1
|
Muñoz-Muela E, Trujillo-Rodríguez M, Serna-Gallego A, Saborido-Alconchel A, Ruiz-Mateos E, López-Cortés LF, Gutiérrez-Valencia A. HIV-1-specific T-cell responses and exhaustion profiles in people with HIV after switching to dual therapy vs. maintaining triple therapy based on integrase inhibitors. Biomed Pharmacother 2023; 168:115750. [PMID: 37871555 DOI: 10.1016/j.biopha.2023.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Dual therapy (DT) has shown comparable results to triple therapy (TT) in efficacy and other immunological aspects. However, there are still some concerns about DT, including several immunological features. Therefore, we evaluated whether HIV-1-specific memory T-cell responses and exhaustion phenotypes are adversely influenced after simplification to DT. METHODS HIV-1-specific CD4+ and CD8+ T-cell responses were assessed by intracellular cytokine and degranulation marker staining, and polyfunctionality indexes after stimulation with a Gag peptide pool. Exhaustion phenotypes were evaluated by PD-1, TIM-3, and LAG-3 expression in CD4+ and CD8+ T cells. RESULTS Forty participants in the TRIDUAL trial (ClinicalTrials.gov: NCT03447873) who were randomized to continue integrase inhibitor-based TT (n = 20) or to switch to DT (dolutegravir or darunavir/cobicistat plus lamivudine) (n = 20). After 96 weeks, the magnitude of CD4+ and CD8+ T-cell responses was similar in both treatment arms (p = 0.221 and p = 0.602, respectively). The CD4+ polyfunctionality index decreased in the TT arm (p = 0.013) and remained stable in the DT arm, while the polyfunctionality of CD8+ T cells was unchanged in both arms. There was a significant decrease in the expression of PD-1, TIM-3, and the co-expression of PD-1+TIM-3+LAG-3+, and PD-1 +TIM-3 + in both CD4+ and CD8+ T cells. However, the decrease in the expression of exhaustion markers did not improve HIV-1-specific T-cell responses. CONCLUSIONS Our results suggest that simplification to DT does not negatively influence the HIV-1-specific T-cell response or the exhaustion phenotype after 96 weeks of follow-up.
Collapse
Affiliation(s)
- Esperanza Muñoz-Muela
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - María Trujillo-Rodríguez
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Ana Serna-Gallego
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Abraham Saborido-Alconchel
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Ezequiel Ruiz-Mateos
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Luis F López-Cortés
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Alicia Gutiérrez-Valencia
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| |
Collapse
|
2
|
Xu ST, Yang C, Yan XP. Organic Mass Cytometry Discriminating Cycle Stages of Single Cells with Small Molecular Indicators. Anal Chem 2023; 95:2312-2320. [PMID: 36651064 DOI: 10.1021/acs.analchem.2c04165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell cycle is a significant factor toward cellular heterogeneity, so cell cycle discrimination is a precise measurement on the top of single-cell analysis. Single-cell analysis based on organic mass spectrometry has received great attention for its unique ability to profile single-cell metabolome, but the influence of cell cycle on cellular metabolome heterogeneity has been overlooked until now due to the lack of a compatible cell cycle discrimination method. Here, we report a robust protocol based on the combination of three small molecular indicators, consisting of two small molecular labels (Hoechst and docetaxel) and one cellular endogenous compound [phosphocholine (34:1)], to discriminate single cells at different cycle stages in real time by organic mass cytometry. More than 6000 HeLa cells were acquired by an improved organic mass cytometry system to build a cell cycle differentiation model. The model successfully discriminated single HeLa cells, SCC7, and Hep G2 cells, at G0/G1, S, and G2/M stages with larger than 85% sensitivity and larger than 89% specificity. Along with cell cycle discrimination, obvious heterogeneity of amino acids, nucleotides, energy metabolic intermediates, and phospholipids was observed among single cells at different cycle stages by this protocol, further demonstrating the necessity of cell cycle discrimination for cellular metabolome heterogeneity research and the potential of more endogenous small molecular compounds for cell cycle discrimination.
Collapse
Affiliation(s)
- Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Sampaio-Ribeiro G, Ruivo A, Silva A, Santos AL, Oliveira RC, Laranjeira P, Gama J, Cipriano MA, Tralhão JG, Paiva A. Extensive Phenotypic Characterization of T Cells Infiltrating Liver Metastasis from Colorectal Cancer: A Potential Role in Precision Medicine. Cancers (Basel) 2022; 14:cancers14246069. [PMID: 36551555 PMCID: PMC9775680 DOI: 10.3390/cancers14246069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with liver metastasis being its main cause of death. This study harvested fresh biological material from non-tumor and tumor tissue from 47 patients with CRC liver metastasis after surgery, followed by mechanical cellular extraction and stain-lyse-wash direct immunofluorescence technique. Here, 60 different T-cell populations were characterized by flow cytometry. Tumor samples were also subdivided according to their growth pattern into desmoplastic and non-desmoplastic. When we compared tumor versus non-tumor samples, we observed a significantly lower percentage of T-lymphocyte infiltration in the tumor in which the CD4+ T-cell density increased compared to the CD8+ T cells. T regulatory cells also increased within the tumor, even with an activated phenotype (HLA-DR+). A higher percentage of IL-17-producing cells was present in tumor samples and correlated with the metastasis size. In contrast, we also observed a significant increase in CD8+ follicular-like T cells (CD185+), suggesting a cytotoxic response to cancer cells. Additionally, most infiltrated T cells exhibit an intermediate activation phenotype (CD25+). In conclusion, our results revealed potential new targets and prognostic biomarkers that could take part in an algorithm for personalized medicine approaches improving CRC patients' outcomes.
