rep 2019; 9:8233. [PMID: 31160659 PMCID: PMC6547726 DOI: 10.1038/s41598-019-44650-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
FRET (Fluorescence Resonance Energy Transfer) measurements are commonly applied to proof protein-protein interactions. However, standard methods of live cell FRET microscopy and signal normalization only allow a principle assessment of mutual binding and are unable to deduce quantitative information of the interaction. We present an evaluation and normalization procedure for 3-filter FRET measurements, which reflects the process of complex formation by plotting FRET-saturation curves. The advantage of this approach relative to traditional signal normalizations is demonstrated by mathematical simulations. Thereby, we also identify the contribution of critical parameters such as the total amount of donor and acceptor molecules and their molar ratio. When combined with a fitting procedure, this normalization facilitates the extraction of key properties of protein complexes such as the interaction stoichiometry or the apparent affinity of the binding partners. Finally, the feasibility of our method is verified by investigating three exemplary protein complexes. Altogether, our approach offers a novel method for a quantitative analysis of protein interactions by 3-filter FRET microscopy, as well as flow cytometry. To facilitate the application of this method, we created macros and routines for the programs ImageJ, R and MS-Excel, which we make publicly available.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Markus Kunze
- Medical University Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Vienna, Austria
| | - Bernhard Moser
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Johannes A Schmid
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria.
| |
Collapse
|
18
|
Dong W, Wang F, Fang M, Wu J, Wang S, Li M, Yang J, Chernick M, Hinton DE, Pei DS, Chen H, Zheng N, Mu J, Xie L, Dong W. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:339-346. [PMID: 30784797 DOI: 10.1016/j.ecoenv.2019.01.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Bohai Bay, in the western region of northeastern China's Bohai Sea, receives water from large rivers containing various pollutants including dioxin-like compounds (DLCs). This study used the established zebrafish (Danio rerio) model, its known developmental toxicity endpoints and sensitive molecular analyses to evaluate sediments near and around an industrial effluent site in Bohai Bay. The primary objective was to assess the efficacy of rapid biological detection methods as an addition to chemical analyses. Embryos were exposed to various concentrations of sediment extracts as well as a 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) positive control. Exposure to sediment extract nearest the discharge site (P1) resulted in the most severe- and highest rates of change in embryos and larvae, suggesting that DLC contaminated sediment probably did not occur much beyond it. P1 extract resulted in concentration dependent increases in mortality and pericardial edema. Its highest concentration caused up-regulation of P-450 (CYP)-1A1(CYP1A) mRNA expression at 72 h post fertilization (hpf), an increase in its expression in gill arches as observed by whole mount in situ hybridization, and an increased signal in the Tg(cyp1a: mCherry) transgenic line. The pattern and magnitude of response was very similar to that of TCDD and supported the presence of DLCs in these sediment samples. Follow-up chemical analysis confirmed this presence and identified H7CDF, O8CDF and O8CDD as the main components in P1 extract. This study validates the use of biological assays as a rapid, sensitive, and cost-effective method to evaluate DLCs and their effects in sediment samples. Additionally, it provides support for the conclusion that DLCs have limited remobilization capacity in marine sediments.
Collapse
Affiliation(s)
- Wenjing Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Feng Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jie Wu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Shuaiyu Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Ming Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Jingfeng Yang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 130021, China
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China.
| |
Collapse
|
19
|
Soleja N, Manzoor O, Nandal P, Mohsin M. FRET-based nanosensors for monitoring and quantification of alcohols in living cells. Org Biomol Chem 2019; 17:2413-2422. [PMID: 30735222 DOI: 10.1039/c8ob03208d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Odorants constitute a small and chemically diverse group of molecules with ethanol functioning as a key odorant that induces reproductive toxicity and adverse chronic effects on the liver. Analytical tools designed so far for the detection of odorant molecules are relatively invasive. Therefore, a tool that can measure the corresponding rate changes of ethanol concentration in real-time is highly desirable. Here in this work, we report a genetically encoded fluorescence resonance energy transfer (FRET)-based nanosensor for in vivo quantification of ethanol at the cellular level with high spatial and temporal resolution. A human odorant-binding protein (hOBPIIa) was flanked by fluorescent proteins ECFP (Enhanced Cyan Fluorescent Protein) and Venus at the N- and C-terminus respectively. The constructed FRET nanosensor was named the fluorescent indicator protein for odorants (FLIPO). FLIPO allows in vitro and in vivo determination of FRET changes in a concentration-dependent manner. The developed nanosensor is highly specific to ethanol, stable to pH changes and provides rapid detection rate response. FLIPO-42 is the most efficient nanosensor created that measures ethanol with an apparent affinity (Kd) of 4.16 μM and covers the physiological range of 500 nM to 12 μM ethanol measurement. FLIPO-42 can measure ethanol dynamics in bacterial, yeast and mammalian cells non-invasively in real time which proves its efficacy as a sensing device in both prokaryotic and eukaryotic systems. Taken together, a prototype for a set of nanosensors was established, potentially enabling the monitoring of dynamic changes of ethanol and investigate its uptake and metabolism with subcellular resolution in vivo and ex vivo. Furthermore, the advent of a set of novel nanosensors will provide us with the tools for numerous medical, scientific, industrial and environmental applications which would help to illuminate their role in biological systems.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.
