1
|
Martynov I, Gesche J, Dhaka L, Tobi L, Hoyer P, Seitz G. A comparative in vivo study of hyperthermic intraperitoneal chemotherapy with cisplatin versus doxorubicin versus cisplatin plus doxorubicin for the treatment of intra-abdominally disseminated alveolar rhabdomyosarcoma in mice. Pediatr Blood Cancer 2024; 71:e31366. [PMID: 39375886 DOI: 10.1002/pbc.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Treatment options for advanced intra-abdominal pediatric rhabdomyosarcoma (RMS) with peritoneal sarcomatosis (PS) include cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). However, optimal dosages and combination regimens of drugs used for HIPEC are underexplored. We aimed to evaluate the efficacy of HIPEC with cisplatin, doxorubicin, and their combination in vivo. METHODS We established PS/RMS mouse model by intraperitoneally injecting RH30 cells into NOD/LtSz-scid IL2Rγ-null mice. Two weeks post xenotransplantation, mice underwent a single HIPEC procedure at 42°C for 60 minutes. Treatment groups received cisplatin (50, 100, and 150 mg/m2) and doxorubicin (30, 45, and 60 mg/m2), administered alone or combined. The control group underwent an intraperitoneal lavage with isotonic saline. Peritoneal cancer index (PCI) was used to quantify the extent of peritoneal tumor spread. Tissue samples were evaluated regarding proliferation (Ki-67) and apoptosis (caspase 3). RESULTS Mice treated with cisplatin at 100 mg/m2 (PCI of 3.875, p = .007) and 150 mg/m2 (PCI of 4.556, p = .026), and doxorubicin at 30 mg/m2 (PCI of 2.875, p < .001) and 45 mg/m2 (PCI of 4.143, p = .021) showed reduced PCI, with the combination of cisplatin 50 mg/m2 and doxorubicin 30 mg/m2 showing the most prominent effect (PCI of 3.333, p < .001) compared to the control group (PCI of 8.615). Histologically, there was no difference in Ki-67 or caspase 3 expression among the groups. CONCLUSIONS The cisplatin- and doxorubicin-based HIPEC significantly reduces peritoneal tumor dissemination in vivo. Further investigations are needed to explore the underlying molecular responses to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Illya Martynov
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Jens Gesche
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Lajwanti Dhaka
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Luca Tobi
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Paul Hoyer
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| |
Collapse
|
2
|
Skóra B, Piechowiak T, Szychowski KA. Interaction Between Aging-Related Elastin-Derived Peptide (VGVAPG) and Sirtuin 2 and its Impact on Functions of Human Neuron Cells in an In Vitro Model. Mol Neurobiol 2024:10.1007/s12035-024-04298-y. [PMID: 38914873 DOI: 10.1007/s12035-024-04298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Elastin is a stable protein present in many tissues, including brain tissues, and is one of the most long-life proteins with a half-life of approximately 70 years. The peptide with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence is released during elastin decay, which correlates with aging-related neurodegeneration. A recent study has shown enhanced protein expression of Sirtuin 2 (SIRT2 - one of the redox homeostatic factors) in aged rodent brains, while the correlation between VGVAPG and SIRT2 has never been evaluated so far. Therefore, the study aimed to determine the impact of the VGVAPG hexapeptide on SIRT2 and neuronal functions in differentiated SH-SY5Y cells at the gene and protein expression levels. The present results showed that VGVAPG caused a 52.69% decrease in the level of reactive oxygen species (ROS), as in the case of neurons treated with AGK2 (Sirtuin 2 inhibitor) after 24h and 48h. Furthermore, a decrease in superoxide dismutase (SOD) activity was observed. The SIRT2 gene expression was found to fluctuate after 6h and 24h as a result of the exposure to the VGVAPG peptide. In turn, a decrease in the PPARγ, P53, SOD2, and CAT mRNA expression was shown in VGVAPG-treated cells. Additionally, an increase in the Sirtuin 2 protein expression was recorded after 24h and 48h in the VGVAPG peptide-treated neurons. Last but not least, the decrease in the level of acetylation of α-tubulin after the hexapeptide treatment was correlated with shortening of neurites, which may indicate the destabilization of the microtubule and ROS-independent induction of neurodegeneration.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszów, Poland.
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Ćwiklinskiej 2, 35-601, Rzeszów, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
3
|
Cui J, Wang M, Liu M, Jia N, Zhao M, Weng Y, Zhang W, Wang L, Wang J. Nephroprotective effects of Aralia taibaiensis in a high-fat diet-streptozotocin rat model of diabetic nephropathy. Heliyon 2024; 10:e31775. [PMID: 38947426 PMCID: PMC11214440 DOI: 10.1016/j.heliyon.2024.e31775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic nephropathy (DN) has emerged as the foremost cause of end-stage renal disease (ESRD) globally. Endoplasmic reticulum (ER) stress plays a critical role in DN progression. Triterpenoid saponin from Aralia taibaiensis (sAT) has been reported to possess anti-diabetic and anti-oxidant effects. The aim of this study was to examine the influence of sAT on DN treatment and elucidate potential underlying mechanisms. A high-fat diet (HFD) and Streptozotocin (STZ) were employed to induce DN in male Sprague Dawley (SD) rats which were subsequently treated with varying concentrations of sAT for 8 weeks. Our findings reveal that different doses of sAT significantly mitigated hyperglycemia, reduced urinary albumin excretion, and decreased plasma creatinine and blood urea nitrogen levels in DN rats. Moreover, sAT administration improved body weight, alleviated renal fibrosis and histopathological changes in the diabetic kidneys. Notably, sAT treatment partially restored increased Bax expression and decreased Bcl-2 expression. Additionally, sAT inhibited ER stress-related proteins, including GRP78, p-PERK, ATF4 and CHOP in kidneys of DN rats. These results suggest that sAT ameliorated experimental diabetic nephropathy, at least in part, through ER stress pathway. These findings provide a scientific basis for the potential development of sAT as a therapeutic agent for DN treatment.