Collapse
Affiliation(s)
- Gabriela Sampaio-Ribeiro
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ruivo
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Ana Lúcia Santos
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa—Centro de Diagnóstico Histopatológico CEDAP, 3000-377 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, Polo 1, 1st Floor, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Augusta Cipriano
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Ciências Biomeédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politeécnico de Coimbra, 3046-854 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
4
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
5
|
Reuschl AK, Mesner D, Shivkumar M, Whelan MVX, Pallett LJ, Guerra-Assunção JA, Madansein R, Dullabh KJ, Sigal A, Thornhill JP, Herrera C, Fidler S, Noursadeghi M, Maini MK, Jolly C. HIV-1 Vpr drives a tissue residency-like phenotype during selective infection of resting memory T cells. Cell Rep 2022; 39:110650. [PMID: 35417711 PMCID: PMC9350556 DOI: 10.1016/j.celrep.2022.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
HIV-1 replicates in CD4+ T cells, leading to AIDS. Determining how HIV-1 shapes its niche to create a permissive environment is central to informing efforts to limit pathogenesis, disturb reservoirs, and achieve a cure. A key roadblock in understanding HIV-T cell interactions is the requirement to activate T cells in vitro to make them permissive to infection. This dramatically alters T cell biology and virus-host interactions. Here we show that HIV-1 cell-to-cell spread permits efficient, productive infection of resting memory T cells without prior activation. Strikingly, we find that HIV-1 infection primes resting T cells to gain characteristics of tissue-resident memory T cells (TRM), including upregulating key surface markers and the transcription factor Blimp-1 and inducing a transcriptional program overlapping the core TRM transcriptional signature. This reprogramming is driven by Vpr and requires Vpr packaging into virions and manipulation of STAT5. Thus, HIV-1 reprograms resting T cells, with implications for viral replication and persistence.
Collapse
Affiliation(s)
- Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Maitreyi Shivkumar
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban 4091, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban 4091, South Africa
| | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban 4091, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4091, South Africa; Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3XY, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK
| | - Carolina Herrera
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK; Imperial College NIHR Biomedical Research Centre, London W2 1NY, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Abstract
Future HIV-1 curative therapies require a thorough understanding of the distribution of genetically-intact HIV-1 within T-cell subsets during antiretroviral therapy (ART) and the cellular mechanisms that maintain this reservoir. Therefore, we sequenced near-full-length HIV-1 genomes and identified genetically-intact and genetically-defective genomes from resting naive, stem-cell memory, central memory, transitional memory, effector memory, and terminally-differentiated CD4+ T-cells with known cellular half-lives from 11 participants on ART. We find that a higher infection frequency with any HIV-1 genome was significantly associated with a shorter cellular half-life, such as transitional and effector memory cells. A similar enrichment of genetically-intact provirus was observed in these cells with relatively shorter half-lives. We found that effector memory and terminally-differentiated cells also had significantly higher levels of expansions of genetically-identical sequences, while only transitional and effector memory cells contained genetically-intact proviruses that were part of a cluster of identical sequences. Expansions of identical sequences were used to infer cellular proliferation from clonal expansion. Altogether, this indicates that specific cellular mechanisms such as short half-life and proliferative potential contribute to the persistence of genetically-intact HIV-1. IMPORTANCE The design of future HIV-1 curative therapies requires a more thorough understanding of the distribution of genetically-intact HIV-1 within T-cell subsets as well as the cellular mechanisms that maintain this reservoir. These genetically-intact and presumably replication-competent proviruses make up the latent HIV-1 reservoir. Our investigations into the possible cellular mechanisms maintaining the HIV-1 reservoir in different T-cell subsets have revealed a link between the half-lives of T-cells and the level of proviruses they contain. Taken together, we believe our study shows that more differentiated and proliferative cells, such as transitional and effector memory T-cells, contain the highest levels of genetically-intact proviruses, and the rapid turnover rate of these cells contributes to the expansion of genetically-intact proviruses within them. Therefore, our study delivers an in-depth assessment of the cellular mechanisms, such as cellular proliferation and half-life, that contribute to and maintain the latent HIV-1 reservoir.
Collapse
|
7
|
Maucourant C, Nonato Queiroz GA, Corneau A, Leandro Gois L, Meghraoui-Kheddar A, Tarantino N, Bandeira AC, Samri A, Blanc C, Yssel H, Rios Grassi MF, Vieillard V. NK Cell Responses in Zika Virus Infection Are Biased towards Cytokine-Mediated Effector Functions. THE JOURNAL OF IMMUNOLOGY 2021; 207:1333-1343. [PMID: 34408012 DOI: 10.4049/jimmunol.2001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.