| | | | | | | |
Collapse
|
20
|
Shellard A, Szabó A, Trepat X, Mayor R. Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. Science 2018; 362:339-343. [PMID: 30337409 DOI: 10.1126/science.aau3301] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying Xenopus and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Nizsalóczki E, Nagy P, Mocsár G, Szabó Á, Csomós I, Waldmann TA, Vámosi G, Mátyus L, Bodnár A. Minimum degree of overlap between IL-9R and IL-2R on human T lymphoma cells: A quantitative CLSM and FRET analysis. Cytometry A 2018; 93:1106-1117. [PMID: 30378727 PMCID: PMC8108070 DOI: 10.1002/cyto.a.23634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γc -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors. Complementing Pearson correlation data with co-occurrence analysis of confocal microscopic images revealed that a minimum degree of IL-9R/IL-2R co-localization exists at the cell surface regardless of the overall spatial correlation of the two receptor kinds. Moreover, our FRET experiments demonstrated molecular scale assemblies of the elements of the IL-9/IL-2R system. Binding of IL-9 altered the structure and/or composition of these clusters. It is hypothesized, that by sequestering receptor subunits in common membrane areas, the overlapping domains of IL-9R and IL-2R provide a platform enabling both the formation of the appropriate receptor complex as well as subunit sharing between related cytokines. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Csomós
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, Maryland
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Mátyus
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Birol M, Kumar S, Rhoades E, Miranker AD. Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid. Nat Commun 2018; 9:1312. [PMID: 29615609 PMCID: PMC5882805 DOI: 10.1038/s41467-018-03651-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022] Open
Abstract
Peptide mediated gain-of-toxic function is central to pathology in Alzheimer’s, Parkinson’s and diabetes. In each system, self-assembly into oligomers is observed and can also result in poration of artificial membranes. Structural requirements for poration and the relationship of structure to cytotoxicity is unaddressed. Here we focus on islet amyloid polypeptide (IAPP) mediated loss-of-insulin secreting cells in patients with diabetes. Newly developed methods enable structure-function enquiry to focus on intracellular oligomers composed of hundreds of IAPP. The key insights are that porating oligomers are internally dynamic, grow in discrete steps and are not canonical amyloid. Moreover, two classes of poration occur; an IAPP-specific ligand establishes that only one is cytotoxic. Toxic rescue occurs by stabilising non-toxic poration without displacing IAPP from mitochondria. These insights illuminate cytotoxic mechanism in diabetes and also provide a generalisable approach for enquiry applicable to other partially ordered protein assemblies. Toxic gain-of-function by islet amyloid polypeptide (IAPP) is thought to be mediated by membrane poration. Here the authors develop diluted-FRET to show that changes in pore structure correlate with onset of toxicity inside insulin secreting cells.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, 231S. 34th St, Philadelphia, PA, 19104, USA.,Department of Molecular Biophysics and Biochemistry, Department of Chemical and Environmental Engineering, Yale University, 260 Whitney Avenue, New Haven, CT, 06520-8114, USA
| | - Sunil Kumar
- Department of Chemistry, New York University, Silver Center for Arts and Science, 100 Washington Square East, 10th Floor, New York, NY, 10003, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, 231S. 34th St, Philadelphia, PA, 19104, USA.
| | - Andrew D Miranker
- Department of Molecular Biophysics and Biochemistry, Department of Chemical and Environmental Engineering, Yale University, 260 Whitney Avenue, New Haven, CT, 06520-8114, USA.
| |
Collapse
|
23
|
Mining and Quantifying In Vivo Molecular Interactions in Abiotic Stress Acclimation. Methods Mol Biol 2017. [PMID: 28735392 DOI: 10.1007/978-1-4939-7136-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Stress acclimation is initialized by sensing the stressor, transducing the signal, and inducing the response. In particular, the signal transduction is driven by protein-protein interactions and the response might involve de novo complex formation, shifts in subcellular localization and, thus, transportation that is mediated by other proteins. The investigation of protein-protein interactions and their regulation upon abiotic stress is crucial for a deeper understanding of the underlying mechanisms. FRET measurements by sensitized emission allow for the analysis of protein-protein interactions in real time and have a high potential to provide new insights into the regulation of protein-protein interaction with respect to subcellular localization and time. Within this section protocols are provided which allow for FRET analysis on the single cell level, the image acquisition procedure is described in detail and ImageJ plugins are suggested for the data evaluation.
