1
|
McClintock SM, Deng ZD, Husain MM, Thakkar VJ, Bernhardt E, Weiner RD, Luber B, Lisanby SH. Comparing the Neurocognitive Effects of Right Unilateral Ultra-Brief Pulse Electroconvulsive Therapy and Magnetic Seizure Therapy for the Treatment of Major Depressive Episode. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:175-185. [PMID: 39515580 DOI: 10.1016/j.bpsc.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Magnetic seizure therapy (MST) is under investigation as a treatment for adults with major depression. Previous research has suggested that MST has antidepressant efficacy comparable to that of electroconvulsive therapy (ECT), but with greater cognitive safety. The objective of the study was to compare the neurocognitive outcomes of patients receiving an acute course of MST with the outcomes of those receiving ECT for the treatment of major depressive episode. METHODS This was a between-subjects, double-masked, randomized, multicenter clinical trial. Seventy-three participants with a severe major depressive episode were enrolled and randomly assigned to treatment with MST (n = 35) or ultra-brief pulse right unilateral ECT (n = 38). The main outcome was change in performance from baseline to the end of acute treatment on multiple neurocognitive measures. RESULTS Compared with patients who received ECT, patients who received MST had superior cognitive outcomes up to 72 hours posttreatment. Specifically, following MST treatment, there was significant improvement in fine motor dexterity (p = .017) and no significant change in cognitive domains of attention, verbal fluency, executive function, or verbal learning and memory. In contrast, following treatment with ECT, patients demonstrated significantly worse performance on measures of verbal fluency (p < .001), executive function (p = .038), and verbal memory retention (p < .001). Autobiographical memory consistency decreased significantly following treatment with both ECT (p < .001) and MST, although the magnitude of change was greater for ECT. CONCLUSIONS The study findings confirm previous work and provide new evidence supporting the enhanced cognitive safety of MST relative to ECT. Future research on MST is warranted to optimize its application to individuals with neuropsychiatric illnesses across the life span.
Collapse
Affiliation(s)
- Shawn M McClintock
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas; Perot Foundation Neuroscience Translational Research Center, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas.
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Vishal J Thakkar
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Elisabeth Bernhardt
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard D Weiner
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
2
|
Shi ZM, Su ZA, Ning T, Zheng W. Magnetic seizure therapy versus electroconvulsive therapy for major mental disorders: A systematic review. Asian J Psychiatr 2025; 103:104336. [PMID: 39689575 DOI: 10.1016/j.ajp.2024.104336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Zhan-Ming Shi
- Chongqing Jiangbei Mental Health Center, Chongqing, China
| | - Zhi-Ang Su
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Ting Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Cavenaghi VB, Carneiro AM, Cretaz E, Cabral B, Cardoso CB, Brunoni AR. Magnetic seizure therapy for unipolar and bipolar depression: An up to date systematic review. World J Biol Psychiatry 2025; 26:49-59. [PMID: 39710605 DOI: 10.1080/15622975.2024.2439897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Magnetic seizure therapy (MST) has emerged as a promising alternative to electroconvulsive therapy (ECT) for treatment-resistant depression. Previous systematic reviews and meta analysis already showed its primary results, however, there are no recent reviews updating these findings. OBJECTIVES This systematic review aimed to make an updated systematic review of MST on unipolar and bipolar depression. METHODS We conducted a search considering databases (PubMed/MEDLINE, EMBASE, Web of Science, Scopus). Studies were included if they investigated MST in human subjects for unipolar or bipolar depression, and not restricting to year or language. RESULTS Data resulted in 15 studies, corresponding to 300 participants that received MST. Most studies were pilot, open-label or secondary analyses (n = 12). Participants that received MST had a response and remission rates ranging from 26.9% to 72.2% and 11.1% to 61.1%, respectively. The most common stimulation regions were vertex and prefrontal cortex, with frequencies between 25-100 Hz and duration of 6-24 sessions (2-3 times a week). Few side effects were reported. CONCLUSIONS MST shows to be effective and well-tolerated treatment for depression. Larger, double-blinded RCTs with standardised mood, cognitive, and side effect assessments are needed to confirm these findings.