Collapse
Affiliation(s)
- Christopher Maucourant
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Aurelien Corneau
- UPMC Univ Paris 06, Plateforme de Cytométrie, UMS30-LUMIC, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France; and
| | - Luana Leandro Gois
- FIOCRUZ, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Aida Meghraoui-Kheddar
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nadine Tarantino
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Assia Samri
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Catherine Blanc
- UPMC Univ Paris 06, Plateforme de Cytométrie, UMS30-LUMIC, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France; and
| | - Hans Yssel
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Vincent Vieillard
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France;
| |
Collapse
|
8
|
Brandt L, Cristinelli S, Ciuffi A. Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example. Annu Rev Virol 2021; 7:333-350. [PMID: 32991268 DOI: 10.1146/annurev-virology-021820-102458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While analyses of cell populations provide averaged information about viral infections, single-cell analyses offer individual consideration, thereby revealing a broad spectrum of diversity as well as identifying extreme phenotypes that can be exploited to further understand the complex virus-host interplay. Single-cell technologies applied in the context of human immunodeficiency virus (HIV) infection proved to be valuable tools to help uncover specific biomarkers as well as novel candidate players in virus-host interactions. This review aims at providing an updated overview of single-cell analyses in the field of HIV and acquired knowledge on HIV infection, latency, and host response. Although HIV is a pioneering example, similar single-cell approaches have proven to be valuable for elucidating the behavior and virus-host interplay in a range of other viruses.
Collapse
Affiliation(s)
- Ludivine Brandt
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
9
|
Minutolo A, Potestà M, Roglia V, Cirilli M, Iacovelli F, Cerva C, Fokam J, Desideri A, Andreoni M, Grelli S, Colizzi V, Muleo R, Montesano C. Plant microRNAs from Moringa oleifera Regulate Immune Response and HIV Infection. Front Pharmacol 2021; 11:620038. [PMID: 33643043 PMCID: PMC7905167 DOI: 10.3389/fphar.2020.620038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
Traditional medicine is often chosen due to its affordability, its familiarity with patient’s cultural practices, and its wider access to the local community. Plants play an important role in providing indispensable nutrients, while specific small RNAs can regulate human gene expression in a cross-kingdom manner. The aim of the study was to evaluate the effects of plant-enriched purified extract microRNAs from Moringa oleifera seeds (MO) on the immune response and on HIV infection. Bioinformatic analysis shows that plant microRNAs (p-miRs) from MO belonging to 18 conserved families, including p-miR160h, p-miR166, p-miR482b, p-miR159c, p-miR395d, p-miR2118a, p-miR393a, p-miR167f-3p, and p-miR858b are predicted to target with high affinity BCL2, IL2RA, TNF, and VAV1, all these being involved in the cell cycle, apoptosis, immune response and also in the regulation of HIV pathogenesis. The effects of MO p-miRs transfected into HIV+ PBMCs were analyzed and revealed a decrease in viability associated with an increase of apoptosis; an increase of T helper cells expressing Fas and a decrease of intracellular Bcl2 protein expression. Meanwhile no effects were detected in PBMCs from healthy donors. In CD4+ T cells, transfection significantly reduced cell activation and modified the T cell differentiation, thereby decreasing both central and effector memory cells while increasing terminal effector memory cells. Interestingly, the p-miRs transfection induces a reduction of intracellular HIV p24 protein and a reduction of viral DNA integration. Finally, we evaluated the effect of synthetic (mimic) p-miR858b whose sequence is present in the MO p-miR pool and predicted to target VAV1, a protein involved in HIV-Nef binding. This protein plays a pivotal role in T cell antigen receptor (TCR) signaling, so triggering the activation of various pathways. The transfection of HIV+ PBMCs with the synthetic p-miR858b showed a reduced expression of VAV1 and HIV p24 proteins. Overall, our evidence defines putative mechanisms underlying a supplementary benefit of traditional medicine, alongside current antiretroviral therapy, in managing HIV infection in resource-limited settings where MO remains widely available.
Collapse
Affiliation(s)
| | - Marina Potestà
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Roglia
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Cirilli
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy.,Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | | | - Carlotta Cerva
- Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | | | - Massimo Andreoni
- Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Faculty of Sciences and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | - Rosario Muleo
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
10
|
Zhang T, Warden AR, Li Y, Ding X. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med 2020; 10:e206. [PMID: 33135337 PMCID: PMC7556381 DOI: 10.1002/ctm2.206] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Recently emerged mass cytometry (cytometry by time-of-flight [CyTOF]) technology permits the identification and quantification of inherently diverse cellular systems, and the simultaneous measurement of functional attributes at the single-cell resolution. By virtue of its multiplex ability with limited need for compensation, CyTOF has led a critical role in immunological research fields. Here, we present an overview of CyTOF, including the introduction of CyTOF principle and advantages that make it a standalone tool in deciphering immune mysteries. We then discuss the functional assays, introduce the bioinformatics to interpret the data yield via CyTOF, and depict the emerging clinical and research applications of CyTOF technology in sketching immune landscape in a wide variety of diseases.
