1
|
Huo CL, Wang B, Zhang X, Sun ZG. Skimmianine attenuates liver ischemia/reperfusion injury by regulating PI3K-AKT signaling pathway-mediated inflammation, apoptosis and oxidative stress. Sci Rep 2023; 13:18232. [PMID: 37880319 PMCID: PMC10600244 DOI: 10.1038/s41598-023-45354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Liver ischemia/reperfusion (I/R) injury is a common injury after liver transplantation and hepatectomy. Skimmianine (Ski) has antibacterial, antiviral pharmacological effects. However, it is not clear whether Ski has a protective effect against liver I/R injury. In the present study, we established a mouse liver I/R model and an AML12 cell hypoxia-reoxygenation (H/R) model, both pretreated with different concentrations of Ski. Serum transaminase levels, necrotic liver area, cell viability, inflammatory factors, oxidative stress and apoptosis-related levels were measured to assess the protective effect of Ski against liver I/R injury. Western blotting was used to detect apoptosis-related proteins and PI3K-AKT pathway-related proteins. Mice and cells were also treated with PI3K inhibitor LY294002 to assess changes in indicators of liver injury. The results showed that Ski significantly reduced transaminase levels, liver necrosis area, oxidative stress, and apoptosis levels in mice with I/R. Ski also inhibited cell injury and apoptosis after H/R. Moreover, Ski activated phosphorylation of PI3K-AKT pathway-related proteins after liver I/R and cell H/R. Importantly, the PI3K inhibitor LY294002 effectively reversed the alleviation of I/R injury caused by Ski. These results confirm that Ski exerts a protective effect against liver I/R injury through activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Cheng-Long Huo
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Bing Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Xuewen Zhang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China.
| |
Collapse
|
2
|
Zimmerlin L, Park TS, Bhutto I, Lutty G, Zambidis ET. Generation of Pericytic-Vascular Progenitors from Tankyrase/PARP-Inhibitor-Regulated Naïve (TIRN) Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2416:133-156. [PMID: 34870835 PMCID: PMC9529319 DOI: 10.1007/978-1-0716-1908-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tankyrase/PARP inhibitor-regulated naïve human pluripotent stem cells (TIRN-hPSC) represent a new class of human stem cells for regenerative medicine that can differentiate into multi-lineage progenitors with improved in vivo functionality. Chemical reversion of conventional, primed hPSC to a TIRN-hPSC state alleviates dysfunctional epigenetic donor cell memory, lineage-primed gene expression, and potentially disease-associated aberrations in their differentiated progeny. Here, we provide methods for the reversion of normal or diseased patient-specific primed hPSC to TIRN-hPSC and describe their subsequent differentiation into embryonic-like pericytic-endothelial "naïve" vascular progenitors (N-VP). N-VP possess improved vascular functionality, high epigenetic plasticity, maintain greater genomic stability, and are more efficient in migrating to and re-vascularizing ischemic tissues than those generated from primed isogenic hPSC. We also describe detailed methods for the ocular transplantation and quantitation of vascular engraftment of N-VP into the ischemia-damaged neural retina of a humanized mouse model of ischemic retinopathy. The application of TIRN-hPSC-derived N-VP will advance vascular cell therapies of ischemic retinopathy, myocardial infarction, and cerebral vascular stroke.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Imran Bhutto
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard Lutty
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kolesnichenko OA, Whitsett JA, Kalin TV, Kalinichenko VV. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 65:473-488. [PMID: 34293272 DOI: 10.1165/rcmb.2021-0152tr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
Collapse
Affiliation(s)
- Olena A Kolesnichenko
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Cincinnati Children\'s Hospital Medical Center, 2518, Pediatrics, Cincinnati, Ohio, United States
| | - Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;
| |
Collapse
|
4
|
Al-Amoodi AS, Sakashita K, Ali AJ, Zhou R, Lee JM, Tehseen M, Li M, Belmonte JCI, Kusakabe T, Merzaban JS. Using Eukaryotic Expression Systems to Generate Human α1,3-Fucosyltransferases That Effectively Create Selectin-Binding Glycans on Stem Cells. Biochemistry 2020; 59:3757-3771. [PMID: 32901486 DOI: 10.1021/acs.biochem.0c00523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.