Collapse
Affiliation(s)
| | | | | | | | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi Province, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi Province, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi Province, China
| | - Lei Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi Province, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi Province, China
| |
Collapse
|
4
|
Kosińska K, Skóra B, Holota S, Shepeta Y, Tabęcka-Łonczyńska A, Lesyk R, Szychowski KA. Role of 4-Thiazolidinone-Pyrazoline/Indoline Hybrids Les-4369 and Les-3467 in BJ and A549 Cell Lines. Cells 2024; 13:1007. [PMID: 38920636 PMCID: PMC11202306 DOI: 10.3390/cells13121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer is one of the most important problems of modern societies. Recently, studies have reported the anticancer properties of rosiglitazone related to its ability to bind peroxisome proliferator receptor γ (PPARγ), which has various effects on cancer and can inhibit cell proliferation. In this study, we investigated the effect of new 4-thiazolidinone (4-TZD) hybrids Les-4369 and Les-3467 and their effect on reactive oxygen species (ROS) production, metabolic activity, lactate dehydrogenase (LDH) release, caspase-3 activity, and gene and protein expression in human foreskin fibroblast (BJ) cells and lung adenocarcinoma (A549) cells. The ROS production and caspase-3 activity were mainly increased in the micromolar concentrations of the studied compounds in both cell lines. Les-3467 and Les-4369 increased the mRNA expression of PPARG, P53 (tumor protein P53), and ATM (ATM serine/threonine kinase) in the BJ cells, while the mRNA expression of these genes (except PPARG) was mainly decreased in the A549 cells treated with both of the tested compounds. Our results indicate a decrease in the protein expression of AhR, PPARγ, and PARP-1 in the BJ cells exposed to 1 µM Les-3467 and Les-4369. In the A549 cells, the protein expression of AhR, PPARγ, and PARP-1 increased in the treatment with 1 µM Les-3467 and Les-4369. We have also shown the PPARγ modulatory properties of Les-3467 and Les-4369. However, both compounds prove weak anticancer properties evidenced by their action at high concentrations and non-selective effects against BJ and A549 cells.
Collapse
Affiliation(s)
- Karolina Kosińska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Yulia Shepeta
- Department of Pharmaceutical Chemistry, National Pirogov Memorial Medical University, Pirogov 56, 21018 Vinnytsia, Ukraine;
| | - Anna Tabęcka-Łonczyńska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine;
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (B.S.); (A.T.-Ł.); (R.L.); (K.A.S.)
| |
Collapse
|
5
|
Ning Y, Wu Y, Zhou Q, Teng Y. The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway. Comb Chem High Throughput Screen 2024; 27:863-876. [PMID: 37259219 DOI: 10.2174/1386207326666230530095355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND It remains a challenge to effectively treat prostate cancer (PCa) that affects global men's health. It is essential to find a natural alternative drug and explore its antitumor mechanism due to the serious toxic side effects of chemotherapy. METHODS The targets and signaling pathways were analyzed by network pharmacology and verified by molecular docking and LC-MS. The proliferation, apoptosis, invasion, and migration of DU145 cells were detected by the CCK-8 method, flow cytometry, and Transwell, respectively. The Bcl-2, caspase-3, CXCL12, and CXCR4 expressions and Akt1 phosphorylation were determined by Western blot. Akt1 overexpression was applied to identify the involvement of the Akt1- related CXCL12/CXCR4 pathway in regulating PCa. Nude mouse tumorigenesis was performed to analyze the effect of quercetin on PCa in vivo. RESULTS Network pharmacology analysis displayed that quercetin was the main active component of the Yishen Tongluo Jiedu recipe and Akt1 was the therapy target of PCa. LC-MS analysis showed that quercetin existed in the Yishen Tongluo Jiedu recipe, and molecular docking proved that quercetin bound to Akt1. Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities. In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway. CONCLUSION As the active component of the Yishen Tongluo Jiedu recipe, quercetin inhibited PCa development through the Akt1-related CXCL12/CXCR4 pathway. This study provided a new idea for PCa treatment and a theoretical basis for further research.
Collapse
Affiliation(s)
- Yu Ning
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongrong Wu
- Academy of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410218, China
| | - Qing Zhou
- Surgery of traditional Chinese Medicine, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongjie Teng
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| |
Collapse
|
6
|
Wang J, Zhou L, Hou H, Li J, Zhao X, Li J, Li J, Niu X, Hou R, Zhang K. IL-17A is involved in the hyperplasia of blood vessels in local lesions of psoriasis by inhibiting autophagy. J Cosmet Dermatol 2024; 23:326-338. [PMID: 37635345 DOI: 10.1111/jocd.15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Increased angiogenesis is a pathological feature of psoriasis, but the pathomechanisms of angiogenesis in psoriasis are not clear. Interleukin-17A (IL-17A) is the major effect factor in the pathogenesis of psoriasis. Our results showed that IL-17A can promote angiogenesis and cause endothelial cell inflammation. Autophagy plays an important role not only in regulating inflammation, but also in regulating angiogenesis. Whether angiogenesis in psoriasis is related to autophagy remains unclear. In this study, we treated human umbilical vein endothelial cells (HUVECs) with IL-17A to simulate increased angiogenesis to study whether increased angiogenesis in psoriasis is related to autophagy. METHODS AND RESULTS Our results showed that treatment of HUVECs with IL-17A significantly increased angiogenesis and expression levels of mRNA for multiple proinflammatory cytokines (CCL20, IL-8, CCL2, IL-6, and IL-1β) and, while decreasing intracellular levels of nitric oxide (NO) and NO synthase (NOS) activity. Moreover, IL-17A inhibited autophagy as shown that IL-17A significantly increased expression levels of LC3II and p62 proteins. Induction of autophagy ameliorated IL-17A-mediated inflammatory response and inhibited angiogenesis, accompanied by increased p-AMPKα(Thr172) and p-ULK1(Ser555) expression, and decreased p-mTOR(Ser2448) and p-ULK1(Ser757) expression. Furthermore, inhibition of either AMPK or lysosomal acidification completely overrode autophagy-induced changes in angiogenesis and NOS activity. Finally, induction of autophagy decreased apoptosis and caspase-3 activity in IL-17A-treated HUVECs. CONCLUSIONS These results showed that IL-17A is involved in angiogenesis and inflammatory response by inhibiting autophagy through AMPK signaling pathway, suggesting that autophagy may be a new therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiajie Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, China
| |
Collapse
|
7
|
Houston JP, Valentino S, Bitton A. Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy. Methods Mol Biol 2024; 2779:323-351. [PMID: 38526793 DOI: 10.1007/978-1-0716-3738-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA.