Collapse
Affiliation(s)
- Ting Zhang
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Antony R. Warden
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yiyang Li
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xianting Ding
- State Key laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
11
|
Abstract
HIV infection is characterized by elevated glycolytic metabolism in CD4 T cells. In their recent study, Valle-Casuso et al. demonstrated that both increased glucose utilization and glutamine metabolism are essential for HIV infectivity and replication in CD4 T cells. Here, we discuss the broader implications of immunometabolism in studies of HIV persistence and their potential to inform new treatment and curative strategies.
Collapse
|
12
|
Advances in Diagnostic Procedures and Their Applications in the Era of Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:37-50. [PMID: 32301009 DOI: 10.1007/978-3-030-41008-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnostic procedures play critical roles in cancer immunotherapy. In this chapter, we briefly discuss three major diagnostic procedures widely used in immunotherapy: immunohistochemistry, next-generation sequencing, and flow cytometry. We also describe the uses of other diagnostic procedures and preclinical animal models in cancer immunotherapy translational research.
Collapse
|
13
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Prolonged Antiretroviral Therapy in Adolescents With Vertical HIV Infection Leads to Different Cytokine Profiles Depending on Viremia Persistence. Pediatr Infect Dis J 2019; 38:1115-1120. [PMID: 31626046 DOI: 10.1097/inf.0000000000002446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We investigated immune activation, exhaustion markers and cytokine expression upon stimulation in adolescents with vertical HIV infection. METHODS Thirty adolescents receiving antiretroviral therapy (ART) for vertical HIV infection, including 12 with detectable viral load (HIV/DET), 18 with undetectable viral load (HIV/UND) and 30 control adolescents without HIV infection (CONTROL), were evaluated for immune activation and programmed cell death protein-1 expression by flow cytometry, and 21 cytokines by Luminex Multiple Analyte Profiling technology after in vitro peripheral blood phytohemagglutinin stimulation. RESULTS Lower CD4 T cells and higher T cell activation and exhaustion markers were noted on CD4 T and on CD8 T cells and memory subsets from HIV/DET group, who also produced lower in vitro IFN-gamma, IL-10, IL-13, IL-17A, IL-5 and IL-6 than HIV/UND group. HIV/UND were comparable with CONTROL group in respect to CD4 T cell counts and T cell activation and exhaustion markers, but with higher in vitro production of ITAC (a chemokine with leukocyte recruitment function), IL-4 and IL-23. An inverse correlation between cytokine production and programmed cell death protein-1 expression on CD4 T and CD8 T subsets was detected. CONCLUSIONS Persistent viremia despite ART leads to T cell activation and immune exhaustion with low cytokine production, whereas viral suppression by ART leads to parameters similar to CONTROL, although a different cytokine profile is observed, indicating residual HIV impact despite absence of detectable viremia.
Collapse
|
15
|
Lee E, Bacchetti P, Milush J, Shao W, Boritz E, Douek D, Fromentin R, Liegler T, Hoh R, Deeks SG, Hecht FM, Chomont N, Palmer S. Memory CD4 + T-Cells Expressing HLA-DR Contribute to HIV Persistence During Prolonged Antiretroviral Therapy. Front Microbiol 2019; 10:2214. [PMID: 31611857 PMCID: PMC6775493 DOI: 10.3389/fmicb.2019.02214] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
To date, most assays for measuring the human immunodeficiency virus (HIV-1) reservoir do not include memory CD4+ T-cells expressing the activation marker, human leukocyte antigen-antigen D related (HLA-DR). However, little is known concerning the role these cells play in maintaining persistent HIV-1 during effective antiretroviral therapy (ART). To address this issue, we examined, cellular activation/exhaustion markers (Ki67, CCR5, PD-1, Lag-3 and Tim-3) and viral gag-pol DNA sequences within HLA-DR− and HLA-DR+ memory CD4+ T-cell subsets longitudinally from the peripheral blood of six participants over 3 to ≥15 years of effective therapy. HLA-DR expression was readily detected during the study period in all participants. The average expression levels of CCR5, PD-1 and Tim-3 were higher on the HLA-DR+ T-cell subset whereas the average of LAG-3 expression was higher on their HLA-DR− counterpart. The proportion of HIV-infected cells increased within the HLA-DR+ subset by an average of 18% per year of ART whereas the frequency of infected HLA-DR− T-cells slightly decreased over time (5% per year). We observed that 20–33% of HIV-DNA sequences from the early time points were genetically identical to viral sequences from the last time point within the same cell subset during ART. This indicates that a fraction of proviruses persists within HLA-DR+ and HLA-DR− T-cell subsets during prolonged ART. Our HIV-DNA sequence analyses also revealed that cells transitioned between the HLA-DR+ and HLA-DR− phenotypes. The Ki67 expression, a marker for cellular proliferation, and the combined markers of Ki67/PD-1 averaged 19-fold and 22-fold higher on the HLA-DR+ T-cell subset compared to their HLA-DR− counterpart. Moreover, cellular proliferation, as reflected by the proportion of genetically identical HIV-DNA sequences, increased within both T-cell subsets over the study period; however, this increase was greater within the HLA-DR+ T-cells. Our research revealed that cellular transition and proliferation contribute to the persistence of HIV in HLA-DR+ and HLA-DR− T-cell subsets during prolonged therapy. As such, the HIV reservoir expands during effective ART when both the HLA-DR+ and HLA-DR− cell subsets are included, and therapeutic interventions aimed at reducing the HIV-1 reservoir should target HLA-DR+ and HLA-DR− T-cells.