Collapse
|
24
|
Ghosh P, Aznar N, Swanson L, Lo IC, Lopez-Sanchez I, Ear J, Rohena C, Kalogriopoulos N, Joosen L, Dunkel Y, Sun N, Nguyen P, Bhandari D. Biochemical, Biophysical and Cellular Techniques to Study the Guanine Nucleotide Exchange Factor, GIV/Girdin. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2016; 8:265-298. [PMID: 27925669 PMCID: PMC5154557 DOI: 10.1002/cpch.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical signal transduction via heterotrimeric G proteins is spatiotemporally restricted, i.e., triggered exclusively at the plasma membrane, only by agonist activation of G protein-coupled receptors via a finite process that is terminated within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a noncanonical pathway for activation of heterotrimeric G proteins via the nonreceptor guanidine-nucleotide exchange factor, GIV/Girdin. Biochemical, biophysical, and functional studies evaluating this pathway have unraveled its unique properties and distinctive spatiotemporal features. As in the case of any new pathway/paradigm, these studies first required an in-depth optimization of tools/techniques and protocols, governed by rationale and fundamentals unique to the pathway, and more specifically to the large multimodular GIV protein. Here we provide the most up-to-date overview of protocols that have generated most of what we know today about noncanonical G protein activation by GIV and its relevance in health and disease. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nicolas Aznar
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Lee Swanson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Jason Ear
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Cristina Rohena
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Linda Joosen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Ying Dunkel
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nina Sun
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| |
Collapse
|
25
|
von Kolontaj K, Horvath GL, Latz E, Büscher M. Automated nanoscale flow cytometry for assessing protein-protein interactions. Cytometry A 2016; 89:835-43. [PMID: 27584593 DOI: 10.1002/cyto.a.22937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/27/2016] [Accepted: 08/14/2016] [Indexed: 11/10/2022]
Abstract
Despite their importance for signalling events, protein-protein interactions cannot easily be analyzed on a single cell level. We developed a robust automated FRET measurement system implemented on a commercial flow cytometer allowing for rapid profiling of molecular associations in living cells. We used this method to measure the most proximal signaling events on human T lymphocyte activation, which preceded calcium influx, and could automatically detect T cell receptor/CD3 complex clustering defects in immunocompromised patients. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kerstin von Kolontaj
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, Bergisch Gladbach, Nordrhein Westfalen, 51429, Germany
| | - Gabor L Horvath
- Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127, Germany. .,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605. .,German Center for Neurodegenerative Diseases, Bonn, 53175, Germany. .,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Martin Büscher
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, Bergisch Gladbach, Nordrhein Westfalen, 51429, Germany.
| |
Collapse
|
26
|
Banerjee S, Garcia LR, Versaw WK. Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:300-310. [PMID: 26879593 DOI: 10.1017/s143192761600012x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been used to report relative concentrations of ions and small molecules, as well as changes in protein conformation, posttranslational modifications, and protein-protein interactions. Changes in FRET are typically quantified through ratiometric analysis of fluorescence intensities. Here we describe methods to evaluate ratiometric imaging data acquired through confocal microscopy of a FRET-based inorganic phosphate biosensor in different cells and subcellular compartments of Arabidopsis thaliana. Linear regression was applied to donor, acceptor, and FRET-derived acceptor fluorescence intensities obtained from images of multiple plants to estimate FRET ratios and associated location-specific spectral correction factors with high precision. FRET/donor ratios provided a combination of high dynamic range and precision for this biosensor when applied to the cytosol of both root and leaf cells, but lower precision when this ratiometric method was applied to chloroplasts. We attribute this effect to quenching of donor fluorescence because high precision was achieved with FRET/acceptor ratios and thus is the preferred ratiometric method for this organelle. A ligand-insensitive biosensor was also used to distinguish nonspecific changes in FRET ratios. These studies provide a useful guide for conducting quantitative ratiometric studies in live plants that is applicable to any FRET-based biosensor.