Collapse
Affiliation(s)
- Asma S Al-Amoodi
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| | - Kosuke Sakashita
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| | - Amal J Ali
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| | - Ruoyu Zhou
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| | - Mo Li
- Laboratory of Stem Cell and Regeneration, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Juan Carlos I Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jasmeen S Merzaban
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| |
Collapse
|
5
|
Gene therapy of hematological disorders: current challenges. Gene Ther 2019; 26:296-307. [PMID: 31300728 DOI: 10.1038/s41434-019-0093-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in genetic engineering technology and stem cell biology have spurred great interest in developing gene therapies for hereditary, as well as acquired hematological disorders. Currently, hematopoietic stem cell transplantation is used to cure disorders such as hemoglobinopathies and primary immunodeficiencies; however, this method is limited by the availability of immune-matched donors. Using autologous cells coupled with genome editing bypasses this limitation and therefore became the focus of many research groups aiming to develop efficient and safe genomic modification. Hence, gene therapy research has witnessed a noticeable growth in recent years with numerous successful achievements; however, several challenges have to be overcome before gene therapy becomes widely available for patients. In this review, I discuss tools used in gene therapy for hematological disorders, choices of target cells, and delivery vehicles with emphasis on current hurdles and attempts to solve them, and present examples of successful clinical trials to give a glimpse of current progress.
Collapse
|
6
|
Mokhtari S, Colletti E, Yin W, Sanada C, Lamar Z, Simmons PJ, Walker S, Bishop C, Atala A, Zanjani ED, Porada CD, Almeida-Porada G. A human bone marrow mesodermal-derived cell population with hemogenic potential. Leukemia 2018; 32:1575-1586. [PMID: 29467489 PMCID: PMC6035774 DOI: 10.1038/s41375-018-0016-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
The presence, within the human bone marrow, of cells with both endothelial and hemogenic potential has been controversial. Herein, we identify, within the human fetal bone marrow, prior to establishment of hematopoiesis, a unique APLNR+, Stro-1+ cell population, co-expressing markers of early mesodermal precursors and/or hemogenic endothelium. In adult marrow, cells expressing similar markers are also found, but at very low frequency. These adult-derived cells can be extensively culture expanded in vitro without loss of potential, they preserve a biased hemogenic transcriptional profile, and, upon in vitro induction with OCT4, assume a hematopoietic phenotype. In vivo, these cells, upon transplantation into a fetal microenvironment, contribute to the vasculature, and generate hematopoietic cells that provide multilineage repopulation upon serial transplantation. The identification of this human somatic cell population provides novel insights into human ontogenetic hematovascular potential, which could lead to a better understanding of, and new target therapies for, malignant and nonmalignant hematologic disorders.
Collapse
Affiliation(s)
- Saloomeh Mokhtari
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Evan Colletti
- Animal Biotechnology, University of Nevada Reno, Reno NV 89557, USA
| | - Weihong Yin
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Chad Sanada
- CORRESPONDING AUTHOR: Graça Almeida-Porada, M.D., Ph.D., Professor of Regenerative Medicine, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083 USA., Phone: (336) 713-1630; FAX: (336) 713-7290,
| | - Zanetta Lamar
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Paul J. Simmons
- Institute of Molecular Medicine, University of Texas at Houston, Houston, Texas 77030, USA
| | - Steven Walker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
7
|
Toriumi T, Kawano E, Yamanaka K, Kaneko T, Oka A, Yuguchi M, Isokawa K, Honda M. Odontogenic Tissue Generation Derived from Human Induced Pluripotent Stem Cells Using Tissue Engineering Application. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Taku Toriumi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
- Department of Anatomy, Nihon University School of Dentistry
| | - Eisuke Kawano
- Department of Periodontology, Nihon University School of Dentistry
| | | | | | | | - Maki Yuguchi
- Department of Anatomy, Nihon University School of Dentistry
| | | | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
8
|
Park TS, Zimmerlin L, Evans-Moses R, Zambidis ET. Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. J Vis Exp 2018. [PMID: 29939183 DOI: 10.3791/57921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Naïve human pluripotent stem cells (N-hPSC) with improved functionality may have a wide impact in regenerative medicine. The goal of this protocol is to efficiently revert lineage-primed, conventional human pluripotent stem cells (hPSC) maintained on either feeder-free or feeder-dependent conditions to a naïve-like pluripotency with improved functionality. This chemical naïve reversion method employs the classical leukemia inhibitory factor (LIF), GSK3β, and MEK/ERK inhibition cocktail (LIF-2i), supplemented with only a tankyrase inhibitor XAV939 (LIF-3i). LIF-3i reverts conventional hPSC to a stable pluripotent state adopting biochemical, transcriptional, and epigenetic features of the human pre-implantation epiblast. This LIF-3i method requires minimal cell culture manipulation and is highly reproducible in a broad repertoire of human embryonic stem cell (hESC) and transgene-free human induced pluripotent stem cell (hiPSC) lines. The LIF-3i method does not require a re-priming step prior to the differentiation; N-hPSC can be differentiated directly with extremely high efficiencies and maintain karyotypic and epigenomic stabilities (including at imprinted loci). To increase the universality of the method, conventional hPSC are first cultured in the LIF-3i cocktail supplemented with two additional small molecules that potentiate protein kinase A (forskolin) and sonic hedgehog (sHH) (purmorphamine) signaling (LIF-5i). This brief LIF-5i adaptation step significantly enhances the initial clonal expansion of conventional hPSC and permits them to be subsequently naïve-reverted with LIF-3i alone in bulk quantities, thus obviating the need for picking/subcloning rare N-hPSC colonies later. LIF-5i-stabilized hPSCs are subsequently maintained in LIF-3i alone without the need of anti-apoptotic molecules. Most importantly, LIF-3i reversion markedly improves the functional pluripotency of a broad repertoire of conventional hPSC by decreasing their lineage-primed gene expression and erasing the interline variability of directed differentiation commonly observed amongst independent hPSC lines. Representative characterizations of LIF-3i-reverted N-hPSC are provided, and experimental strategies for functional comparisons of isogenic hPSC in lineage-primed vs. naïve-like states are outlined.