Collapse
Affiliation(s)
- Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffery Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Remi Fromentin
- Centre de Recherche du CHUM et Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, QC, Canada
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Steve G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nicolas Chomont
- Centre de Recherche du CHUM et Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, QC, Canada
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Effects on immune system and viral reservoir of a short-cycle antiretroviral therapy in virologically suppressed HIV-positive patients. AIDS 2019; 33:965-972. [PMID: 30946150 DOI: 10.1097/qad.0000000000002169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Atripla dose reduction decreases subclinical toxicity and maintains viral suppression in HIV+ individuals but the virological efficacy and immunological safety of this strategy needs to be further confirmed. METHODS Virologically suppressed HIV-infected adults on Atripla once-daily were randomized 1 : 1 to reduce therapy to 3 days a week (3W, n = 30) or to maintain it unchanged (once-daily, n = 31). HIV-1 reservoir (total and integrated HIV-1 DNA in CD4 cells) and immunological cell activation (CD38 and HLA-DR), senescence (CD57 and CD28), apoptosis (annexinV) as well as T-naive, effector memory (TEM) (CCR7, CD45RA) and stem cell memory (TSCM) (CD954 and CD27) populations were measured at baseline, 24 and 48 weeks. RESULTS No differences on activation, senescence or apoptosis of both CD4 and CD8 T cells were observed on follow-up. Nave CD4 T-cell proportion showed a significant decrease in the 3W group (mean ± SD): 24.6 ± 13.7 vs. 20.5 ± 12.9 (P = 0.002). No differences in both plasma viral load and HIV reservoir were detected on follow-up. CD4 TSCM levels at 48 weeks correlated with basal integrated HIV-1 DNA in the 3W group but not in the once-daily group. A post hoc analysis of data prior to the study entry revealed a higher viral load zenith and a trend to lower CD4 nadir in 3W vs. once-daily group. CONCLUSION No significant immunological or viral changes were induced in the 3W group confirming the virological efficacy and immunogical safety of this strategy. In-depth virological and immunological analyses are useful in providing additional information in antiretroviral switching studies (Clinical Trials.gov: NCT01778413).
Collapse
|
17
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
18
|
Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations. Sci Rep 2018; 8:17296. [PMID: 30470767 PMCID: PMC6251894 DOI: 10.1038/s41598-018-35932-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
Innovative single cell technologies such as mass cytometry (CyTOF) widen possibilities to deeply improve characterisation of immune alterations mechanisms in human diseases. So far, CyTOF has not been used in sepsis – a condition characterized by complex immune disorders. Here, we evaluated feasibility of CyTOF analysis in patients with septic shock. We designed a mass cytometry panel of 25 extracellular markers to study mononuclear cells from 5 septic shock patients and 5 healthy donors. We explored single-cell data with global and specific unsupervised approaches such as heatmaps, SPADE and viSNE. We first validated relevance of our CyTOF results by highlighting established immune hallmarks of sepsis, such as decreased monocyte HLA-DR expression and increased expressions of PD1 and PD-L1 on CD4 T cells and monocytes. We then showed that CyTOF analysis reveals novel aspects of sepsis-induced immune alterations, e.g. B cell shift towards plasma cell differentiation and uniform response of several monocyte markers defining an immune signature in septic patients. This proof of concept study demonstrates CyTOF suitability to analyse immune features of septic patients. Mass cytometry could thus represent a powerful tool to identify novel pathophysiological mechanisms and therapeutic targets for immunotherapy in septic shock patients.
Collapse
|
19
|
Devine RD, Sekhri P, Behbehani GK. Effect of storage time and temperature on cell cycle analysis by mass cytometry. Cytometry A 2018; 93:1141-1149. [PMID: 30378741 DOI: 10.1002/cyto.a.23630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
Cell cycle analysis is a recognized and important application of flow cytometry and, more recently, mass cytometry (MCM). Both technologies have been utilized for analysis of the cell cycle state of ex vivo samples from patients with hematologic malignancies. Clinical samples are frequently stored for hours at room temperature or cryogenically frozen before processing and analysis; however, how these processing methods alter cell cycle state is not well described. To understand how storage time and temperature affect the analysis of cell cycle distribution by MCM, two leukemia cell lines, HL-60 and MOLM13, and primary human cells from three human bone marrow aspirates were stored and frozen under a variety of conditions that are likely to be encountered in a clinical setting. Our findings indicate that short delays in sample processing (less than 1 h), have little to no effect on cell cycle distribution, while longer delays or cryopreservation cause significant disruptions to the cell cycle fraction characterized by consistent reductions in IdU incorporation and variable alterations in other cell cycle phases. Analysis of the recovery of cryopreserved leukemia cell lines and marrow cells demonstrated that cell cycle alterations persist for at least 48 h after thawing. Our findings demonstrate that accurate cell cycle analysis requires that samples be processed rapidly after collection, and that cryopreservation significantly alters cell cycle fractions. Measurement of IdU incorporation was the most sensitive to both delays in processing and cryopreservation, while estimation of the total cycling cell fraction using Ki-67 or phosphorylated retinoblastoma protein were least altered by the conditions tested. These findings provide guidance for the ideal approach to collection of samples for cell cycle analysis and can aid interpretation of cell cycle data from samples that cannot be collected under ideal circumstances. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Raymond D Devine
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Palak Sekhri
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
20
|
Affiliation(s)
- Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Fong LE, Muñoz-Rojas AR, Miller-Jensen K. Advancing systems immunology through data-driven statistical analysis. Curr Opin Biotechnol 2018; 52:109-115. [PMID: 29656236 PMCID: PMC6294467 DOI: 10.1016/j.copbio.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Systems biology provides an effective approach to decipher, predict, and ultimately manipulate the complex and inter-connected networks that regulate the immune system. Advances in high-throughput, multiplexed experimental techniques have increased the availability of proteomic and transcriptomic immunological datasets, and as a result, have also accelerated the development of new data-driven computational algorithms to extract biological insight from these data. This review highlights how data-driven statistical models have been used to characterize immune cell subsets and their functions, to map the signaling and intercellular networks that regulate immune responses, and to connect immune cell states to disease outcomes to generate hypotheses for novel therapeutic strategies. We focus on recent advances in evaluating immune cell responses following viral infection and in the tumor microenvironment, which hold promise for improving vaccines, antiviral and cancer immunotherapy.