Collapse
Affiliation(s)
- Vitor Breseghello Cavenaghi
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Adriana M Carneiro
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Eric Cretaz
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Bianca Cabral
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Caroline Benigno Cardoso
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
4
|
Prillo J, Zapf L, Espinola CW, Daskalakis ZJ, Blumberger DM. Magnetic Seizure Therapy in Refractory Psychiatric Disorders: A Systematic Review and Meta-Analysis: La thérapie par convulsions magnétiques pour la prise en charge des troubles psychiatriques réfractaires : revue systématique et méta-analyse. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024:7067437241301005. [PMID: 39654297 PMCID: PMC11629361 DOI: 10.1177/07067437241301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
OBJECTIVE To qualitatively and quantitatively synthesize the literature on the efficacy and safety of magnetic seizure therapy (MST) in psychiatric disorders. METHODS A literature search was conducted of the OVID Medline, OVID EMBASE, PsychINFO, CINAHL, Web of Science and Cochrane databases from inception to 14 January 2024, using subject headings and key words for "magnetic seizure therapy." Randomized controlled trials (RCTs), post-hoc analyses of RCTs, open-label trials, or case series investigating MST in adults with a verified psychiatric diagnosis and reporting on two possible primary outcomes (1) psychiatric symptom reduction (as measured by validated rating scale) or (2) neurocognitive outcomes (as measured by standardized testing), were included. Abstracts, individual case reports, reviews and editorials were excluded. Extracted data included: (1) basic study details; (2) study design; (3) sample size; (4) baseline demographics; (5) outcome data (including secondary outcomes of suicidal ideation and adverse events); and (6) stimulation parameters. Cochrane's risk of bias tool was applied. A quantitative analysis was conducted for the depression studies, using Hedge's g effect sizes. RESULTS A total of 24 studies (n = 377) were eligible for inclusion. Seventeen studies in depression (including three RCTs), four studies in schizophrenia (including one RCT), one study in bipolar disorder, one study in obsessive-compulsive disorder and one study in borderline personality disorder were summarized. We found no significant difference in depressive symptom reduction between MST and electroconvulsive therapy (ECT) in randomized, controlled trials (g = 0.207 towards ECT, 95% confidence interval (CI) -0.132 to 0.545, P = 0.232). We found a significant reduction in depressive symptoms overall with MST in the pooled RCT and open-label analysis (g = 1.749, CI 1.219 to 2.279, P < 0.005). It is suggested that MST has modest cognitive side effects. CONCLUSIONS Large-scale RCTs are necessary to confirm early signals of MST as an effective intervention in psychiatric disorders with a cognitive profile that is potentially more favourable than ECT.
Collapse
Affiliation(s)
- Jake Prillo
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorina Zapf
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Caroline W. Espinola
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
5
|
Bellini H, Cretaz E, Carneiro AM, da Silva PHR, dos Santos LA, Gallucci-Neto J, Brunoni AR. Magnetic Waves vs. Electric Shocks: A Non-Inferiority Study of Magnetic Seizure Therapy and Electroconvulsive Therapy in Treatment-Resistant Depression. Biomedicines 2023; 11:2150. [PMID: 37626647 PMCID: PMC10452083 DOI: 10.3390/biomedicines11082150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment-resistant depression (TRD), characterized by the failure to achieve symptomatic remission despite multiple pharmacotherapeutic treatments, poses a significant challenge for clinicians. Electroconvulsive therapy (ECT) is an effective but limited option due to its cognitive side effects. In this context, magnetic seizure therapy (MST) has emerged as a promising alternative, offering comparable antidepressant efficacy with better cognitive outcomes. However, the clinical outcomes and cognitive effects of MST require further investigation. This double-blinded, randomized, non-inferiority study aims to compare the efficacy, tolerability, cognitive adverse effects, and neurophysiological biomarkers of MST with bilateral ECT (BT ECT) in patients with TRD. This study will employ multimodal nuclear magnetic resonance imaging (MRI) and serum neurotrophic markers to gain insight into the neurobiological basis of seizure therapy. Additionally, neurophysiological biomarkers will be evaluated as secondary outcomes to predict the antidepressant and cognitive effects of both techniques. The study design, recruitment methods, ethical considerations, eligibility criteria, interventions, and blinding procedures are described. The expected outcomes will advance the field by offering a potential alternative to ECT with improved cognitive outcomes and a better understanding of the underlying pathophysiology of depression and antidepressant therapies.
Collapse
Affiliation(s)
- Helena Bellini
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Eric Cretaz
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Adriana Munhoz Carneiro
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Pedro Henrique Rodrigues da Silva
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Leonardo Afonso dos Santos
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - José Gallucci-Neto
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil; (H.B.); (E.C.); (A.M.C.); (P.H.R.d.S.); (L.A.d.S.); (J.G.-N.)