Collapse
Affiliation(s)
- Tea Soon Park
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine
| | - Ludovic Zimmerlin
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine;
| | - Rebecca Evans-Moses
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine
| | - Elias T Zambidis
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine;
| |
Collapse
|
9
|
Galkowski D, Ratajczak MZ, Kocki J, Darzynkiewicz Z. Of Cytometry, Stem Cells and Fountain of Youth. Stem Cell Rev Rep 2018; 13:465-481. [PMID: 28364326 DOI: 10.1007/s12015-017-9733-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their "stemness", and other characteristics. Appraised is further progress in identification and isolation of the "very small embryonic-like stem cells" (VSELs) and their autogenous transplantation for tissue repair and geroprotection. Also assessed is a function of hyaluronic acid, the major stem cells niche component, as a guardian and controller of stem cells. Briefly appraised are recent advances and challenges in the application of stem cells in regenerative medicine and oncology and their future role in different disciplines of medicine, including geriatrics.
Collapse
Affiliation(s)
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University in Lublin, 20-080, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10095, USA.
| |
Collapse
|
10
|
Bhatwadekar AD, Duan Y, Korah M, Thinschmidt JS, Hu P, Leley SP, Caballero S, Shaw L, Busik J, Grant MB. Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Res 2017; 139:211-220. [PMID: 29042190 DOI: 10.1016/j.visres.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Maria Korah
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | | | - Ping Hu
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sameer P Leley
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sergio Caballero
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | - Lynn Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Lin Y, Gil CH, Yoder MC. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2017; 37:2014-2025. [PMID: 29025705 DOI: 10.1161/atvbaha.117.309962] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.
Collapse
Affiliation(s)
- Yang Lin
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Chang-Hyun Gil
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Mervin C Yoder
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
12
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
13
|
Laminin-guided highly efficient endothelial commitment from human pluripotent stem cells. Sci Rep 2016; 6:35680. [PMID: 27804979 PMCID: PMC5090224 DOI: 10.1038/srep35680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Obtaining highly purified differentiated cells via directed differentiation from human pluripotent stem cells (hPSCs) is an essential step for their clinical application. Among the various conditions that should be optimized, the precise role and contribution of the extracellular matrix (ECM) during differentiation are relatively unclear. Here, using a short fragment of laminin 411 (LM411-E8), an ECM predominantly expressed in the vascular endothelial basement membrane, we demonstrate that the directed switching of defined ECMs robustly yields highly-purified (>95%) endothelial progenitor cells (PSC-EPCs) without cell sorting from hPSCs in an integrin-laminin axis-dependent manner. Single-cell RNA-seq analysis revealed that LM411-E8 resolved intercellular transcriptional heterogeneity and escorted the progenitor cells to the appropriate differentiation pathway. The PSC-EPCs gave rise to functional endothelial cells both in vivo and in vitro. We therefore propose that sequential switching of defined matrices is an important concept for guiding cells towards desired fate.