Collapse
Affiliation(s)
- Swayoma Banerjee
- Department of Biology,Texas A&M University,College Station,TX 77843,USA
| | - Luis Rene Garcia
- Department of Biology,Texas A&M University,College Station,TX 77843,USA
| | - Wayne K Versaw
- Department of Biology,Texas A&M University,College Station,TX 77843,USA
| |
Collapse
|
27
|
Nagy P, Szabó Á, Váradi T, Kovács T, Batta G, Szöllősi J. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments. Cytometry A 2016; 89:376-84. [PMID: 27003481 DOI: 10.1002/cyto.a.22828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| | - Tímea Váradi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kovács
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
Horvath GL, Langhoff P, Latz E. Toll-Like Receptor Interactions Measured by Microscopic and Flow Cytometric FRET. Methods Mol Biol 2016; 1390:41-64. [PMID: 26803621 DOI: 10.1007/978-1-4939-3335-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein-protein interactions regulate biological networks. The most proximal events that initiate signal transduction frequently are receptor dimerization or conformational changes in receptor complexes. Toll-like receptors (TLRs) are transmembrane receptors that are activated by a number of exogenous and endogenous ligands. Most TLRs can respond to multiple ligands and the different TLRs recognize structurally diverse molecules ranging from proteins, sugars, lipids, and nucleic acids. TLRs can be expressed on the plasma membrane or in endosomal compartments and ligand recognition thus proceeds in different microenvironments. Not surprisingly, distinctive mechanisms of TLR receptor activation have evolved. A detailed understanding of the mechanisms of TLR activation is important for the development of novel synthetic TLR activators or pharmacological inhibitors of TLRs. Confocal laser scanning microscopy combined with GFP technology allows the direct visualization of TLR expression in living cells. Fluorescence resonance energy transfer (FRET) measurements between two differentially tagged proteins permit the study of TLR interaction, and distances between receptors in the range of molecular interactions can be measured and visualized. Additionally, FRET measurements combined with confocal microscopy provide detailed information about molecular interactions in different subcellular localizations. These techniques permit the dynamic visualization of early signaling events in living cells and can be utilized in pharmacological or genetic screens.
Collapse
Affiliation(s)
- Gabor L Horvath
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127, Bonn, Germany
| | - Pia Langhoff
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127, Bonn, Germany.
- University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
29
|
Tunc-Ozdemir M, Fu Y, Jones AM. Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana. Methods Mol Biol 2016; 1363:155-74. [PMID: 26577788 DOI: 10.1007/978-1-4939-3115-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bimolecular fluorescence complementation (BiFC) and Förster Resonance Energy Transfer (FRET) are two widely used techniques to investigate protein-protein interactions and subcellular compartmentalization of proteins in complexes. As of January 2015, there were 805 publications retrieved by PUBMED with the query "bimolecular fluorescence complementation" and 11,327 publications retrieved with the query "fluorescence resonance energy transfer". Only a few of these publications describe studies of plant cells. Given the importance and popularity of these techniques, applying them correctly is crucial but unfortunately many studies lack proper controls and verifications. We describe (1) BiFC and FRET problems that are frequently encountered at different stages of the protocols, (2) how to use appropriate controls, and (3) how to apply plant transformation and imaging procedures. We provide step-by-step protocols for the beginner to obtain high quality, artifact-free BiFC and FRET data.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, CB#3280, 120 South Road, Chapel Hill, NC, 27599, USA
| | - Yan Fu
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, CB#3280, 120 South Road, Chapel Hill, NC, 27599, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, CB#3280, 120 South Road, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
30
|
Banerjee S, Versaw WK, Garcia LR. Imaging Cellular Inorganic Phosphate in Caenorhabditis elegans Using a Genetically Encoded FRET-Based Biosensor. PLoS One 2015; 10:e0141128. [PMID: 26484766 PMCID: PMC4615621 DOI: 10.1371/journal.pone.0141128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023] Open
Abstract
Inorganic phosphate (Pi) has central roles in metabolism, cell signaling and energy conversion. The distribution of Pi to each cell and cellular compartment of an animal must be tightly coordinated with its dietary supply and with the varied metabolic demands of individual cells. An analytical method for monitoring Pi dynamics with spatial and temporal resolution is therefore needed to gain a comprehensive understanding of mechanisms governing the transport and recycling of this essential nutrient. Here we demonstrate the utility of a genetically encoded FRET-based Pi sensor to assess cellular Pi levels in the nematode Caenorhabditis elegans. The sensor was expressed in different cells and tissues of the animal, including head neurons, tail neurons, pharyngeal muscle, and the intestine. Cytosolic Pi concentrations were monitored using ratiometric imaging. Injection of phosphate buffer into intestinal cells confirmed that the sensor was responsive to changes in Pi concentration in vivo. Live Pi imaging revealed cell-specific and developmental stage-specific differences in cytosolic Pi concentrations. In addition, cellular Pi levels were perturbed by food deprivation and by exposure to the respiratory inhibitor cyanide. These results suggest that Pi concentration is a sensitive indicator of metabolic status. Moreover, we propose that live Pi imaging in C. elegans is a powerful approach to discern mechanisms that govern Pi distribution in individual cells and throughout an animal.