- Service of Electroconvulsive Therapy, Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
6
|
Comparison of Efficacy and Safety of Magnetic Seizure Therapy and Electroconvulsive Therapy for Depression: A Systematic Review. J Pers Med 2023; 13:jpm13030449. [PMID: 36983629 PMCID: PMC10057006 DOI: 10.3390/jpm13030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives: As a new physical therapeutic technique, magnetic seizure therapy (MST) has established efficacy in the treatment of depression with few cognitive side effects, and thus appears to be a potential alternative to electroconvulsive therapy (ECT). The findings of randomized controlled trials (RCTs) examining the efficacy and safety of MST versus ECT for depression are inconsistent. This systematic review of RCTs was designed with the aim of assessing the safety and efficacy of MST versus ECT for patients with depression. Methods: The WanFang, Chinese Journal Net (CNKI), EMBASE, PubMed, Cochrane Library, and PsycINFO databases were systematically searched by three independent investigators, from their inceptions to July 24, 2021. Results: In total, four RCTs (n = 86) were included and analyzed. Meta-analyses of study-defined response (risk ratio (RR) = 1.36; 95% CI = 0.78 to 2.36; p = 0.28; I2 = 0%), study-defined remission (RR = 1.17; 95% CI = 0.61 to 2.23; p = 0.64; I2 = 0%), and the improvement in depressive symptoms (standardized mean difference (SMD) = 0.21; 95% CI = −0.29 to 0.71; p = 0.42; I2 = 0%) did not present significant differences between MST and ECT. Three RCTs evaluated the cognitive effects of MST compared with ECT using different cognitive measuring tools, but with mixed findings. Only two RCTs reported adverse drug reactions (ADRs), but these lacked specific data. Only one RCT reported discontinuation due to any reason. Conclusions: This preliminary study suggests that MST appears to have a similar antidepressant effect as ECT for depression, but mixed findings on adverse cognitive effects were reported.
Collapse
|
7
|
Zhang JY, Wu H, Jia LN, Jiang W, Luo J, Liu Y, Gao Q, Ren YP, Ma X, Tang YL, McDonald WM. Cardiovascular Effects of High-Frequency Magnetic Seizure Therapy Compared With Electroconvulsive Therapy. J ECT 2022; 38:185-191. [PMID: 35220358 PMCID: PMC9422761 DOI: 10.1097/yct.0000000000000833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Magnetic seizure therapy (MST) is a novel convulsive therapy that has been shown to have antidepressant efficacy comparable to electroconvulsive therapy (ECT) with fewer cognitive side effects. However, the cardiovascular (CVS) effects of high frequency MST in comparison to ECT have not been investigated. MATERIALS AND METHODS Forty-five patients with depression received 6 treatment sessions of 100 Hz MST versus 6 bifrontal ECT treatments in a nonrandomized comparative clinical design. Data on CVS function including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and rate pressure product (RPP) were collected at baseline (T0), after the induction of anesthesia but before the electrical stimulation (T1), during convulsion (T2), 2 minutes after cessation of motor seizure (T3), 5 minutes after cessation of motor seizure (T4), and 10 minutes after cessation of motor seizure (T5). Comparisons were made with baseline data and between MST and ECT groups. RESULTS There were statistically significant elevations in the maximum HR, SBP, DBP, and RPP in patients receiving ECT compared with MST both in the initial and sixth treatments (all P < 0.05). Particularly, at T2, the ECT group had significantly higher HR, SBP, DBP, and RPP than those in MST group both in initial and sixth treatment (all P < 0.001). At the sixth treatment, the ECT group had significantly higher SBP, DBP, and RPP during the treatment than in the MST group (all P < 0.001). LIMITATIONS The anesthetic choices for this study may limit the generalizability of our findings. The sample size was relatively small. CONCLUSIONS Compared with ECT, high-frequency MST has fewer CVS side effects and may be a safer option for depression patients with CVS disorders.