| | - Samantha Valentino
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
8
|
Samandari-Bahraseman MR, Ismaili A, Esmaeili-Mahani S, Ebrahimie E, Loit E. Bunium persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression. Anticancer Agents Med Chem 2024; 24:213-223. [PMID: 38038013 DOI: 10.2174/0118715206277444231124051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Bunium persicum seeds, a member of the Apiaceae family, have historically been consumed as part of the Iranian diet. OBJECTIVE While many of this herb's biological properties have been fully investigated, there is currently no reliable information about its anticancer/cytotoxic properties. METHODS Herein, we first determined the major bioactive compounds of B. persicum seed extract (BPSE) via GC-Mass analysis. We evaluated the cytotoxicity of the extract alone as well as in combination with vincristine (VCR), a commonly used chemotherapy drug, using MTT assays on two breast cancer cell lines, MCF-7 and MDA-MB-231, as well as a normal breast cancer cell line, MCF-10A. Moreover, these compounds were evaluated in vitro for their anticancer activity using ROS assays, Real-Time PCR, Western blots, flow cytometry, and cell cycle assays. RESULTS As a result of our investigation, it was determined that the extract significantly reduced the viability of cancerous cells while remaining harmless to normal cells. The combination of BPSE and VCR also resulted in synergistic effects. BPSE and/or BPSE-VCR treatment increased the intracellular ROS of MCF-7 cells by over twofold. Moreover, the IC30 of BPSE (100 μg/ml) significantly increased the BAX/BCL-2 and P53 gene expression while reducing the expression of the MYC gene. Moreover, treated cells were arrested in the G2 phase of the cell cycle. The BPSE-VCR combination synergistically reduced the NF-κB and increased the Caspase-7 proteins' expression. The percent of apoptosis in the cells treated with the extract, VCR, and their combination was 27, 11, and 50, respectively. CONCLUSIONS The present study demonstrated the anticancer activity of the BPSE and its potential for application in combination therapy with VCR.
Collapse
Affiliation(s)
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
9
|
Aziz M, Sarfraz M, Khurrum Ibrahim M, Ejaz SA, Zehra T, Ogaly HA, Arafat M, Al-Zahrani FAM, Li C. Evaluation of anticancer potential of tetracene-5,12-dione (A01) and pyrimidine-2,4-dione (A02) via caspase 3 and lactate dehydrogenase cytotoxicity investigations. PLoS One 2023; 18:e0292455. [PMID: 38127898 PMCID: PMC10734984 DOI: 10.1371/journal.pone.0292455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stands as a significant global cause of mortality, predominantly arising from the dysregulation of key enzymes and DNA. One strategic avenue in developing new anticancer agents involves targeting specific proteins within the cancer pathway. Amidst ongoing efforts to enhance the efficacy of anticancer drugs, a range of crucial medications currently interact with DNA at the molecular level, exerting profound biological effects. Our study is driven by the objective to comprehensively explore the potential of two compounds: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione (A01) and 5-fluoro-1H-pyrimidine-2,4-dione (A02). These compounds have demonstrated marked efficacy against breast and cervical cancer cell lines, positioning them as promising anticancer candidates. In our investigation, A01 has emerged as a particularly potent candidate, with its potential bolstered by corroborative evidence from lactate dehydrogenase release and caspase-3 activity assays. On the other hand, A02 has exhibited remarkable anticancer potential. To further elucidate their molecular mechanisms and interactions, we employed computational techniques, including molecular docking and molecular dynamics simulations. Notably, our computational analyses suggest that the A01-DNA complex predominantly interacts via the minor groove, imparting significant insights into its mechanism of action. While earlier studies have also highlighted the anticancer activity of A01, our research contributes by providing a deeper understanding of its binding mechanisms through computational investigations. This knowledge holds potential for designing more effective drugs that target cancer-associated proteins. These findings lay a robust groundwork for future inquiries and propose that derivatives of A01 could be synthesized as potent bioactive agents for cancer treatment. By elucidating the distinctive aspects of our study's outcomes, we address the concern of distinguishing our findings from those of prior research.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tasneem Zehra
- Department of Basic Science & Humanities, Dawood University of Engineering & Technology, Karachi, Pakistan
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
10
|
Gottlieb D, Asadipour B, Kostina P, Ung TPL, Stringari C. FLUTE: A Python GUI for interactive phasor analysis of FLIM data. BIOLOGICAL IMAGING 2023; 3:e21. [PMID: 38487690 PMCID: PMC10936343 DOI: 10.1017/s2633903x23000211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 03/17/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique used to probe the local environment of fluorophores. The fit-free phasor approach to FLIM data is increasingly being used due to its ease of interpretation. To date, no open-source graphical user interface (GUI) for phasor analysis of FLIM data is available in Python, thus limiting the widespread use of phasor analysis in biomedical research. Here, we present Fluorescence Lifetime Ultimate Explorer (FLUTE), a Python GUI that is designed to fill this gap. FLUTE simplifies and automates many aspects of the analysis of FLIM data acquired in the time domain, such as calibrating the FLIM data, performing interactive exploration of the phasor plot, displaying phasor plots and FLIM images with different lifetime contrasts simultaneously, and calculating the distance from known molecular species. After applying desired filters and thresholds, the final edited datasets can be exported for further user-specific analysis. FLUTE has been tested using several FLIM datasets including autofluorescence of zebrafish embryos and in vitro cells. In summary, our user-friendly GUI extends the advantages of phasor plotting by making the data visualization and analysis easy and interactive, allows for analysis of large FLIM datasets, and accelerates FLIM analysis for non-specialized labs.