Collapse
Affiliation(s)
- Swayoma Banerjee
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843-3258, United States of America
| | - Wayne K. Versaw
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843-3258, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843-3258, United States of America
- Howard Hughes Medical Institute, College Station, TX, 77843-3258, United States of America
- * E-mail:
| |
Collapse
|
31
|
Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces. Dev Cell 2015; 34:421-34. [PMID: 26235046 PMCID: PMC4552721 DOI: 10.1016/j.devcel.2015.06.012] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/07/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Neural crest cells acquire contact inhibition of locomotion (CIL) during EMT An E- to N-cadherin switch controls CIL E-cadherin represses CIL by controlling Rac1-dependent protrusions via p120 During CIL, forces are redistributed from intercellular junctions to cell matrix
Collapse
Affiliation(s)
- Elena Scarpa
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | - András Szabó
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne Bibonne
- Centre de Biologie du Développement-UMR5547, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse 31400, France
| | - Eric Theveneau
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK; Centre de Biologie du Développement-UMR5547, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse 31400, France
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen KP, Willert K, Goel A, Abal M, Garcia-Marcos M, Ghosh P. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. eLife 2015; 4:e07091. [PMID: 26126266 PMCID: PMC4484057 DOI: 10.7554/elife.07091] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Krishna K Midde
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | | | - Yelena Pavlova
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Jorge Barbazán
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Fiona Murray
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Willert
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States
| | - Miguel Abal
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
33
|
Radbruch H, Bremer D, Mothes R, Günther R, Rinnenthal JL, Pohlan J, Ulbricht C, Hauser AE, Niesner R. Intravital FRET: Probing Cellular and Tissue Function in Vivo. Int J Mol Sci 2015; 16:11713-27. [PMID: 26006244 PMCID: PMC4463726 DOI: 10.3390/ijms160511713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/13/2015] [Indexed: 12/02/2022] Open
Abstract
The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo-ratiometrically and time-resolved by fluorescence lifetime imaging-and show their concrete application in the context of neuroinflammation in adult mice.
Collapse
Affiliation(s)
- Helena Radbruch
- Neuropathology, Charité-University of Medicine, Berlin 10117, Germany.
| | - Daniel Bremer
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | - Ronja Mothes
- Neuropathology, Charité-University of Medicine, Berlin 10117, Germany.
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | - Robert Günther
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | | | - Julian Pohlan
- Neuropathology, Charité-University of Medicine, Berlin 10117, Germany.
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | - Carolin Ulbricht
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
- Immundynamics and Intravital Microscopy, Charité-University of Medicine, Berlin 10117, Germany.
| | - Anja E Hauser
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
- Immundynamics and Intravital Microscopy, Charité-University of Medicine, Berlin 10117, Germany.
| | - Raluca Niesner
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| |
Collapse
|
34
|
Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J. Understanding FRET as a research tool for cellular studies. Int J Mol Sci 2015; 16:6718-56. [PMID: 25815593 PMCID: PMC4424985 DOI: 10.3390/ijms16046718] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1-10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types.
Collapse
Affiliation(s)
- Dilip Shrestha
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| | - Attila Jenei
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
| | - György Vereb
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, University of Debrecen, Egyetem tér 1, Nagyerdei Krt. 98, Debrecen 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary.
| |
Collapse
|
35
|
|
36
|
Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun 2014; 5:5624. [PMID: 25427562 PMCID: PMC4248239 DOI: 10.1038/ncomms6624] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022] Open
Abstract
The earliest molecular events in T cell recognition have not yet been fully described, and the initial T cell receptor (TCR) triggering mechanism remains a subject of controversy. Here, using TIRF/FRET microscopy, we observe a two-stage interaction between TCR, CD8, and MHCp. There is an early (within seconds) interaction between CD3ζ and the coreceptor CD8 that is independent of the binding of CD8 to MHC, but that requires CD8 association with Lck. Later (several minutes) CD3ζ-CD8 interactions require CD8-MHC binding. Lck can be found free or bound to the coreceptor. This work indicates that the initial TCR triggering event is induced by free Lck.
Collapse
|
37
|
Zhu X, Taylor A, Zhang S, Zhang D, Feng Y, Liang G, Zhu JK. Measuring spatial and temporal Ca2+ signals in Arabidopsis plants. J Vis Exp 2014:e51945. [PMID: 25226381 DOI: 10.3791/51945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Developmental and environmental cues induce Ca(2+) fluctuations in plant cells. Stimulus-specific spatial-temporal Ca(2+) patterns are sensed by cellular Ca(2+) binding proteins that initiate Ca(2+) signaling cascades. However, we still know little about how stimulus specific Ca(2+) signals are generated. The specificity of a Ca(2+) signal may be attributed to the sophisticated regulation of the activities of Ca(2+) channels and/or transporters in response to a given stimulus. To identify these cellular components and understand their functions, it is crucial to use systems that allow a sensitive and robust recording of Ca(2+) signals at both the tissue and cellular levels. Genetically encoded Ca(2+) indicators that are targeted to different cellular compartments have provided a platform for live cell confocal imaging of cellular Ca(2+) signals. Here we describe instructions for the use of two Ca(2+) detection systems: aequorin based FAS (film adhesive seedlings) luminescence Ca(2+) imaging and case12 based live cell confocal fluorescence Ca(2+) imaging. Luminescence imaging using the FAS system provides a simple, robust and sensitive detection of spatial and temporal Ca(2+) signals at the tissue level, while live cell confocal imaging using Case12 provides simultaneous detection of cytosolic and nuclear Ca(2+) signals at a high resolution.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University;
| | | | - Shenyu Zhang
- Department of Horticulture and Landscape Architecture, Purdue University
| | - Dayong Zhang
- Department of Horticulture and Landscape Architecture, Purdue University; Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences
| | - Ying Feng
- Department of Horticulture and Landscape Architecture, Purdue University; College of Environmental & Resource Science, Zhejiang University
| | - Gaimei Liang
- Department of Horticulture and Landscape Architecture, Purdue University; Dryland Agriculture Research Centre, Shanxi Academy of Agricultural Sciences
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University; Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences
| |
Collapse
|
38
|
Krieger JW, Singh AP, Garbe CS, Wohland T, Langowski J. Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). OPTICS EXPRESS 2014; 22:2358-75. [PMID: 24663528 DOI: 10.1364/oe.22.002358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, flow velocities and concentrations in an imaging mode. Here we extend this technique to two-color fluorescence cross-correlation spectroscopy (SPIM-FCCS), which allows to measure molecular interactions in an imaging mode. We present a theoretical framework for SPIM-FCCS fitting models, which is subsequently used to evaluate several test measurements of in-vitro (labeled microspheres, several DNAs and small unilamellar vesicles) and in-vivo samples (dimeric and monomeric dual-color fluorescent proteins, as well as membrane bound proteins). Our method yields the same quantitative results as the well-established confocal FCCS, but in addition provides unmatched statistics and true imaging capabilities.