Collapse
|
14
|
Role of the bone morphogenic protein pathway in developmental haemopoiesis and leukaemogenesis. Biochem Soc Trans 2016; 44:1455-1463. [DOI: 10.1042/bst20160104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
Abstract
Myeloid leukaemias share the common characteristics of being stem cell-derived clonal diseases, characterised by excessive proliferation of one or more myeloid lineage. Chronic myeloid leukaemia (CML) arises from a genetic alteration in a normal haemopoietic stem cell (HSC) giving rise to a leukaemic stem cell (LSC) within the bone marrow (BM) ‘niche’. CML is characterised by the presence of the oncogenic tyrosine kinase fusion protein breakpoint cluster region-abelson murine leukaemia viral oncogene homolog 1 (BCR-ABL), which is responsible for driving the disease through activation of downstream signal transduction pathways. Recent evidence from our group and others indicates that important regulatory networks involved in establishing primitive and definitive haemopoiesis during development are reactivated in myeloid leukaemia, giving rise to an LSC population with altered self-renewal and differentiation properties. In this review, we explore the role the bone morphogenic protein (BMP) signalling plays in stem cell pluripotency, developmental haemopoiesis, HSC maintenance and the implication of altered BMP signalling on LSC persistence in the BM niche. Overall, we emphasise how the BMP and Wnt pathways converge to alter the Cdx–Hox axis and the implications of this in the pathogenesis of myeloid malignancies.
Collapse
|
15
|
McMahan ZH, Cottrell TR, Wigley FM, Antiochos B, Zambidis ET, Park TS, Halushka MK, Gutierrez-Alamillo L, Cimbro R, Rosen A, Casciola-Rosen L. Enrichment of Scleroderma Vascular Disease-Associated Autoantigens in Endothelial Lineage Cells. Arthritis Rheumatol 2016; 68:2540-9. [PMID: 27159521 PMCID: PMC5042822 DOI: 10.1002/art.39743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Scleroderma patients with autoantibodies to CENPs and/or interferon-inducible protein 16 (IFI-16) are at increased risk of severe vascular complications. This study was undertaken to determine whether these autoantigens are enriched in cells of the vasculature. METHODS Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI-16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI-16 and CD31 expression were defined in paraffin-embedded skin sections from scleroderma patients and from healthy controls. IFI-16 expression was determined by flow cytometric analysis in circulating endothelial cells (CECs) and circulating hematopoietic progenitor cells. RESULTS Expression of CENP-A, IFI-16, and CD31 was enriched in EBs on days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI-16, CD31, and CENPs A and B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of paraffin-embedded skin sections showed enrichment of IFI-16 in CD31-positive vascular endothelial cells in biopsy specimens from scleroderma patients and normal controls. Flow cytometric analysis revealed IFI-16 expression in circulating hematopoietic progenitor cells but minimal expression in CECs. CONCLUSION Our findings indicate that expression of the scleroderma autoantigens IFI-16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens.
Collapse
Affiliation(s)
| | | | | | | | - Elias T Zambidis
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tea Soon Park
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marc K Halushka
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Raffaello Cimbro
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
16
|
Julien E, El Omar R, Tavian M. Origin of the hematopoietic system in the human embryo. FEBS Lett 2016; 590:3987-4001. [DOI: 10.1002/1873-3468.12389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Emmanuelle Julien
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| | - Reine El Omar
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| | - Manuela Tavian
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| |
Collapse
|
17
|
Samuel R, Duda DG, Fukumura D, Jain RK. Vascular diseases await translation of blood vessels engineered from stem cells. Sci Transl Med 2016; 7:309rv6. [PMID: 26468328 DOI: 10.1126/scitranslmed.aaa1805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of human induced pluripotent stem cells (hiPSCs) might pave the way toward a long-sought solution for obtaining sufficient numbers of autologous cells for tissue engineering. Several methods exist for generating endothelial cells or perivascular cells from hiPSCs in vitro for use in the building of vascular tissue. We discuss current developments in the generation of vascular progenitor cells from hiPSCs and the assessment of their functional capacity in vivo, opportunities and challenges for the clinical translation of engineered vascular tissue, and modeling of vascular diseases using hiPSC-derived vascular progenitor cells.