Collapse
Affiliation(s)
- Jun-yan Zhang
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Han Wu
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Li-na Jia
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Wei Jiang
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Jiong Luo
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Yi Liu
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Qi Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yan-ping Ren
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Xin Ma
- From the The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital
- Advanced Innovation Center for Human Brain Protection
| | - Yi-lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta
- Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta
| |
Collapse
|
8
|
Regenold WT, Deng ZD, Lisanby SH. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology 2022; 47:361-372. [PMID: 34272471 PMCID: PMC8617166 DOI: 10.1038/s41386-021-01094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
More than any other brain region, the prefrontal cortex (PFC) gives rise to the singularity of human experience. It is therefore frequently implicated in the most distinctly human of all disorders, those of mental health. Noninvasive neuromodulation, including electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) among others, can-unlike pharmacotherapy-directly target the PFC and its neural circuits. Direct targeting enables significantly greater on-target therapeutic effects compared with off-target adverse effects. In contrast to invasive neuromodulation approaches, such as deep-brain stimulation (DBS), noninvasive neuromodulation can reversibly modulate neural activity from outside the scalp. This combination of direct targeting and reversibility enables noninvasive neuromodulation to iteratively change activity in the PFC and its neural circuits to reveal causal mechanisms of both disease processes and healthy function. When coupled with neuronavigation and neurophysiological readouts, noninvasive neuromodulation holds promise for personalizing PFC neuromodulation to relieve symptoms of mental health disorders by optimizing the function of the PFC and its neural circuits. ClinicalTrials.gov Identifier: NCT03191058.
Collapse
Affiliation(s)
- William T. Regenold
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Zhi-De Deng
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Sarah H. Lisanby
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
9
|
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front Psychiatry 2022; 13:886918. [PMID: 35492692 PMCID: PMC9047946 DOI: 10.3389/fpsyt.2022.886918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders are among the most common psychiatric conditions and contribute to significant morbidity. Even though the use of antidepressants revolutionized the management of depression and had a tremendous positive impact on the patient's outcome, a significant proportion of patients with major depressive disorder (MDD) show no or partial or response even with adequate treatment. Given the limitations of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and glutamatergic related pathways may offer an alternative and a complementary option for designing novel intervention strategies. Over the past few decades, there has been a growing interest in understanding the neurobiological underpinnings of glutamatergic dysfunctions in the pathogenesis of depressive disorders and the development of new pharmacological and non-pharmacological treatment options. There is a growing body of evidence for the efficacy of neuromodulation techniques, including transcranial magnetic stimulation, transcutaneous direct current stimulation, transcranial alternating current stimulation, and photo-biomodulation on improving connectivity and neuroplasticity associated with depression. This review attempts to revisit the role of glutamatergic neurotransmission in the etiopathogenesis of depressive disorders and review the current neuroimaging, neurophysiological and clinical evidence of these neuromodulation techniques in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
| | - Maria Anayali Estudillo-Guerra
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Azan Nyundo
- Department of Psychiatry and Mental Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania
| | | | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
10
|
Abstract
For many decades, psychiatric treatment has been primarily guided by two major paradigms of psychopathology: a neurochemical paradigm leading to the development of medications and a psychological paradigm resulting in the development of psychotherapies. A third paradigm positing that psychiatric dysfunction results from abnormal communication within a network of brain regions that regulate mood, thought, and behavior has gained increased attention over the past several years and underlies the development of multiple neuromodulation and neurostimulation therapies. This neural circuit paradigm is not new. In the late 19th and early 20th centuries, it was a common way of understanding psychiatric illness and led to several of our earliest somatic therapies. However, with the rise of effective medications and evidence-based psychotherapies, this paradigm went mostly dormant. Its recent reemergence resulted from a growing recognition that medications and psychotherapy leave many patients inadequately treated, along with technological advances that have revolutionized our ability to understand and modulate the neural circuitry involved in psychiatric disorders. In this overview, the authors review the history and current state of neuromodulation for psychiatric illness and specifically focus on these approaches as a treatment for depression, as this has been the primary indication for these interventions over time.