Collapse
Affiliation(s)
- Linda E Fong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Willis LM, Park H, Watson MWL, Majonis D, Watson JL, Nitz M. Tellurium-based mass cytometry barcode for live and fixed cells. Cytometry A 2018; 93:685-694. [DOI: 10.1002/cyto.a.23495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Lisa M. Willis
- Department of Chemistry; University of Toronto; Toronto Ontario M5S 3H6 Canada
| | - Hanuel Park
- Department of Chemistry; University of Toronto; Toronto Ontario M5S 3H6 Canada
| | - Michael W. L. Watson
- Fluidigm Corporation, 7000 Shoreline Court; South San Francisco California 94080
| | - Daniel Majonis
- Fluidigm Canada Inc.; 1380 Rodick Road, Markham Ontario L3R 4G5 Canada
| | - Jessica L. Watson
- Fluidigm Canada Inc.; 1380 Rodick Road, Markham Ontario L3R 4G5 Canada
| | - Mark Nitz
- Department of Chemistry; University of Toronto; Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
23
|
Stern L, McGuire H, Avdic S, Rizzetto S, Fazekas de St Groth B, Luciani F, Slobedman B, Blyth E. Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:1672. [PMID: 30093901 PMCID: PMC6070614 DOI: 10.3389/fimmu.2018.01672] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Mass cytometry, or Cytometry by Time-Of-Flight, is a powerful new platform for high-dimensional single-cell analysis of the immune system. It enables the simultaneous measurement of over 40 markers on individual cells through the use of monoclonal antibodies conjugated to rare-earth heavy-metal isotopes. In contrast to the fluorochromes used in conventional flow cytometry, metal isotopes display minimal signal overlap when resolved by single-cell mass spectrometry. This review focuses on the potential of mass cytometry as a novel technology for studying immune reconstitution in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Reconstitution of a healthy donor-derived immune system after HSCT involves the coordinated regeneration of innate and adaptive immune cell subsets in the recipient. Mass cytometry presents an opportunity to investigate immune reconstitution post-HSCT from a systems-level perspective, by allowing the phenotypic and functional features of multiple cell populations to be assessed simultaneously. This review explores the current knowledge of immune reconstitution in HSCT recipients and highlights recent mass cytometry studies contributing to the field.
Collapse
Affiliation(s)
- Lauren Stern
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Helen McGuire
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Selmir Avdic
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Barbara Fazekas de St Groth
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Barry Slobedman
- University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Sydney, NSW, Australia
| |
Collapse
|
24
|
Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, Avettand-Fenoel V, Lecuroux C, Bruhns P, Le Grand R, Beignon AS, Lambotte O, Favier B. Mass Cytometry Analysis Reveals the Landscape and Dynamics of CD32a + CD4 + T Cells From Early HIV Infection to Effective cART. Front Immunol 2018; 9:1217. [PMID: 29915583 PMCID: PMC5995043 DOI: 10.3389/fimmu.2018.01217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
CD32a has been proposed as a specific marker of latently HIV-infected CD4+ T cells. However, CD32a was recently found to be expressed on CD4+ T cells of healthy donors, leading to controversy on the relevance of this marker in HIV persistence. Here, we used mass cytometry to characterize the landscape and variation in the abundance of CD32a+ CD4+ T cells during HIV infection. To this end, we analyzed CD32a+ CD4+ T cells in primary HIV infection before and after effective combination antiretroviral therapy (cART) and in healthy donors. We found that CD32a+ CD4+ T cells include heterogeneous subsets that are differentially affected by HIV infection. Our analysis revealed that naive (N), central memory (CM), and effector/memory (Eff/Mem) CD32a+ CD4+ T-cell clusters that co-express LILRA2- and CD64-activating receptors were more abundant in primary HIV infection and cART stages. Conversely, LILRA2− CD32a+ CD4+ T-cell clusters of either the TN, TCM, or TEff/Mem phenotype were more abundant in healthy individuals. Finally, an activated CD32a+ CD4+ TEff/Mem cell cluster co-expressing LILRA2, CD57, and NKG2C was more abundant in all HIV stages, particularly during primary HIV infection. Overall, our data show that multiple abundance modifications of CD32a+ CD4+ T-cell subsets occur in the early phase of HIV infection, and some of which are conserved after effective cART. Our study brings a better comprehension of the relationship between CD32a expression and CD4+ T cells during HIV infection.