Collapse
Affiliation(s)
- Rekha Samuel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Gil CH, Ki BS, Seo J, Choi JJ, Kim H, Kim IG, Jung AR, Lee WY, Choi Y, Park K, Moon SH, Chung HM. Directing human embryonic stem cells towards functional endothelial cells easily and without purification. Tissue Eng Regen Med 2016; 13:274-283. [PMID: 30603409 DOI: 10.1007/s13770-016-9076-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 11/25/2022] Open
Abstract
Hemangioblasts or blood islands only arise in early development thereby the sources to obtain these bi-potential cells are limited. While previous studies have isolated both lineages in vitro through the hemangioblast, derivation efficiency was rather low due to cellular damage attributed by enzyme usage and fluorescent activated cell sorting (FACS). This study focused on avoiding the use of damaging factors in the derivation of endothelial cells (ECs). Single cell H9-human embryonic stem cells (hESCs) were obtained by using a mild dissociation protocol then human embryoid body (hEB) formation was performed under hemangioblast differentiation conditions. The hEBs were subjected to a two-stage cytokine treatment procedure. Subsequent culture of the adhesive cells in day 4 hEBs gave arise to a seemingly pure population of ECs. The hESC-derived ECs were characterized by identifying signature endothelial gene and protein markers as well as testing for in vitro functionality. Furthermore, in vivo functionality was also confirmed by transplanting the cells in hindlimb ischemic murine models. We demonstrate that the genetic change required for EC derivation precedes blast colony formation. Furthermore, cell damage was prevented by abating enzyme usage and FACS, resulting in a high yield of ECs upon adhesion. Under this method, confluent cultures of ECs were obtainable 4 days after hEB formation which is significantly faster than previous protocols.
Collapse
Affiliation(s)
- Chang-Hyun Gil
- 1Department of Stem Cell Biology, School of Medicine, Konkuk University, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030 Korea
| | - Byeong-Seong Ki
- 2Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Joseph Seo
- 1Department of Stem Cell Biology, School of Medicine, Konkuk University, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030 Korea
| | - Jong-Jin Choi
- 1Department of Stem Cell Biology, School of Medicine, Konkuk University, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030 Korea
| | - Hana Kim
- 1Department of Stem Cell Biology, School of Medicine, Konkuk University, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030 Korea
| | - In-Gul Kim
- 3Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
| | - A-Ra Jung
- 4Department of Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
| | - Won-Young Lee
- 4Department of Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
| | - Youngsok Choi
- 2Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Kwideok Park
- 3Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
| | - Sung-Hwan Moon
- 1Department of Stem Cell Biology, School of Medicine, Konkuk University, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030 Korea
| | - Hyung-Min Chung
- 1Department of Stem Cell Biology, School of Medicine, Konkuk University, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030 Korea
| |
Collapse
|
19
|
Zou T, Fan J, Fartash A, Liu H, Fan Y. Cell-based strategies for vascular regeneration. J Biomed Mater Res A 2016; 104:1297-314. [PMID: 26864677 DOI: 10.1002/jbm.a.35660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.
Collapse
Affiliation(s)
- Tongqiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Armita Fartash
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
20
|
Ferrell PI, Xi J, Ma C, Adlakha M, Kaufman DS. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells. Stem Cells 2016; 33:1130-41. [PMID: 25546363 DOI: 10.1002/stem.1940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/14/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
Derivation of hematopoietic stem cells (HSCs) from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom(+) hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of the tdTom(+) population. Notably, RUNX1c/tdTom(+) cells represent only a limited subpopulation of the CD34(+) CD45(+) and CD34(+) CD43(+) cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom(+) cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom(+) population to CD34(+) CD45(+) umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs.
Collapse
Affiliation(s)
- Patrick I Ferrell
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
21
|
Kramerov AA, Ljubimov AV. Stem cell therapies in the treatment of diabetic retinopathy and keratopathy. Exp Biol Med (Maywood) 2015; 241:559-68. [PMID: 26454200 DOI: 10.1177/1535370215609692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonproliferative diabetic retinopathy (DR) is characterized by multiple degenerative changes that could be potentially corrected by stem cell therapies. Most studies so far have attempted to alleviate typical abnormalities of early retinopathy, including vascular hyperpermeability, capillary closure and pericyte dropout. Success was reported with adult stem cells (vascular progenitors or adipose stem cells), as well as induced pluripotent stem cells from cord blood. The cells were able to associate with damaged vessels in both pericyte and endothelial lining positions in models of DR and ischemia-reperfusion. In some diabetic models, functional amelioration of vasculature and electroretinograms was noted. Another approach for endogenous progenitor cell therapy is to normalize dysfunctional diabetic bone marrow and residing endothelial progenitors using NO donors, PPAR-δ and -γ agonists, or inhibition of TGF-β. A potentially important strategy would be to reduce neuropathy by stem cell inoculations, either naïve (e.g., paracrine-acting adipose stem cells) or secreting specific neuroprotectants, such as ciliary neurotrophic factor or brain-derived neurotrophic factor that showed benefit in amyotrophic lateral sclerosis and Parkinson's disease. Recent advances in stem cell therapies for diabetic retinal microangiopathy may form the basis of first clinical trials in the near future. Additionally, stem cell therapies may prove beneficial for diabetic corneal disease (diabetic keratopathy) with pronounced epithelial stem cell dysfunction.