Collapse
Affiliation(s)
- Susan K Conroy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis (Conroy);National Center for PTSD, Executive Division, White River Junction VA Medical Center, White River Junction, Vt. (Holtzheimer);Departments of Psychiatry and Surgery, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, N.H. (Holtzheimer)
| | - Paul E Holtzheimer
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis (Conroy);National Center for PTSD, Executive Division, White River Junction VA Medical Center, White River Junction, Vt. (Holtzheimer);Departments of Psychiatry and Surgery, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, N.H. (Holtzheimer)
| |
Collapse
|
11
|
Jiang J, Li J, Xu Y, Zhang B, Sheng J, Liu D, Wang W, Yang F, Guo X, Li Q, Zhang T, Tang Y, Jia Y, Daskalakis ZJ, Wang J, Li C. Magnetic Seizure Therapy Compared to Electroconvulsive Therapy for Schizophrenia: A Randomized Controlled Trial. Front Psychiatry 2021; 12:770647. [PMID: 34899429 PMCID: PMC8656219 DOI: 10.3389/fpsyt.2021.770647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Magnetic seizure therapy (MST) is a potential alternative to electroconvulsive therapy (ECT). However, reports on the use of MST for patients with schizophrenia, particularly in developing countries, which is a main indication for ECT, are limited. Methods: From February 2017 to July 2018, 79 inpatients who met the DSM-5 criteria for schizophrenia were randomized to receive 10 sessions of MST (43 inpatients) or ECT (36 inpatients) over the course of 4 weeks. At baseline and 4-week follow-up, the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were used to assess symptom severity and cognitive functions, respectively. Results: Seventy-one patients who completed at least half of the treatment protocol were included in the per-protocol analysis. MST generated a non-significant larger antipsychotic effect in terms of a reduction in PANSS total score [g = 0.17, 95% confidence interval (CI) = -0.30, 0.63] and response rate [relative risk (RR) = 1.41, 95% CI = 0.83-2.39]. Twenty-four participants failed to complete the cognitive assessment as a result of severe psychotic symptoms. MST showed significant less cognitive impairment over ECT in terms of immediate memory (g = 1.26, 95% CI = 0.63-1.89), language function (g =1.14, 95% CI = 0.52-1.76), delayed memory (g = 0.75, 95% CI = 0.16-1.35), and global cognitive function (g = 1.07, 95% CI = 0.45-1.68). The intention-to-treat analysis generated similar results except for the differences in delayed memory became statistically insignificant. Better baseline cognitive performance predicted MST and ECT response. Conclusions: Compared to bitemporal ECT with brief pulses and age-dose method, MST had similar antipsychotic efficacy with fewer cognitive impairments, indicating that MST is a promising alternative to ECT as an add-on treatment for schizophrenia. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT02746965.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhong Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhang
- Psychological and Psychiatric Neuroimage Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuzhong Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Tang VM, Blumberger DM, Hill AT, Weissman CR, Voineskos D, Rajji TK, Downar J, Knyahnytska Y, Mulsant BH, Fitzgerald PB, Daskalakis ZJ. Magnetic Seizure Therapy for the Treatment of Suicidality in Bipolar Depression. Biol Psychiatry 2021; 90:e51-e53. [PMID: 33172609 DOI: 10.1016/j.biopsych.2020.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Victor M Tang
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Australia
| | - Cory R Weissman
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Monash University, Camberwell, Victoria, Australia; Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, UC San Diego Health, La Jolla, California.
| |
Collapse
|
13
|
Chen M, Yang X, Liu C, Li J, Wang X, Yang C, Hu X, Li J, Zhao J, Li X, Xu Y, Liu S. Comparative efficacy and cognitive function of magnetic seizure therapy vs. electroconvulsive therapy for major depressive disorder: a systematic review and meta-analysis. Transl Psychiatry 2021; 11:437. [PMID: 34420033 PMCID: PMC8380249 DOI: 10.1038/s41398-021-01560-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Magnetic seizure therapy (MST) has established efficacy in the treatment of depression and a growing evidence base in the treatment of depression. We conducted the first systematic review and meta-analysis of the efficacy of MST in anti-depressive treatment and its impact on cognitive function (INPLASY registration number: INPLASY202170061). We searched for controlled trials published in English between 1 January 2001 to 31 December 2020 in PubMed, EMBASE, Cochrane Library, Web of Science, and PsycINFO databases. The evaluation process strictly followed the Cochrane bias risk assessment tool into the literature, and Meta-analysis was performed according to the Cochrane System Reviewer's Manual. Data from a total of 285 patients from 10 studies were retained in the quantitative synthesis. The results showed no significant difference between MST and ECT in the antidepressant effect (SDM -0.13 [-0.78;0.52]). Compared with ECT, MST showed shorter recovery time (MD -5.67 [-9.75; -1.60]) and reorientation time (MD -14.67 [-27.96; -1.41]); and MST showed less cognitive impairment on the immediate recall of words (SDM 0.80 [0.35;1.25]), delayed recall of words (SDM 0.99 [0.01;0.74]), visual-spatial immediate memory (SDM 0.51 [0.20;0.83]), visual-spatial delayed memory (SDM 0.57 [0.11;1.02]), and the verbal fluency (SDM 0.51 [0.20;0.83]). Our evidence-based study is the first meta-analysis on the efficacy of MST in anti-depressive treatment and its effect on cognitive function. It showed that the curative effect of MST in anti-depressive treatment is equivalent to that of ECT. Besides, depressive patients with MST benefit more from cognitive function compared with ECT.