Collapse
|
39
|
Poulsen CP, Vereb G, Geshi N, Schulz A. Inhibition of cytoplasmic streaming by cytochalasin D is superior to paraformaldehyde fixation for measuring FRET between fluorescent protein-tagged Golgi components. Cytometry A 2013; 83:830-8. [PMID: 23520174 DOI: 10.1002/cyto.a.22282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/05/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
Abstract
Protein-protein interaction at the organelle level can be analyzed by using tagged proteins and assessing Förster resonance energy transfer (FRET) between fluorescent donor and acceptor proteins. Such studies are able to uncover partners in the regulation of proteins and enzymes. However, any organelle movement is an issue for live FRET microscopy, as the observed organelle must not change position during measurement. One of the mobile organelles in plants is the Golgi apparatus following cytoplasmic streaming. It is involved in the decoration of proteins and processing of complex glycan structures for the cell wall. Understanding of these processes is still limited, but evidence is emerging that protein-protein interaction plays a key role in the function of this organelle. In the past, mobile organelles were usually immobilized with paraformaldehyde (PFA) for FRET-based interaction studies. Here, we show that the actin inhibitor Cytochalasin D (CytD) is superior to PFA for immobilization of Golgi stacks in plant cells. Two glycosyltransferases known to interact were tagged with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), respectively, coexpressed in Nicotiana benthamiana leaves and analyzed using confocal microscopy and spectral imaging. Fixation with PFA leads to reduced emission intensity when compared to CytD treatment. Furthermore, the calculated FRET efficiency was significantly higher with CytD than with PFA. The documented improvements are beneficial for all methods measuring FRET, where immobilization of the investigated molecules is necessary. It can be expected that FRET measurement in organelles of animal cells will also benefit from the use of inhibitors acting on the cytoskeleton.
Collapse
Affiliation(s)
- Christian Peter Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
40
|
Talati R, Vanderpoel A, Eladdadi A, Anderson K, Abe K, Barroso M. Automated selection of regions of interest for intensity-based FRET analysis of transferrin endocytic trafficking in normal vs. cancer cells. Methods 2013; 66:139-52. [PMID: 23994873 DOI: 10.1016/j.ymeth.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022] Open
Abstract
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells.
Collapse
Affiliation(s)
- Ronak Talati
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Andrew Vanderpoel
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Kate Anderson
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
41
|
Saraiva N, Prole DL, Carrara G, Johnson BF, Taylor CW, Parsons M, Smith GL. hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2. ACTA ACUST UNITED AC 2013; 202:699-713. [PMID: 23940116 PMCID: PMC3747308 DOI: 10.1083/jcb.201301016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Golgi antiapoptotic proteins (GAAPs) are highly conserved Golgi membrane proteins that inhibit apoptosis and promote Ca(2+) release from intracellular stores. Given the role of Ca(2+) in controlling cell adhesion and motility, we hypothesized that human GAAP (hGAAP) might influence these events. In this paper, we present evidence that hGAAP increased cell adhesion, spreading, and migration in a manner that depended on the C-terminal domain of hGAAP. We show that hGAAP increased store-operated Ca(2+) entry and thereby the activity of calpain at newly forming protrusions. These hGAAP-dependent effects regulated focal adhesion dynamics and cell migration. Indeed, inhibition or knockdown of calpain 2 abrogated the effects of hGAAP on cell spreading and migration. Our data reveal that hGAAP is a novel regulator of focal adhesion dynamics, cell adhesion, and migration by controlling localized Ca(2+)-dependent activation of calpain.