Collapse
Affiliation(s)
- Dale Gottlieb
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Bahar Asadipour
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Polina Kostina
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
11
|
Al-Quwaie DA, Allohibi A, Aljadani M, Alghamdi AM, Alharbi AA, Baty RS, Qahl SH, Saleh O, Shakak AO, Alqahtani FS, Khalil OSF, El-Saadony MT, Saad AM. Characterization of Portulaca oleracea Whole Plant: Evaluating Antioxidant, Anticancer, Antibacterial, and Antiviral Activities and Application as Quality Enhancer in Yogurt. Molecules 2023; 28:5859. [PMID: 37570829 PMCID: PMC10421184 DOI: 10.3390/molecules28155859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Purslane (Portulaca oleracea L.) is rich in phenolic compounds, protein, and iron. This study aims to produce functional yogurt with enhanced antioxidant, anticancer, antiviral, and antimicrobial properties by including safe purslane extract in yogurt formulation; the yogurt was preserved for 30 days at 4 °C, and then biochemical fluctuations were monitored. The purslane extract (PuE) had high phenolic compounds and flavonoids of 250 and 56 mg/mL, respectively. Therefore, PuE had considerable antioxidant activity, which scavenged 93% of DPPH˙, inhibited the viability of MCF-7, HCT, and HeLa cell lines by 84, 82, and 80%, respectively, and inhibited 82% of the interaction between the binding between Spike and ACE2 compared to a SARS-CoV-2 inhibitor test kit. PuE (20-40 µg/mL) inhibited the growth of tested pathogenic bacteria and Candida strains, these strains isolated from spoild yogurt and identified at gene level by PCR. Caffeic acid glucoside and catechin were the main phenolic compounds in the HPLC profile, while the main flavor compound was carvone and limonene, representing 71% of total volatile compounds (VOCs). PuE was added to rats' diets at three levels (50, 150, and 250 µg/g) compared to butylated hydroxyanisole (BHA). The body weight of the rats fed the PuE diet (250 µg/g) increased 13% more than the control. Dietary PuE in rats' diets lowered the levels of low-density lipoprotein (LDL) levels by 72% and increased the levels of high-density lipoprotein (HDL) by 36%. Additionally, liver parameters in rats fed PuE (150 µg/g) decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels by 50, 43, and 25%, respectively, while TP, TA, and GSH were increased by 20, 50, and 40%, respectively, compared to BHA. Additionally, PuE acts as a kidney protector by lowering creatinine and urea. PuE was added to yogurt at three concentrations (50, 150, and 250 µg/g) and preserved for 30 days compared to the control. The yogurt's pH reduced during storage while acidity, TSS, and fat content increased. Adding PuE increased the yogurt's water-holding capacity, so syneresis decreased and viscosity increased, which was attributed to enhancing the texture properties (firmness, consistency, and adhesiveness). MDA decreased in PuE yogurt because of the antioxidant properties gained by PuE. Additionally, color parameters L and b were enhanced by PuE additions and sensorial traits, i.e., color, flavor, sugary taste, and texture were enhanced by purslane extract compared to the control yogurt. Concerning the microbial content in the yogurt, the lactic acid bacteria (LAB) count was maintained as a control. Adding PuE at concentrations of 50, 150, and 250 µg/g to the yogurt formulation can enhance the quality of yogurt.
Collapse
Affiliation(s)
- Diana A. Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
| | - Aminah Allohibi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Asmaa Ali Alharbi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ohud Saleh
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Amani Osman Shakak
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
- Faculty of Medical Laboratory Sciences, University of Shendi, Shendi P.O. Box 142, Sudan
| | - Fatimah S. Alqahtani
- Department of Biology, Faculty of Sciences, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| | - Osama S. F. Khalil
- Dairy Science and Technology Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
12
|
Chen G, Liu J, Wang H, Wang M, Wang G, Hu T. SYP-3343 drives abnormal vascularization in zebrafish through regulating endothelial cell behavior. Food Chem Toxicol 2023; 174:113671. [PMID: 36796616 DOI: 10.1016/j.fct.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
SYP-3343 is a novel strobilurin fungicide with excellent and broad-spectrum antifungal activity, and its potential toxicity raises public health concerns. However, the vascular toxicity of SYP-3343 to zebrafish embryos is still not well understood. In the present study, we investigated the effects of SYP-3343 on vascular growth and its potential mechanism of action. SYP-3343 inhibited zebrafish endothelial cell (zEC) migration, altered nuclear morphology, and triggered abnormal vasculogenesis and zEC sprouting angiogenesis, resulting in angiodysplasia. RNA sequencing showed that SYP-3343 exposure altered the transcriptional levels of vascular development-related biological processes in zebrafish embryos including angiogenesis, sprouting angiogenesis, blood vessel morphogenesis, blood vessel development, and vasculature development. Whereas, the addition of NAC exerted an improvement effect on zebrafish vascular defects owing to SYP-3343 exposure. Additionally, SYP-3343 altered cell cytoskeleton and morphology, obstructed migration and viability, disrupted cell cycle progression, and depolarized mitochondrial membrane potential, as well as promoted apoptosis and reactive oxygen species (ROS) in HUVEC. SYP-3343 also caused an imbalance of the oxidation and antioxidant systems and irritated the alterations in the cell cycle- and apoptosis-related genes in HUVECs. Collectively, SYP-3343 has high cytotoxicity, possibly by up-regulating p53 and caspase3 expressions and bax/bcl-2 ratio via ROS, leading to malformed vascular development.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Wang Y, Wang M, Guo X, Han L, Kassab G. Safety and feasibility of left atrial appendage inversion in swine: A proof-of-concept study for potential therapy to prevent embolic stroke. Front Bioeng Biotechnol 2023; 11:1011121. [PMID: 36873377 PMCID: PMC9978740 DOI: 10.3389/fbioe.2023.1011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Objective: Left atrial appendage (LAA) occlusion or exclusion has been used in patients with atrial fibrillation to prevent stroke, but the techniques and devices have shortcomings. This study aims to validate the safety and feasibility of a novel LAA inversion procedure. Methods: LAA inversion procedures were done in six pigs. Before the procedure and at 8 weeks postoperatively, heart rate, blood pressure, and electrocardiogram (ECG) were recorded. The serum concentration of atrial natriuretic peptide (ANP) was measured. The LAA was observed and measured by transesophageal echocardiogram (TEE) and intracardiac echocardiogram (ICE). At 8 weeks after LAA inversion, the animal was euthanized. The heart was collected for morphology and histology, including hematoxylin-eosin, Masson trichrome, and immunofluorescence staining. Results: TEE and ICE showed that LAA was inverted, and the inversion was maintained during the 8-week study duration. Food intake, body weight gain, heart rate, blood pressure, ECG, and serum ANP level were comparable before and after the procedure. Morphology and histological staining showed that there was no obvious inflammation or thrombus. Tissue remodeling and fibrosis were observed at the LAA inverted site. Conclusion: The inversion of LAA effectively eliminates the dead space of LAA and thus may reduce the risk of embolic stroke. The novel procedure is safe and feasible, but the efficacy in reducing embolization remains to be demonstrated in future studies.