Collapse
Affiliation(s)
- Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
22
|
Flynn R, Grundmann A, Renz P, Hänseler W, James WS, Cowley SA, Moore MD. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol 2015; 43:838-848.e3. [PMID: 26101162 PMCID: PMC4596252 DOI: 10.1016/j.exphem.2015.06.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare genetic disease characterized by severe and persistent childhood infections. It is caused by the lack of an antipathogen oxidative burst, normally performed by phagocytic cells to contain and clear bacterial and fungal growth. Restoration of immune function can be achieved with heterologous bone marrow transplantation; however, autologous bone marrow transplantation would be a preferable option. Thus, a method is required to recapitulate the function of the diseased gene within the patient's own cells. Gene therapy approaches for CGD have employed randomly integrating viruses with concomitant issues of insertional mutagenesis, inaccurate gene dosage, and gene silencing. Here, we explore the potential of the recently described clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 site-specific nuclease system to encourage repair of the endogenous gene by enhancing the levels of homologous recombination. Using induced pluripotent stem cells derived from a CGD patient containing a single intronic mutation in the CYBB gene, we show that footprintless gene editing is a viable option to correct disease mutations. Gene correction results in restoration of oxidative burst function in iPS-derived phagocytes by reintroduction of a previously skipped exon in the cytochrome b-245 heavy chain (CYBB) protein. This study provides proof-of-principle for a gene therapy approach to CGD treatment using CRISPR-Cas9. Chronic granulomatous disease–causing mutation was corrected in patient-derived iPS cells using CRISPR-Cas9 A key to efficiency is prevention of CRISPR activity on corrected gene Potentially clinically relevant efficiencies are attainable with CRISPR-Cas9 The defect in ROS production from macrophages was overcome in patient-derived cells
Collapse
Affiliation(s)
- Rowan Flynn
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alexander Grundmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter Renz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Walther Hänseler
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - William S James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michael D Moore
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Sgambato JA, Park TS, Miller D, Panicker LM, Sidransky E, Lun Y, Awad O, Bentzen SM, Zambidis ET, Feldman RA. Gaucher Disease-Induced Pluripotent Stem Cells Display Decreased Erythroid Potential and Aberrant Myelopoiesis. Stem Cells Transl Med 2015; 4:878-86. [PMID: 26062980 DOI: 10.5966/sctm.2014-0213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease resulting from mutations in the lysosomal enzyme glucocerebrosidase (GCase). The hematopoietic abnormalities in GD include the presence of characteristic Gaucher macrophages that infiltrate patient tissues and cytopenias. At present, it is not clear whether these cytopenias are secondary to the pathological activity of Gaucher cells or a direct effect of GCase deficiency on hematopoietic development. To address this question, we differentiated induced pluripotent stem cells (iPSCs) derived from patients with types 1, 2, and 3 GD to CD34(+)/CD45(+)/CD43(+)/CD143(+) hematopoietic progenitor cells (HPCs) and examined their developmental potential. The formation of GD-HPCs was unaffected. However, these progenitors demonstrated a skewed lineage commitment, with increased myeloid differentiation and decreased erythroid differentiation and maturation. Interestingly, myeloid colony-formation assays revealed that GD-HPCs, but not control-HPCs, gave rise to adherent, macrophage-like cells, another indication of abnormal myelopoiesis. The extent of these hematologic abnormalities correlated with the severity of the GCase mutations. All the phenotypic abnormalities of GD-HPCs observed were reversed by incubation with recombinant GCase, indicating that these developmental defects were caused by the mutated GCase. Our results show that GCase deficiency directly impairs hematopoietic development. Additionally, our results suggest that aberrant myelopoiesis might contribute to the pathological properties of Gaucher macrophages, which are central to GD manifestations. The hematopoietic developmental defects we observed reflect hematologic abnormalities in patients with GD, demonstrating the utility of GD-iPSCs for modeling this disease.