Collapse
Affiliation(s)
- Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Veronique Avettand-Fenoel
- Paris Descartes University, EA 7327, Sorbonne Paris Cité, APHP, Necker Hospital, Virology Department, Paris, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U1222, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | | |
Collapse
|
25
|
Cavrois M, Banerjee T, Mukherjee G, Raman N, Hussien R, Rodriguez BA, Vasquez J, Spitzer MH, Lazarus NH, Jones JJ, Ochsenbauer C, McCune JM, Butcher EC, Arvin AM, Sen N, Greene WC, Roan NR. Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells. Cell Rep 2018; 20:984-998. [PMID: 28746881 DOI: 10.1016/j.celrep.2017.06.087] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/17/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
To characterize susceptibility to HIV infection, we phenotyped infected tonsillar T cells by single-cell mass cytometry and created comprehensive maps to identify which subsets of CD4+ T cells support HIV fusion and productive infection. By comparing HIV-fused and HIV-infected cells through dimensionality reduction, clustering, and statistical approaches to account for viral perturbations, we identified a subset of memory CD4+ T cells that support HIV entry but not viral gene expression. These cells express high levels of CD127, the IL-7 receptor, and are believed to be long-lived lymphocytes. In HIV-infected patients, CD127-expressing cells preferentially localize to extrafollicular lymphoid regions with limited viral replication. Thus, CyTOF-based phenotyping, combined with analytical approaches to distinguish between selective infection and receptor modulation by viruses, can be used as a discovery tool.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trambak Banerjee
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA 90089, USA
| | - Gourab Mukherjee
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA 90089, USA
| | - Nandhini Raman
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Rajaa Hussien
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Brandon Aguilar Rodriguez
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Joshua Vasquez
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Nicole H Lazarus
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305-5324, USA; Palo Alto Veterans Institute for Research and the Palo Alto Veterans Affairs Health Care Center, Palo Alto, CA 94304-1290, USA
| | - Jennifer J Jones
- Department of Medicine, University of Alabama, Birmingham, AL 35233-1912, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama, Birmingham, AL 35233-1912, USA; Center for AIDS Research, University of Alabama, Birmingham, AL 35294-2107, USA
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Eugene C Butcher
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305-5324, USA; Palo Alto Veterans Institute for Research and the Palo Alto Veterans Affairs Health Care Center, Palo Alto, CA 94304-1290, USA
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305-5324, USA
| | - Nandini Sen
- Departments of Pediatrics and Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305-5324, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Dzangué-Tchoupou G, Corneau A, Blanc C, Benveniste O, Allenbach Y. Analysis of cell surface and intranuclear markers on non-stimulated human PBMC using mass cytometry. PLoS One 2018; 13:e0194593. [PMID: 29566047 PMCID: PMC5864033 DOI: 10.1371/journal.pone.0194593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mass cytometry is a powerful tool that allows simultaneous analysis of more than 37 markers at the single cell level. Mass cytometry is of particular interest in the identification of a wide variety of cell phenotypes in autoimmune diseases. Moreover, cells can be labelled with palladium isotopes and pooled before staining (barcoding). Nevertheless, immunologists often face an important problem concerning the choice of markers to be included in a panel. This problem arises due to the incompatibility of different buffers used for the fixation and permeabilization of cells with various cell surface epitopes. In this study, we used a panel of 27 markers (19 surface markers and 8 intranuclear markers) to demonstrate disparities in the detection of cell surface antigens when comparing different buffers to stain unstimulated peripheral blood mononuclear cells. These disparities range from mild differences to very important differences in population frequencies depending on the buffers. Finally, we demonstrate the harmful effects of permeabilization prior to barcoding on the detection of some cell surface antigens. Here, we optimize a protocol that is suitable to use when targeting a large panel including both cell surface and intranuclear markers on unstimulated human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Gaëlle Dzangué-Tchoupou
- Centre of research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 974, Pitié-Salpêtrière University hospital, Paris, France
- * E-mail:
| | - Aurélien Corneau
- Plateforme de Cytométrie (CyPS), Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 1135, Paris, France
| | - Catherine Blanc
- Plateforme de Cytométrie (CyPS), Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 1135, Paris, France
| | - Olivier Benveniste
- Centre of research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 974, Pitié-Salpêtrière University hospital, Paris, France
- Department of Internal medicine and clinical immunology, Pitié-Salpêtrière University hospital, DHU I2B, AP-HP, INSERM, UMR 974, Paris, France
| | - Yves Allenbach
- Centre of research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR 974, Pitié-Salpêtrière University hospital, Paris, France
- Department of Internal medicine and clinical immunology, Pitié-Salpêtrière University hospital, DHU I2B, AP-HP, INSERM, UMR 974, Paris, France
| |
Collapse
|
27
|
Zhang J, Ruan Y, Xu X, Wang H, Tao Q, Lu J, Xia L, Zhang Q, Wang J, Wang Y, Zhai Z. Therapeutic potential of low-dose IL-2 in immune thrombocytopenia: An analysis of 3 cases. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:428-433. [PMID: 29144585 DOI: 10.1002/cyto.b.21601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Abstract