Collapse
Affiliation(s)
- Yanmin Wang
- California Medical Innovations Institute, San Diego, CA, United States
| | | | - Xiaomei Guo
- California Medical Innovations Institute, San Diego, CA, United States.,3DT Holdings, LCC, San Diego, CA, United States
| | - Ling Han
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan Kassab
- California Medical Innovations Institute, San Diego, CA, United States.,3DT Holdings, LCC, San Diego, CA, United States
| |
Collapse
|
14
|
Abstract
This unit describes the basic principles of Förster resonance energy transfer (FRET). Beginning with a brief summary of the history of FRET applications, the theory of FRET is introduced in detail using figures to explain all the important parameters of the FRET process. After listing various approaches for measuring FRET efficiency, several pieces of advice are given on choosing the appropriate instrumentation. The unit concludes with a discussion of the limitations of FRET measurements followed by a few examples of the latest FRET applications, including new developments such as spectral flow cytometric FRET, single-molecule FRET, and combinations of FRET with super-resolution or lifetime imaging microscopy and with molecular dynamics simulations. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Afrasiabi M, Tahmasebi G, Eslami E, Seydi E, Pourahmad J. Cold Atmospheric Plasma Versus Cisplatin Against Oral Squamous Cell Carcinoma: A Mitochondrial Targeting Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e124106. [PMID: 36942058 PMCID: PMC10024331 DOI: 10.5812/ijpr-124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Plasma therapy and the study of the effects of cold atmospheric plasma (CAP) on tissues and living cells have been considered by scientific researchers in recent years. CAP is used in the treatment of cancer, but its anti-cancer mechanism has not been fully studied. Therefore, we studied the toxicity effect of CAP by using argon as feed gas and the synergistic effects of CAP with cisplatin on tumor cells and mitochondria isolated from tumor legions of the rat model of oral squamous cell carcinoma (OSCC). For this reason, we determined the possible toxic alterations of CAP on mitochondrial upstream events and activation of caspase-3 as the key major downstream event of apoptosis. Also, the effects of cisplatin (10 µM) as a positive control and its synergistic effects with CAP (IC50 concentration) were investigated. The results showed that CAP reduced mitochondrial dysfunction by reduction in succinate dehydrogenase (SDH) activity. Also, CAP in concentrations of 1200, 2400, and 4800 a.u. has been able to increase the level of reactive oxygen species (ROS), mitochondrial swelling, damage to the mitochondrial membrane, cytochrome c release, and activation of the final mediator of apoptosis (caspase-3) only in the OSCC group. CAP at 4800 a.u concentration had similar effects to cisplatin (10 µM). Synergistic effects between CAP (2400 a.u) and cisplatin (10 µM) have also been reported. Based on all results CAP showed positive and promising results on mitochondrial upstream parameters leading to activation of caspase-3, the final mediator of apoptosis only on OSCC cells and mitochondria without any significant effect on normal cells and mitochondria.
Collapse
Affiliation(s)
- Mona Afrasiabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Tahmasebi
- Department of Atomic/Molecular Physics, Faculty of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Esmaeil Eslami
- Department of Atomic/Molecular Physics, Faculty of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
16
|
Jin J, Shan Y, Zhang L, Wu Z, Wu S, Sun M, Bao W. Pterostilbene Ameliorates Fumonisin B1-Induced Cytotoxic Effect by Interfering in the Activation of JAK/STAT Pathway. Antioxidants (Basel) 2022; 11:antiox11122360. [PMID: 36552567 PMCID: PMC9774891 DOI: 10.3390/antiox11122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Fumonisin B1 (FB1) is a mycotoxin that poses a great threat to agricultural production and the health of humans and animals. Pterostilbene (PTE) is a natural plant polyphenolic compound with good anti-inflammatory, antioxidant and cell regeneration effects, yet its effectiveness in treating FB1-induced cytotoxicity remains to be explored. In this study, we used porcine alveolar macrophages (3D4/21) as a model to characterize the cytotoxicity induced by FB1, and to investigate the potential alleviating effect of PTE on FB1-induced cytotoxicity. We demonstrate that FB1 induces cytotoxicity, apoptosis, pro-inflammatory cytokine production and mitochondrial damage, which can be largely recovered by PTE treatment, suggesting the promising application of PTE to treat FB1-induced damage. Mechanistically, FB1 activates the JAK/STAT signaling pathway, while PTE attenuates FB1-induced cytotoxicity through the inhibition of key JAK/STAT genes such as JAK2 and STAT3. Overall, our study characterized the molecular mechanism for FB1-induced cytotoxicity and found PTE to be a promising component which can alleviate FB1-induced cytotoxicity by interfering in the activation of JAK/STAT pathway.
Collapse
Affiliation(s)
- Jian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yiyi Shan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingan Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.S.); (W.B.)
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.S.); (W.B.)
| |
Collapse
|
17
|
Chen L, Jiang X, Gao S, Liu X, Gao Y, Kow ASF, Tham CL, Lee MT. Sensitization effect of kaempferol from persimmon leaves on HepG2 hepatoma cells with ABT-199 resistance and its molecular mechanisms. Front Pharmacol 2022; 13:1032069. [PMID: 36386146 PMCID: PMC9663918 DOI: 10.3389/fphar.2022.1032069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
ABT-199 (venetoclax) is the first-in-class selective B-cell lymphoma 2 (BCL2) inhibitor, which is known to be ineffective towards liver cancer cells. Here, we investigated the efficacy and the underlying molecular processes of the sensitization effect of kaempferol isolated from persimmon leaves (KPL) on the ABT-199-resistant HepG2 cells. The effects of various doses of KPL coupled with ABT-199 on the proliferation of HepG2 cells and on the H22 liver tumor-bearing mouse model were examined, as well as the underlying mechanisms. Our findings showed that ABT-199 alone, in contrast to KPL, had no significant impact on hepatoma cell growth, both in vitro and in vivo. Interestingly, the combination therapy showed significantly higher anti-hepatoma efficacy. Mechanistic studies revealed that combining KPL and ABT-199 may promote both early and late apoptosis, as well as decrease the mitochondrial membrane potential in HepG2 cells. Western blot analysis showed that combination of KPL and ABT-199 significantly reduced the expression of the anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, raised the expression of Bax and cleaved caspase 3, and enhanced cytochrome C release and Bax translocation. Therefore, KPL combined with ABT-199 has a potential application prospect in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia,Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Xudong Jiang
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Si Gao
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Xueping Liu
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN, United States
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia,*Correspondence: Ming Tatt Lee,
| |
Collapse
|
18
|
Aktalay A, Ponsot F, Bossi ML, Belov VN, Hell SW. Cleavable Linker Incorporation into a Synthetic Dye-Nanobody-Fluorescent Protein Assembly: FRET, FLIM and STED Microscopy. Chembiochem 2022; 23:e202200395. [PMID: 35838445 PMCID: PMC9804610 DOI: 10.1002/cbic.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/05/2023]
Abstract
A bright and photostable fluorescent dye with a disulfide (S-S) linker and maleimide group (Rho594-S2-mal), as cleavable and reactive sites, was synthesized and conjugated with anti-GFP nanobodies (NB). The binding of EGFP (FRET donor) with anti-GFP NB labeled with one or two Rho594-S2-mal residues was studied in vitro and in cellulo. The linker was cleaved with dithiothreitol recovering the donor (FP) signal. The bioconjugates (FP-NB-dye) were applied in FRET-FLIM assays, confocal imaging, and superresolution STED microscopy.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department of Optical NanoscopyMax Planck Institute for Medical Research (MPI-MR)Jahnstraße 2969120HeidelbergGermany