Collapse
Affiliation(s)
- Nuno Saraiva
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Szalóki N, Doan-Xuan QM, Szöllősi J, Tóth K, Vámosi G, Bacsó Z. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry. Cytometry A 2013; 83:818-29. [DOI: 10.1002/cyto.a.22315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/24/2013] [Accepted: 05/12/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Nikoletta Szalóki
- Department of Biophysics and Cell Biology; Medical and Health Science Center, Research Center for Molecular Medicine, University of Debrecen; Nagyerdei krt. 98; H-4032; Debrecen; Hungary
| | - Quang Minh Doan-Xuan
- Department of Biophysics and Cell Biology; Medical and Health Science Center, Research Center for Molecular Medicine, University of Debrecen; Nagyerdei krt. 98; H-4032; Debrecen; Hungary
| | | | - Katalin Tóth
- German Cancer Research Center (DKFZ), Biophysics of Macromolecules (B040); Im Neuenheimer Feld 580; D-69120; Heidelberg; Germany
| | - György Vámosi
- Department of Biophysics and Cell Biology; Medical and Health Science Center, Research Center for Molecular Medicine, University of Debrecen; Nagyerdei krt. 98; H-4032; Debrecen; Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology; Medical and Health Science Center, Research Center for Molecular Medicine, University of Debrecen; Nagyerdei krt. 98; H-4032; Debrecen; Hungary
| |
Collapse
|
43
|
Sun Y, Rombola C, Jyothikumar V, Periasamy A. Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry A 2013; 83:780-93. [PMID: 23813736 DOI: 10.1002/cyto.a.22321] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/08/2013] [Accepted: 05/23/2013] [Indexed: 12/15/2022]
Abstract
The fundamental theory of Förster resonance energy transfer (FRET) was established in the 1940s. Its great power was only realized in the past 20 years after different techniques were developed and applied to biological experiments. This success was made possible by the availability of suitable fluorescent probes, advanced optics, detectors, microscopy instrumentation, and analytical tools. Combined with state-of-the-art microscopy and spectroscopy, FRET imaging allows scientists to study a variety of phenomena that produce changes in molecular proximity, thereby leading to many significant findings in the life sciences. In this review, we outline various FRET imaging techniques and their strengths and limitations; we also provide a biological model to demonstrate how to investigate protein-protein interactions in living cells using both intensity- and fluorescence lifetime-based FRET microscopy methods.
Collapse
Affiliation(s)
- Yuansheng Sun
- The W.M. Keck Center for Cellular Imaging (KCCI), Department of Biology, Physical and Life Sciences Building, University of Virginia, Charlottesville, Virginia
| | | | | | | |
Collapse
|
44
|
Rinnenthal JL, Börnchen C, Radbruch H, Andresen V, Mossakowski A, Siffrin V, Seelemann T, Spiecker H, Moll I, Herz J, Hauser AE, Zipp F, Behne MJ, Niesner R. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS One 2013; 8:e60100. [PMID: 23613717 PMCID: PMC3629055 DOI: 10.1371/journal.pone.0060100] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/22/2013] [Indexed: 01/27/2023] Open
Abstract
Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain) in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET) is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM) is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC) (i) for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii) for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm(2)) are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm(2)) can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM) in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify neuronal dysfunction in neuroinflammation.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Christian Börnchen
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Radbruch
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | | | - Agata Mossakowski
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Volker Siffrin
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Neurology Department, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Ingrid Moll
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josephine Herz
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Anja E. Hauser
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Frauke Zipp
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Neurology Department, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin J. Behne
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raluca Niesner
- German Rheumatism Research Center, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| |
Collapse
|
45
|
Fábián Á, Horváth G, Vámosi G, Vereb G, Szöllősi J. TripleFRET measurements in flow cytometry. Cytometry A 2013; 83:375-85. [PMID: 23504771 DOI: 10.1002/cyto.a.22267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 02/01/2023]
Abstract
A frequently used method for viewing protein interactions and conformation, Förster (fluorescence) resonance energy transfer (FRET), has traditionally been restricted to two fluorophores. Lately, several methods have been introduced to expand FRET methods to three species. We present a method that allows the determination of FRET efficiency in three-dye systems on a flow cytometer. TripleFRET accurately reproduces energy transfer efficiency values measured in two-dye systems, and it can indicate the presence of trimeric complexes, which is not possible with conventional FRET methods. We also discuss the interpretation of energy transfer values obtained with tripleFRET in relation to spatial distribution of labeled molecules, specifically addressing the limitations of using total energy transfer to determine molecular distance.