Collapse
Affiliation(s)
- Miao Chen
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China ,grid.263452.40000 0004 1798 4018College of Humanities and Social Sciences, Shanxi Medical University, 030001 Taiyuan, China
| | - Xuhui Yang
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Chaojie Liu
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Jianying Li
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Xiao Wang
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Chunxia Yang
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Xiaodong Hu
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Jianhong Li
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Juan Zhao
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China
| | - Xinrong Li
- grid.263452.40000 0004 1798 4018Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China ,grid.452461.00000 0004 1762 8478Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, China. .,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China. .,College of Humanities and Social Sciences, Shanxi Medical University, 030001, Taiyuan, China.
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, China. .,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, 030001, Taiyuan, China. .,College of Humanities and Social Sciences, Shanxi Medical University, 030001, Taiyuan, China.
| |
Collapse
|
14
|
Jiang J, Zhang C, Li C, Chen Z, Cao X, Wang H, Li W, Wang J. Magnetic seizure therapy for treatment-resistant depression. Cochrane Database Syst Rev 2021; 6:CD013528. [PMID: 34131914 PMCID: PMC8205924 DOI: 10.1002/14651858.cd013528.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Magnetic seizure therapy (MST) is a potential alternative to electroconvulsive therapy (ECT). Reports to date on use of MST for patients with treatment-resistant depression (TRD) are limited. OBJECTIVES To evaluate the effects of MST in comparison with sham-MST, antidepressant, and other forms of electric or magnetic treatment for adults with TRD. SEARCH METHODS In March 2020, we searched a wide range of international electronic sources for published, unpublished, and ongoing studies. We handsearched the reference lists of all included studies and relevant systematic reviews and conference proceedings of the Annual Meeting of the American College of Neuropsychopharmacology (ACNP), the Annual Scientific Convention and Meeting, and the Annual Meeting of the European College of Neuropsychopharmacology (ECNP) to identify additional studies. SELECTION CRITERIA All randomised clinical trials (RCTs) focused on MST for adults with TRD. DATA COLLECTION AND ANALYSIS Two review authors extracted data independently. For binary outcomes, we calculated risk ratios (RRs) and 95% confidence intervals (CIs). For continuous data, we estimated mean differences (MDs) between groups and 95% CIs. We employed a random-effects model for analyses. We assessed risk of bias for included studies and created a 'Summary of findings' table using the GRADE approach. Our main outcomes of interest were symptom severity, cognitive function, suicide, quality of life, social functioning, dropout for any reason, serious adverse events, and adverse events that led to discontinuation of treatment. MAIN RESULTS We included three studies (65 participants) comparing MST with ECT. Two studies reported depressive symptoms with the Hamilton Rating Scale for Depression (HAMD). However, in one study, the data were skewed and there was an imbalance in baseline characteristics. Analysis of these two studies showed no clear differences in depressive symptoms between treatment groups (MD 0.71, 95% CI -2.23 to 3.65; 2 studies, 40 participants; very low-certainty evidence). Two studies investigated multiple domains of cognitive function. However most of the outcomes were not measured by validated neuropsychological tests, and many of the data suffered from unbalanced baseline and skewed distribution. Analysis of immediate memory performance measured by the Wechsler Memory Scale showed no clear differences between treatment groups (MD 0.40, 95% CI -4.16 to 4.96; 1 study, 20 participants; very low-certainty evidence). Analysis of delayed memory performance measured by the Wechsler Memory Scale also showed no clear differences between treatment groups (MD 2.57, 95% CI -2.39 to 7.53; 1 study, 20 participants; very low-certainty evidence). Only one study reported quality of life, but the data were skewed and baseline data were unbalanced across groups. Analysis of quality of life showed no clear differences between treatment groups (MD 14.86, 95% CI -42.26 to 71.98; 1 study, 20 participants; very low-certainty evidence). Only one study reported dropout and adverse events that led to discontinuation of treatment. Analysis of reported data showed no clear differences between treatment groups for this outcome (RR 1.38, 95% CI 0.28 to 6.91; 1 study, 25 participants; very low-certainty evidence). Adverse events occurred in only two participants who received ECT (worsening of preexisting coronary heart disease and a cognitive adverse effect). None of the included studies reported outcomes on suicide and social functioning. No RCTs comparing MST with other treatments were identified. AUTHORS' CONCLUSIONS Evidence regarding effects of MST on patients with TRD is currently insufficient. Our analyses of available data did not reveal clearly different effects between MST and ECT. We are uncertain about these findings because of risk of bias and imprecision of estimates. Large, long, well-designed, and well-reported trials are needed to further examine the effects of MST.