| | - Flavien Ponsot
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary Sciences (MPI-NAT)Am Fassberg 1137077GöttingenGermany
| | - Mariano L. Bossi
- Department of Optical NanoscopyMax Planck Institute for Medical Research (MPI-MR)Jahnstraße 2969120HeidelbergGermany
| | - Vladimir N. Belov
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary Sciences (MPI-NAT)Am Fassberg 1137077GöttingenGermany
| | - Stefan W. Hell
- Department of Optical NanoscopyMax Planck Institute for Medical Research (MPI-MR)Jahnstraße 2969120HeidelbergGermany
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary Sciences (MPI-NAT)Am Fassberg 1137077GöttingenGermany
| |
Collapse
|
19
|
Vukic MD, Obradovic AD, Vukovic NL, Kačániová M, Djurdjevic PM, Djelic GT, Matic MM. Chemical Composition, Antitumor Potential, and Impact on Redox Homeostasis of the Essential Oils of Orlaya grandiflora from Two Climate Localities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185908. [PMID: 36144644 PMCID: PMC9504480 DOI: 10.3390/molecules27185908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
It is well known that abiotic components can affect biosynthetic pathways in the production of certain volatile compounds. The aim of this study was to compare the chemical composition of essential oils obtained from Orlaya grandiflora (L.) Hoffm. collected from two localities in Serbia (continental climate, OG1) and Montenegro (Mediterranean climate, OG2) and to assess their antitumor potential on the human colon cancer HCT-116 and breast cancer MDA-MB-231 cell lines. EOs obtained by hydrodistillation were analyzed using GC-MS and GC-FID methods. The results indicate considerable differences in the chemical compositions of the two samples. Although in both samples the main class of volatiles observed was sesquiterpenes (47.5% for OG1 and 70.1% for OG2), the OG1 sample was characterized by a high amount of monoterpene hydrocarbons (29.3%), and sesquiterpene germacrene D (29.5%) as the most abundant compound. On the other hand, the OG2 sample contained a high quantity of oxygenated sesquiterpenes (20.6%), and β-elemene (22.7%) was the major constituent. The possible antitumor mechanisms of these EOs in the HCT-116 and MDA-MB-231 cell lines were examined by means of cell viability, apoptosis, redox potential, and migratory capacity. The antiviability potential appeared to be dose dependent, since the results showed that both EOs decreased the viability of the tested cells. Stronger antitumor effects were shown in MDA-MB-231 cells after short-term treatment, especially at the highest applied concentration, where the percentage of viability was reduced by over 40%. All tested concentrations of EOs exhibited proapoptotic activity and elevated activity of caspase-3 in a dose- and time-dependent manner. The results also showed decreased concentrations of superoxide anion radical in the treated cells, which indicates their significant antioxidative role. Long-term treatments showed mild recovery effects on cell viability in both cell lines, probably caused by the balancing of redox homeostasis. Elevated levels of nitrites indicate high levels of nitric oxide (NO) production and suggest its higher bioavailability due to the antioxidative environment. The tested EOs also induced a drop in migratory capacity, especially after short-time treatments. Taken together, these results suggest considerable antitumor activity of both EOs, which could have potential therapeutic applications.
Collapse
Affiliation(s)
- Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ana D. Obradovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
- Correspondence:
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St, 35601 Rzeszow, Poland
| | - Predrag M. Djurdjevic
- Department of Internal Medicine, Clinic for Hematology Clinical Center Kragujevac, Faculty of Medical Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gorica T. Djelic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milos M. Matic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
20
|
Isoquinoline Alkaloids from Coptis chinensis Franch: Focus on Coptisine as a Potential Therapeutic Candidate against Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms231810330. [PMID: 36142236 PMCID: PMC9499618 DOI: 10.3390/ijms231810330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)—methanol (MeOH)—water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.
Collapse
|
21
|
Additive Interactions between Betulinic Acid and Two Taxanes in In Vitro Tests against Four Human Malignant Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms23179641. [PMID: 36077036 PMCID: PMC9456196 DOI: 10.3390/ijms23179641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/02/2023] Open
Abstract
The incidence of melanoma is steadily increasing worldwide. Melanoma is the most lethal skin cancer, and new therapeutic methods are being sought. Our research aimed to investigate the cytotoxic and antiproliferative effects of betulinic acid in vitro, used alone and in combination with taxanes (paclitaxel, docetaxel) in four melanoma cell lines. Isobolographic analysis allowed us to assess the interactions between these compounds. Betulinic acid had no cytotoxic effect on normal human keratinocyte HaCaT cells; the amount of LDH released by them was significantly lower compared to melanoma cell lines. The present study shows that betulinic acid significantly inhibits the growth of melanoma cell lines in vitro. The IC50 values of betulinic acid ranged from 2.21 µM to 15.94 µM against the four melanoma lines. Co-treatment of betulinic acid with paclitaxel or docetaxel generated desirable drug–drug interactions, such as an additive and additive with a tendency to synergy interactions.
Collapse
|
22
|
Anticancer Activity of Amantadine and Evaluation of Its Interactions with Selected Cytostatics in Relation to Human Melanoma Cells. Int J Mol Sci 2022; 23:ijms23147653. [PMID: 35886997 PMCID: PMC9319452 DOI: 10.3390/ijms23147653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/19/2022] Open
Abstract
Patients with Parkinson’s disease are prone to a higher incidence of melanoma. Amantadine (an anti-Parkinson drug) possesses the antiproliferative potential that can be favorable when combined with other chemotherapeutics. Cisplatin (CDDP) and mitoxantrone (MTO) are drugs used in melanoma chemotherapy, but they have many side effects. (1) Clinical observations revealed a high incidence of malignant melanoma in patients with Parkinson’s disease. Amantadine as an anti-Parkinson drug alleviates symptoms of Parkinson’s disease and theoretically, it should have anti-melanoma properties. (2) To characterize the interaction profile for combinations of amantadine with CDDP and MTO in four human melanoma cell lines (A375, SK-MEL 28, FM55P and FM55M2), type I isobolographic analysis was used in the MTT test. (3) Amantadine produces the anti-proliferative effects in various melanoma cell lines. Flow cytometry analysis indicated that amantadine induced apoptosis and G1/S phase cell cycle arrest. Western blotting analysis showed that amantadine markedly decreased cyclin-D1 protein levels and increased p21 levels. Additionally, amantadine significantly increased the Bax/Bcl-2 ratio. The combined application of amantadine with CDDP at the fixed-ratio of 1:1 exerted an additive interaction in the four studied cell lines in the MTT test. In contrast, the combination of amantadine with MTO (ratio of 1:1) produced synergistic interaction in the FM55M2 cell line in the MTT (* p < 0.05). The combination of amantadine with MTO was also additive in the remaining tested cell lines (A375, FM55P and SK-MEL28) in the MTT test. (4) Amantadine combined with MTO exerted the most desirable synergistic interaction, as assessed isobolographically. Additionally, the exposure of melanoma cell lines to amantadine in combination with CDDP or MTO augmented the induction of apoptosis mediated by amantadine alone.