Immune thrombocytopenia (ITP) is an acquired immune-mediated disorder with regulatory T cells (Tregs) reduction. Recent studies have shown that low-dose interleukin-2 can preferentially induce Treg expansion in vivo, and therefore offers a therapeutic strategy against immune thrombocytopenia. We have demonstrated in a previous study that Tregs and platelet counts significantly improve in an adult with ITP following low-dose IL-2 treatment. Here we report the efficacy of low-dose IL-2 in another three adults with immune thrombocytopenia who failed the first-line treatment. All patients received a dose of 1.0 million IU IL-2/day for 5 consecutive days per week as a cycle for 2 or 4 weeks. In addition to IL-2, vincristine (2 mg IV weekly × 3 weeks) was added to one patient as a combination therapy. No specific treatment was added in the other two patients. Two cases exhibited significantly increased platelet counts with improved levels of Tregs, while no changes were observed for the remaining patient. In summary, administration of daily subcutaneous low-dose IL-2 was safe, and it may be a new therapeutic option for treatment of ITP, especially refractory ITP. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Jiakui Zhang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Yanjie Ruan
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Xuanxuan Xu
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Huiping Wang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Qianshan Tao
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Lu
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Linhuan Xia
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Qiuye Zhang
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Jeffrey Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research at University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research at University of Sydney, Sydney, New South Wales, Australia
| | - Zhimin Zhai
- Department of Hematology, Hematological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
28
|
Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection. J Virol 2017; 91:JVI.01263-17. [PMID: 28904197 DOI: 10.1128/jvi.01263-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 has shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with, gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially affected cytokine production by cells in response to staphylococcal enterotoxin B stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, interleukin-2 (IL-2), and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together, these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cells being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important for limiting damage by the immune system during acute infections. In chronic infections, however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their influence on CD4 T cells remains unclear. We assessed the expression of inhibitory receptors on HIV-specific CD4 T cells and their relationship with T cell functionality. We uncovered differences in inhibitory receptor expression depending on the CD4 T cell function. We also found differences in functionality of CD4 T cells following blocking of different inhibitory receptors, and we confirmed our results in a Friend virus retroviral model of infection in mice. Our results show that inhibitory receptor expression on CD4 T cells is linked to CD4 T cell functionality and could be sculpted by blockade of specific inhibitory receptors. These data reveal exciting possibilities for the development of novel treatments and immunotherapeutics.
Collapse
|
29
|
Foldi J, Kozhaya L, McCarty B, Mwamzuka M, Marshed F, Ilmet T, Kilberg M, Kravietz A, Ahmed A, Borkowsky W, Unutmaz D, Khaitan A. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions. J Infect Dis 2017; 216:641-650. [PMID: 28934428 DOI: 10.1093/infdis/jix341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. Methods In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. Results HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. Conclusions This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies.
Collapse
Affiliation(s)
| | - Lina Kozhaya
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Bret McCarty
- New York University School of Medicine.,Department of Pediatrics, Division of Infectious Diseases and Immunology
| | | | | | - Tiina Ilmet
- New York University School of Medicine.,Department of Pediatrics, Division of Infectious Diseases and Immunology
| | - Max Kilberg
- New York University School of Medicine.,Department of Pediatrics, Division of Infectious Diseases and Immunology
| | - Adam Kravietz
- New York University School of Medicine.,Department of Microbiology, New York University School of Medicine
| | | | - William Borkowsky
- New York University School of Medicine.,Department of Pediatrics, Division of Infectious Diseases and Immunology
| | - Derya Unutmaz
- New York University School of Medicine.,Department of Microbiology, New York University School of Medicine
| | - Alka Khaitan
- New York University School of Medicine.,Department of Pediatrics, Division of Infectious Diseases and Immunology.,Department of Microbiology, New York University School of Medicine
| |
Collapse
|
30
|
Unravelling HIV-1 Latency, One Cell at a Time. Trends Microbiol 2017; 25:932-941. [PMID: 28668335 DOI: 10.1016/j.tim.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
Abstract
A single virus is capable of infecting and replicating in a single cell. Recent advances across single-cell omics technologies - genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, and metabolomics - will offer unprecedented opportunities to gain more insights into the various aspects of the life cycle of viruses and their impact on the host cell. Here, using the human immunodeficiency virus type 1 (HIV-1) as an example, we summarize the current knowledge and the future potential of single-cell omics in the investigation of an important aspect of the life cycle of HIV-1 that represents a major hurdle in achieving viral eradication, HIV-1 latency.
Collapse
|
31
|
Baca Q, Cosma A, Nolan G, Gaudilliere B. The road ahead: Implementing mass cytometry in clinical studies, one cell at a time. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 92:10-11. [PMID: 27874247 DOI: 10.1002/cyto.b.21497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Quentin Baca
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Antonio Cosma
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of viral infections and autoimmune diseases, Fontenay-aux- Roses, France
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|