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Department of EEG Source Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Tang VM, Blumberger DM, Weissman CR, Dimitrova J, Throop A, McClintock SM, Voineskos D, Rajji TK, Downar J, Knyahnytska Y, Mulsant BH, Fitzgerald PB, Daskalakis ZJ. A pilot study of magnetic seizure therapy for treatment-resistant obsessive-compulsive disorder. Depress Anxiety 2021; 38:161-171. [PMID: 32949052 DOI: 10.1002/da.23097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND There is growing interest in the potential of neuromodulation options in treatment-resistant obsessive-compulsive disorder (OCD). Magnetic seizure therapy (MST), is a new treatment intervention in which generalized seizures are induced with transcranial magnetic stimulation. We conducted a pilot study to assess the efficacy and cognitive effects of MST in patients with treatment-resistant OCD. METHODS In an open-label pilot study, participants with treatment-resistant OCD and a baseline Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores of ≥16 were treated with up to 24 acute treatments. The primary clinical outcomes were clinical response (Y-BOCS score reduction ≥30%) and remission (final Y-BOCS score ≤8). A neurocognitive battery, the Quick Inventory for Depressive Symptoms-Self Report (QIDS-SR), the Beck Scale for Suicidal Ideation (SSI), and the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) were also completed as secondary measures. RESULTS Ten participants with OCD who had not responded to medications or psychotherapy enrolled in the study and seven completed an adequate trial (defined as ≥8 treatments). MST was associated with minimal cognitive effects except for some decrease in autobiographical memory and no serious adverse effects. Only one participant met the predefined criteria for response, and none for remission. The baseline and endpoint Y-BOCS scores were not statistically different. CONCLUSION Overall, MST was not beneficial in a small group of patients with treatment-resistant OCD. At this time, other studies of MST for OCD are not warranted until different coil placements targeting other brain circuits can be proposed.
Collapse
Affiliation(s)
- Victor M Tang
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cory R Weissman
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Julia Dimitrova
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Alanah Throop
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daphne Voineskos
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Downar
- Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yuliya Knyahnytska
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Department of Psychiatry, Epworth Centre for Innovation in Mental Health, Epworth Healthcare, Monash University, Camberwell, Victoria, Australia
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Campbell Family Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, UC San Diego Health, La Jolla, California
| |
Collapse
|
16
|
Zhang J, Ren Y, Jiang W, Luo J, Yan F, Tang Y, Ma X. Shorter recovery times and better cognitive function-A comparative pilot study of magnetic seizure therapy and electroconvulsive therapy in patients with depressive episodes. Brain Behav 2020; 10:e01900. [PMID: 33070479 PMCID: PMC7749607 DOI: 10.1002/brb3.1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Magnetic seizure therapy (MST) is a new convulsive therapy that is as effective as traditional electroconvulsive therapy (ECT) in treating depression but with fewer cognitive side effects. The aim of this study was to compare the efficacy and cognitive effects between MST (100 Hz applied over the vertex) and bifrontal ECT for treating patients with depressive episodes. METHODS Forty-five patients with depressive episodes were enrolled, with 18 receiving MST and 27 receiving ECT. MST was administered over the vertex with 100 Hz frequency. Treatment consisted of six sessions. The 17-item Hamilton Rating Scale for Depression (HAMD-17) was used to assess the severity of depression. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognition. Assessments were performed at baseline and after the third and sixth treatment sessions. RESULTS Both MST and ECT improved the patients' depressive symptoms significantly, yet no significant difference was found between the two groups (p > .05). The response rates and remission rates of MST and ECT were 72.2% versus 81.5% and 61.1% versus 63.0%, respectively. The MST group showed significant improvements in immediate memory (p < .001), delayed memory (p = .002), and attention (p < .001) than ECT. The recovery times for consciousness (p < .001), spontaneous breathing (p < .001), and orientation (p < .001) were shorter in MST group than ECT group. RBANS improvements were negatively correlated with the recovery time for orientation (r = .561, p < .001). CONCLUSION Magnetic seizure therapy showed similar efficacy to bifrontal ECT for treating depressive episodes. While MST may be an effective alternative to ECT, larger randomized trials are needed.