Collapse
|
23
|
Gao H, Xian G, Zhong G, Huang B, Liang S, Zeng Q, Liu Y. Alleviation of doxorubicin-induced cardiomyocyte death through miR-147-y-mediated mitophagy. Biochem Biophys Res Commun 2022; 609:176-182. [PMID: 35452958 DOI: 10.1016/j.bbrc.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
Doxorubicin (DOX) is a commonly used antitumor drug. However, it may cause severe cardiotoxicity, apoptosis being a major change. A recent report indicates that miR-147 expression is decreased in the myocardium of a myocardial infarction model, suggesting a potential role of this miRNA in DOX-induced cardiomyocyte toxicity. In this study, freshly isolated neonatal pig cardiomyocytes were used; following transfection of a miR-147-y mimic, the cell death induced by DOX was alleviated, represented by augmented mitophagy [indicated by a decrease in P62, and increases in LC3, PINK1, parkin mRNA, LC3Ⅱ/Ⅰ, beclin-1, PINK1, and parkin including p-parkin (Ser65) protein expression], prohibited cell apoptosis as determined by TUNEL staining, and the suppression of caspase-3 transcription and cleaved caspase-3 translation. In cells transfected with an miR-147-y inhibitor, DOX-induced mitophagy was decreased, while apoptosis was increased. Additionally, RAPTOR gene silencing in cardiomyocytes exposed to DOX increased the rate of mitophagy and decreased that of apoptosis as compared with the treatment with DOX alone. Moreover, RAPTOR overexpression downregulated the rate of mitophagy and increased that of apoptosis in cells exposed to DOX. RAPTOR was confirmed as the target gene of miR-147-y based on the results of luciferase reporter gene assays and the opposite effects of the miR-147-y mimic and miR-147-y inhibitor on RAPTOR expression. In summary, our study suggests that miR-147-y mediates DOX-induced cardiomyocyte mitophagy while suppresses apoptosis by targeting RAPTOR, thus playing a protective role in DOX-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Hongbin Gao
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute (Guangdong Provincial Key Laboratory of Laboratory Animals), Guangzhou, 510663, China
| | - Gaopeng Xian
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; Department of Cardiology (Guangdong Provincial Key Laboratory of Shock and Microcirculation), Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guoheng Zhong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; Department of Cardiology (Guangdong Provincial Key Laboratory of Shock and Microcirculation), Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute (Guangdong Provincial Key Laboratory of Laboratory Animals), Guangzhou, 510663, China
| | - Shi Liang
- Guangdong Laboratory Animals Monitoring Institute (Guangdong Provincial Key Laboratory of Laboratory Animals), Guangzhou, 510663, China
| | - Qingchun Zeng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; Department of Cardiology (Guangdong Provincial Key Laboratory of Shock and Microcirculation), Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
24
|
Kordestani N, Abas E, Grasa L, Alguacil A, Scalambra F, Romerosa A. The Significant Influence of a Second Metal on the Antiproliferative Properties of the Complex [Ru(η 6 -C 10 H 14 )(Cl 2 )(dmoPTA)]. Chemistry 2022; 28:e202103048. [PMID: 34806242 PMCID: PMC9299940 DOI: 10.1002/chem.202103048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Complexes [Ru(η6 -C10 H14 )(Cl2 )(HdmoPTA)](OSO2 CF3 ) (1), [Ru(η6 -C10 H14 )(Cl2 )(dmoPTA)] (2) and [Ru(η6 -C10 H14 )(Cl2 )-μ-dmoPTA-1κP:2κ2 N,N'-MCl2 ] (M=Zn (3), Co (4), Ni (5), dmoPTA=3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) have been synthesized and characterized by elemental analysis and spectroscopic techniques. The crystal structures of 1, 3 and 5 were obtained by single-crystal X-ray diffraction. The antiproliferative activity of the complexes was evaluated against colon cancer cell line Caco-2/TC7 by using the MTT protocol. The monometallic ruthenium complexes 1 and 2 were found to be inactive, but the bimetallic complexes 3, 4 and 5 display an increased activity (IC50 3: 9.07±0.27, 4: 5.40±0.19, 5: 7.15±0.30 μM) compared to cisplatin (IC50 =45.6±8.08 μM). Importantly, no reduction in normal cell viability was observed in the presence of the complexes. Experiments targeted to obtain information on the possible action mechanism of the complexes, such as cell cycle, ROS and gene expression studies, were performed. The results showed that the complexes display different properties and action mechanism depending on the nature of metal, M, bonded to the CH3 NdmoPTA atoms.