Collapse
Affiliation(s)
- Judi A Sgambato
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Tea Soon Park
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Diana Miller
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Leelamma M Panicker
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Ellen Sidransky
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Yu Lun
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Ola Awad
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Søren M Bentzen
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Elias T Zambidis
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology and Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Shi Q, VandeBerg JL. Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. AMERICAN JOURNAL OF STEM CELLS 2015; 4:32-37. [PMID: 25973329 PMCID: PMC4396158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
Traditionally, CD34 positive cells are predominantly found in the umbilical cord and bone marrow, thus are considered as hematopoietic progenitors. Increasing evidence has suggested that the CD34+ cells represent a distinct subset of cells with enhanced progenitor activity; CD34 is a general marker of progenitor cells in a variety of cell types. Because the CD34 protein shows expression early on in hematopoietic and vascular-associated tissues, CD34+ cells have enormous potential as cellular agents for research and for clinical cell transplantation. Directed differentiation of embryonic stem cells will give rise to an inexhaustible supply of CD34+ cells, creating an exciting approach for biomedical research and for regenerative medicine. Here, we review the main methods that have been published for the derivation of CD34+ cells from embryonic stem cells; specifically those approaches the human and nonhuman primate stem cells. We summarize current status of this field, compare the methods used, and evaluate the issues in translating the bench science to bedside therapy.
Collapse
Affiliation(s)
- Qiang Shi
- Southwest National Primate Research Center, Texas Biomedical Research InstituteSan Antonio, Texas, 78227-5301
| | - John L VandeBerg
- Southwest National Primate Research Center, Texas Biomedical Research InstituteSan Antonio, Texas, 78227-5301
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center, San Antonio - Regional Academic Health Center80 Fort Brown Street, Brownsville, Texas 78520
| |
Collapse
|
25
|
Ganji F, Abroun S, Baharvand H, Aghdami N, Ebrahimi M. Differentiation potential of o bombay human-induced pluripotent stem cells and human embryonic stem cells into fetal erythroid-like cells. CELL JOURNAL 2015; 16:426-39. [PMID: 25685733 PMCID: PMC4297481 DOI: 10.22074/cellj.2015.489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/06/2013] [Indexed: 12/05/2022]
Abstract
Objective There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in
somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs) have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease.
Materials and Methods In this experimental study, we examined the erythroid differentiation potential of normal Bombay hiPSCs (B-hiPSCs) and compared results
to human embryonic stem cell (hESC) lines. Because of lacking ABO blood group
expression in B-hiPSCs, it has been highlighted as a valuable source to produce any
cell type in vitro.
Results Similar to hESC lines, hemangioblasts derived from B-hiPSCs expressed approximately 9% KDR+CD31+ and approximately 5% CD31+CD34+. In semisolid media,
iPSC and hESC-derived hemangioblast formed mixed type of hematopoietic colony. In
mixed colonies, erythroid progenitors were capable to express CD71+GPA+HbF+ and accompanied by endothelial cells differentiation. Conclusion Finally, iPS and ES cells have been directly induced to erythropoiesis without hemangioblast formation that produced CD71+HbF+ erythroid cells. Although we observed
some variations in the efficiency of hematopoietic differentiation between iPSC and ES cells,
the pattern of differentiation was similar among all three tested lines.
Collapse
Affiliation(s)
- Fatemeh Ganji
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Abroun
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857504. [PMID: 24738074 PMCID: PMC3967716 DOI: 10.1155/2014/857504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/02/2022]
Abstract
Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.
Collapse
|
27
|
Engle SJ, Vincent F. Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J Biol Chem 2013; 289:4562-70. [PMID: 24362033 DOI: 10.1074/jbc.r113.529156] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A need for better clinical outcomes has heightened interest in the use of physiologically relevant human cells in the drug discovery process. Patient-specific human induced pluripotent stem cells may offer a relevant, robust, scalable, and cost-effective model of human disease physiology. Small molecule high throughput screening in human induced pluripotent stem cell-derived cells with the intent of identifying novel therapeutic compounds is starting to influence the drug discovery process; however, the use of these cells presents many high throughput screening development challenges. This technology has the potential to transform the way drug discovery is performed.
Collapse
Affiliation(s)
- Sandra J Engle
- From Pharmacokinetics, Dynamics and Metabolism-New Chemical Entities, Pfizer Inc., Groton, Connecticut 06340
| | | |
Collapse
|
28
|
Abstract
Hyperglycemia has toxic effects on almost all cells in the body. Ophthalmic complications of hyperglycemia are most profound in cornea and retina. Seventy percent of diabetics suffer from corneal complications, collectively called diabetic keratopathy, which includes include recurrent erosions, delayed wound healing, ulcers, and edema. Confocal microscopy has permitted in vivo imaging of corneal nerves, which are also affected in diabetic subjects. Gene therapies upregulating MNNG HOS transforming gene (cMet) and/or downregulating MMP10 and cathepsin S are potential future therapies for diabetic keratopathy. Diabetic retinopathy (DR) is the most common cause of blindness in people over the age of 50. There is accumulating evidence that DR is an inflammatory disease. The initial events in animal models of DR are increased vascular permeability and leukostasis. This binding of leukocytes to the endothelium results from an increase in intracellular adhesion molecule-1 (ICAM-1) on the retinal capillary endothelium (EC) and expression of CD11/CD18 on the surface of the activated leukocyte. We have observed polymorphonuclear leukocytes (PMNs) at sites of EC vascular dysfunction in diabetic retinas as well as choroid. Anti-inflammatory drugs like etanercept, aspirin, or meloxicam reduce leukostasis and EC death. Future therapies may include repopulation of the acellular capillaries after EC and pericyte death with vascular progenitors made from the patient's own blood cells.