Collapse
Affiliation(s)
- Ákos Fábián
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | | | |
Collapse
|
46
|
Hukasova E, Silva Cascales H, Kumar SR, Lindqvist A. Monitoring kinase and phosphatase activities through the cell cycle by ratiometric FRET. J Vis Exp 2012:e3410. [PMID: 22314640 DOI: 10.3791/3410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Förster resonance energy transfer (FRET)-based reporters(1) allow the assessment of endogenous kinase and phosphatase activities in living cells. Such probes typically consist of variants of CFP and YFP, intervened by a phosphorylatable sequence and a phospho-binding domain. Upon phosphorylation, the probe changes conformation, which results in a change of the distance or orientation between CFP and YFP, leading to a change in FRET efficiency (Fig 1). Several probes have been published during the last decade, monitoring the activity balance of multiple kinases and phosphatases, including reporters of PKA(2), PKB(3), PKC(4), PKD(5), ERK(6), JNK(7), Cdk(18), Aurora B(9) and Plk1(9). Given the modular design, additional probes are likely to emerge in the near future(10). Progression through the cell cycle is affected by stress signaling pathways( 11). Notably, the cell cycle is regulated differently during unperturbed growth compared to when cells are recovering from stress(12).Time-lapse imaging of cells through the cell cycle therefore requires particular caution. This becomes a problem particularly when employing ratiometric imaging, since two images with a high signal to noise ratio are required to correctly interpret the results. Ratiometric FRET imaging of cell cycle dependent changes in kinase and phosphatase activities has predominately been restricted to sub-sections of the cell cycle(8,9,13,14). Here, we discuss a method to monitor FRET-based probes using ratiometric imaging throughout the human cell cycle. The method relies on equipment that is available to many researchers in life sciences and does not require expert knowledge of microscopy or image processing.
Collapse
Affiliation(s)
- Elvira Hukasova
- Department of Cell and Molecular Biology, Karolinska Institutet
| | | | | | | |
Collapse
|
47
|
Oheim M. Advances and challenges in high-throughput microscopy for live-cell subcellular imaging. Expert Opin Drug Discov 2011; 6:1299-315. [DOI: 10.1517/17460441.2011.637105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Martin Oheim
- INSERM U603, CNRS UMR 8154, Université Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, F-75006 Paris, France ;
| |
Collapse
|
48
|
Nagy P, Szöllosi J. How to avoid bleeding in Förster resonance energy transfer. Cytometry A 2011; 81:108-9. [PMID: 22076908 DOI: 10.1002/cyto.a.21165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Peter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt. 98, 4012 Debrecen, Hungary
| | | |
Collapse
|
49
|
Stroebel A, Welzel O, Kornhuber J, Groemer TW. Background determination-based detection of scattered peaks. Microsc Res Tech 2011; 73:1115-22. [PMID: 20981757 DOI: 10.1002/jemt.20858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In many instances of signal and image processing, it is indispensable to precisely distinguish scattered peaks from a background, e.g., camera signals in microscopy. Here we addressed the detection of Gaussian signals in simulated line profiles (LP) comparable with e.g., fluorescence microscopy data. In a first step, we measured the applicability of histogram-based global background estimation. We find that the method is valid for typical scattered Gaussian signals if they are averagely separated by interpeak distances of 5.5 standard deviations. This enabled us to design global background determination-based peak detection (GBPD). GBPD was compared with two local background determination-based signal detection methods that had been designed for analysis of electrophysiological data and microscopy images, respectively. We were able to prove via receiver-operator characteristic (ROC) comparisons of signal-to-noise ratio (SNR), interpeak distance, and filtering behavior that, when applicable, GBPD brings advantages in knowledge needed a priori, performance at any SNR, controllability and spatial resolution.
Collapse
Affiliation(s)
- Armin Stroebel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Germany
| | | | | | | |
Collapse
|
50
|
Mittag A, Pinto FE, Endringer DC, Tarnok A, Lenz D. Cellular analysis by open-source software for affordable cytometry. SCANNING 2011; 33:33-40. [PMID: 21319173 DOI: 10.1002/sca.20220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Image cytometry is an important technique in affordable healthcare and cellular research. Some efforts toward establishing a personal, low-cost cytometer have been described in the literature. However, a self-assembled fluorescence microscope requires software for cytometric analysis. There are some open-source image-based software analysis applications available. However, for a quantitative analysis of images, software that can generate data comparable to those of previously evaluated cytometric analyses programs is required. Hence, the aim of this study is to compare results of a commercially available image cytometry program to data obtained using the open-source software CellProfiler (CP). Leukocytes and fluorescent bead images obtained using a Laser Scanning Cytometer were analyzed by CP and the results compared with those of conventional cytometric analyses' programs. Algorithms were developed enabling the analysis of leukocytes and beads by CP. CP provided similar results to those obtained by the cytometer software. Hallmark parameters, including cell count and fluorescence intensity, revealed a high correlation in the analysis of both programs. Therefore, CP is appropriate for cellular analysis on a self-assembled microscope, thereby enabling affordable cytometry.
Collapse
Affiliation(s)
- Anja Mittag
- Translational Centre for Regenerative Medicine, Leipzig, Germany
| | | | | | | | | |
Collapse
|