Collapse
Affiliation(s)
- Nazanin Kordestani
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| | - Elisa Abas
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense Facultad de VeterinariaUniversidad de ZaragozaMiguel Servet, 17750013ZaragozaSpain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense Facultad de VeterinariaUniversidad de ZaragozaMiguel Servet, 17750013ZaragozaSpain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)San Juan Bosco, 1350009ZaragozaSpain
- Instituto Agroalimentario de Aragón -IA2-Universidad de Zaragoza–CITA)Miguel Servet, 17750013ZaragozaSpain
| | - Andres Alguacil
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| |
Collapse
|
25
|
Pilloni A, Ceccarelli S, Bosco D, Gerini G, Marchese C, Marini L, Rojas MA. Effect of Chlorhexidine Digluconate in Early Wound Healing of Human Gingival Tissues. A Histological, Immunohistochemical and Biomolecular Analysis. Antibiotics (Basel) 2021; 10:antibiotics10101192. [PMID: 34680773 PMCID: PMC8532903 DOI: 10.3390/antibiotics10101192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
Chlorhexidine digluconate (CHX) is considered the gold standard for oral cavity antiseptic treatment. Nevertheless, several in vitro studies have reported detrimental effects in oral tissue repair. The aim of the present study was to evaluate the in vivo effect of post-surgical CHX mouth rinse on gingival tissue (G) 24 h after injury. G biopsies were obtained in three patients 24 h after surgery with the indication of post-surgical 0.12% CHX use and were compared with those obtained from the same patients without any antiseptic use. Changes in collagen production, cell proliferation, and apoptosis were examined by histological and Ki-67/P53 immunohistochemical analysis. Fibrotic markers (COL1A1, αSMA), proapoptotic protein (BAX) expression, and wound healing-related gene modulation (RAC1, SERPINE1, TIMP1) were analyzed by quantitative real-time PCR analysis. CHX was able to reduce cellular proliferation and increase collagen deposition, proapoptotic molecule and fibrotic marker expression, and myofibroblast differentiation, reduce expression of RAC1 and trigger expression of SERPINE1 and TIMP1, showing “scar wound healing response” pattern. This study assessed for the first time the in vivo effects of CHX on gingival tissue. The demonstration of a CHX-induced fibrotic transformation, leading to scar repair, supports the need for new post-surgical clinical protocols based on a strategic and personalized use of CHX.
Collapse
Affiliation(s)
- Andrea Pilloni
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (A.P.); (L.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.G.); (C.M.)
| | - Daniela Bosco
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.G.); (C.M.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.G.); (C.M.)
| | - Lorenzo Marini
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (A.P.); (L.M.)
| | - Mariana A. Rojas
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (A.P.); (L.M.)
- Correspondence:
| |
Collapse
|
26
|
Development of Tailor-Made Dendrimer Ternary Complexes for Drug/Gene Co-Delivery in Cancer. Pharmaceutics 2021; 13:pharmaceutics13081256. [PMID: 34452218 PMCID: PMC8401607 DOI: 10.3390/pharmaceutics13081256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Cancer gene therapy, mediated by non-viral systems, remains a major research focus. To contribute to this field, in this work we reported on the development of dendrimer drug/gene ternary complexes. This innovative approach explored the great capacity of both polyamidoamine (PAMAM)-paclitaxel (PTX) conjugate and polyethylenimine (PEI) polymers to complex a p53-encoding plasmid DNA (pDNA), highlighting the utility of considering two compacting agents. The pDNA complexation capacity has been investigated as function of the nitrogen to phosphate groups ratio (N/P), which revealed to be a tailoring parameter. The physicochemical properties of the conceived ternary complexes were revealed and were found to be promising for cellular transfection. Furthermore, the formulated co-delivery systems demonstrated to be biocompatible. The ternary systems were able of cellular internalization and payload intracellular release. Confocal microscopy studies showed the co-localization of stained pDNA with the nucleus of cancer cells, after transfection mediated by these carriers. From this achievement, p53 gene expression occurred with the production of protein. Moreover, the activation of caspase-3 indicated apoptosis of cancer cells. This work represents a great progress on the design of dendrimer drug/gene co-delivery systems towards a more efficient cancer therapy. In this way, it instigates further in vitro studies concerning the evaluation of their therapeutic potential, expectedly supported by the synergistic effect, in tumoral cells.
Collapse
|
27
|
Zhang Y, Zhang JQ, Zhang T, Xue H, Zuo WB, Li YN, Zhao Y, Sun G, Fu ZR, Zhang Q, Zhao X, Teng Y, Wang AQ, Li JZ, Wang Y, Jin CH. Calycosin Induces Gastric Cancer Cell Apoptosis via the ROS-Mediated MAPK/STAT3/NF-κB Pathway. Onco Targets Ther 2021; 14:2505-2517. [PMID: 33883905 PMCID: PMC8053610 DOI: 10.2147/ott.s292388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Calycosin, an active compound in plants, can promote the apoptosis of various cancer cells; however, the mechanism by which it regulates reactive oxygen species (ROS) in gastric cancer (GC) cells remains unclear. Purpose In this study, we investigated the effects of calycosin on apoptosis, the cell cycle, and migration in GC cells under ROS regulation. Results The results of the Cell Counting Kit-8 assay suggested that calycosin had significant cytotoxic effects on 12 gastric cancer cells, but no significant cytotoxic effects on normal cells. Hoechst 33342/propidium iodide (PI) double staining and flow cytometry showed that calycosin had clear pro-apoptotic effects on AGS cells. Western blotting revealed that the expression of cytochrome C and pro-apoptotic proteins B-cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad), cleaved (cle)-caspase-3, and cle-poly (ADP-ribose) polymerase gradually increased, and the expression of anti-apoptotic protein Bcl-2 gradually decreased. Calycosin also decreased the expression of extracellular signal-regulated kinase, nuclear factor kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3), and increased the phosphorylation levels of p38, c-Jun N-terminal kinase, and inhibitor of NF-κB. In addition, calycosin markedly increased ROS accumulation, and pretreatment with active oxygen scavenger n-acetyl-l-cysteine (NAC) clearly inhibited apoptosis. Calycosin downregulated the cell cycle proteins cyclin-dependent kinase 2 (CDK2), CDK4, CDK6, cyclin D1, and cyclin E; upregulated p21 and p27; and arrested cells in the G0/G1 phase. Similarly, calycosin also downregulated Snail family transcriptional repressor 1, E-cadherin, and β-catenin and inhibited cell migration. However, pretreatment with NAC inhibited the calycosin-induced effects of cycle arrest and migration. Conclusion In summary, calycosin induces apoptosis via ROS-mediated MAPK/STAT3/NF-κB pathways, thereby exerting its anti-carcinogenic functions in GC cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Jian-Qiang Zhang
- Department of Food Science and Technology, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China.,Heilongjiang Heyi Dairy Technology Co. Ltd., Daqing, People's Republic of China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Geng Sun
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Zhong-Ren Fu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Yue Teng
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - An-Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Jia-Zhu Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Ying Wang
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,National Coarse Cereals Engineering Research Center, Daqing, People's Republic of China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,National Coarse Cereals Engineering Research Center, Daqing, People's Republic of China
| |
Collapse
|
28
|
Bitton A, Sambrano J, Valentino S, Houston JP. A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues. FRONTIERS IN PHYSICS 2021; 9:648553. [PMID: 34007839 PMCID: PMC8127321 DOI: 10.3389/fphy.2021.648553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jesus Sambrano
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Valentino
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|