Collapse
Affiliation(s)
- Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
29
|
Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, Reijo-Pera R, Feldman RA, Rassool F, Cooke J, Lutty G, Zambidis ET. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 2013; 129:359-72. [PMID: 24163065 DOI: 10.1161/circulationaha.113.003000] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. METHODS AND RESULTS VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31(+)CD146(+) VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. CONCLUSIONS VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, and Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD (T.S.P., L.Z., J.S.H., J.A., E.T.Z.); Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, MD (I.B., R.G., C.M., G.L.); Department of Radiation Oncology (P.N., F.R.) and Department of Microbiology/Immunology (D.M., R.A.F.), University of Maryland School of Medicine, Baltimore, MD; Department of Cardiovascular Medicine (A.J.R., J.C.) and Institute for Stem Cell Biology and Regenerative Medicine (A.J.R., R.R.-P., J.C.), Stanford University, Palo Alto, CA; and Institute for Basic Biomedical Science at Johns Hopkins School of Medicine, Baltimore, MD (C.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood 2013; 122:4035-46. [PMID: 24124087 DOI: 10.1182/blood-2013-07-474825] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.
Collapse
|
31
|
Yoo CH, Na HJ, Lee DS, Heo SC, An Y, Cha J, Choi C, Kim JH, Park JC, Cho YS. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases. Biomaterials 2013; 34:8149-60. [PMID: 23896001 DOI: 10.1016/j.biomaterials.2013.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Human dental pulp cells (hDPCs) are a valuable source for the generation of patient-specific human induced pluripotent stem cells (hiPSCs). An advanced strategy for the safe and efficient reprogramming of hDPCs and subsequent lineage-specific differentiation is a critical step toward clinical application. In present research, we successfully generated hDPC-iPSCs using only two non-oncogenic factors: Oct4 and Sox2 (2F hDPC-hiPSCs) and evaluated the feasibility of hDPC-iPSCs as substrates for endothelial progenitor cells (EPCs), contributing to EPC-based therapies. Under conventional differentiation conditions, 2F hDPC-hiPSCs showed higher differentiation efficiency, compared to hiPSCs from other cell types, into multipotent CD34(+) EPCs (2F-hEPCs) capable to differentiate into functional endothelial and smooth muscle cells. The angiogenic and neovasculogenic activities of 2F-hEPCs were confirmed using a Matrigel plug assay in mice. In addition, the therapeutic effects of 2F-hEPC transplantation were confirmed in mouse models of hind-limb ischemia and myocardial infarction. Importantly, 2F-EPCs effectively integrated into newly formed vascular structures and enhanced neovascularization via likely both direct and indirect paracrine mechanisms. 2F hDPC-hiPSCs have a robust capability for the generation of angiogenic and vasculogenic EPCs, representing a strategy for patient-specific EPC therapies and disease modeling, particularly for ischemic vascular diseases.
Collapse
Affiliation(s)
- Chae Hwa Yoo
- Stem Cells Research Center, KRIBB, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nakamura K, Hirano KI, Wu SM. iPS cell modeling of cardiometabolic diseases. J Cardiovasc Transl Res 2012; 6:46-53. [PMID: 23070616 DOI: 10.1007/s12265-012-9413-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/02/2012] [Indexed: 01/04/2023]
Abstract
Cardiometabolic diseases encompass simple monogenic enzyme deficiencies with well-established pathogenesis and clinical outcomes to complex polygenic diseases such as the cardiometabolic syndrome. The limited availability of relevant human cell types such as cardiomyocytes has hampered our ability to adequately model and study pathways or drugs relevant to these diseases in the heart. The recent discovery of induced pluripotent stem (iPS) cell technology now offers a powerful opportunity to establish translational platforms for cardiac disease modeling, drug discovery, and pre-clinical testing. In this article, we discuss the excitement and challenges of modeling cardiometabolic diseases using iPS cell and their potential to revolutionize translational research.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|