Collapse
Affiliation(s)
- Junyan Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Wei Jiang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Jiong Luo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Fang Yan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yilang Tang
- Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaGAUSA
- Mental Health Service LineAtlanta VA Medical CenterDecaturGAUSA
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Hadas I, Zomorrodi R, Hill AT, Sun Y, Fitzgerald PB, Blumberger DM, Daskalakis ZJ. Subgenual cingulate connectivity and hippocampal activation are related to MST therapeutic and adverse effects. Transl Psychiatry 2020; 10:392. [PMID: 33173028 PMCID: PMC7655940 DOI: 10.1038/s41398-020-01042-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
Aberrant connectivity between the dorsolateral prefrontal cortex (DLPFC) and the subgenual cingulate cortex (SGC) has been linked to the pathophysiology of depression. Indirect evidence also links hippocampal activation to the cognitive side effects of seizure treatments. Magnetic seizure therapy (MST) is a novel treatment for patients with treatment resistant depression (TRD). Here we combine transcranial magnetic stimulation with electroencephalography (TMS-EEG) to evaluate the effects of MST on connectivity and activation between the DLPFC, the SGC and hippocampus (Hipp) in patients with TRD. The TMS-EEG was collected from 31 TRD patients prior to and after an MST treatment trial. Through TMS-EEG methodology we evaluated significant current scattering (SCS) as an index of effective connectivity between the SGC and left DLPFC. Significant current density (SCD) was used to assess activity at the level of the Hipp. The SCS between the SGC and DLPFC was reduced after the course of MST (p < 0.036). The DLPFC-SGC effective connectivity reduction correlated with the changes in Hamilton depression score pre-to-post treatment (R = 0.46; p < 0.031). The SCD localized to the Hipp was reduced after the course of MST (p < 0.015), and the SCD change was correlated with montreal cognitive assessment (MOCA) scores pre-post the course of MST (R = -0.59; p < 0.026). Our findings suggest that MST treatment is associated with SGC-DLPFC connectivity reduction and that changes to cognition are associated with Hipp activation reduction. These findings demonstrate two distinct processes which drive efficacy and side effects separately, and might eventually aid in delineating physiological TRD targets in clinical settings.
Collapse
Affiliation(s)
- Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, 92093-0603, USA
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, VIC, Australia
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
18
|
Xue SS, Zhou CH, Xue F, Liu L, Cai YH, Luo JF, Wang Y, Tan QR, Wang HN, Peng ZW. The impact of repetitive transcranial magnetic stimulation and fluoxetine on the brain lipidome in a rat model of chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109946. [PMID: 32325156 DOI: 10.1016/j.pnpbp.2020.109946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The antidepressant effect of repetitive transcranial magnetic stimulation (rTMS) has been extensively studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of depression and may be a targeted mechanism for treatment. However, the influence of rTMS on lipid composition and the differences between these effects compared to antidepressants like fluoxetine (Flx) have never been investigated. Using a chronic unpredictable stress (CUS) model in rats, we assessed the antidepressive effects of rTMS and Flx treatments and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. Both rTMS and Flx treatments ameliorated depressive-like behaviors induced by CUS. Moreover, changes in lipid composition, especially glycerophospholipids, sphingolipids, and glycerolipids induced by CUS in the hippocampus were more robust than those observed in the PFC. CUS led to decreased levels of 20 carbon-containing fatty acyls and polyunsaturated fatty acyls in the PFC, and decreased levels of acyl carnitines (AcCa) in both the hippocampus and PFC. Notably, rTMS treatment had higher impact than Flx on composition of glycerophospholipids and sphingolipids in the hippocampus that were altered by CUS, while Flx attenuated CUS-induced changes in the PFC to a greater extent than rTMS. However, neither was able to restore fatty acyls and AcCa to baseline levels. Altogether, modulation of the brain lipidome may be involved in the antidepressant action of rTMS and Flx, and the degree to which these treatments induce changes in lipid composition within the hippocampus and PFC might explain their differential antidepressant effects.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Yan-Hui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Feng Luo
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
19
|
Vlaicu A, Bustuchina Vlaicu M. New neuromodulation techniques for treatment resistant depression. Int J Psychiatry Clin Pract 2020; 24:106-115. [PMID: 32069166 DOI: 10.1080/13651501.2020.1728340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the treatment of depression, when pharmacotherapy, psychotherapy and the oldest brain stimulation techniques are deadlocked, the emergence of new therapies is a necessary development. The field of neuromodulation is very broad and controversial. This article provides an overview of current progress in the technological advances in neuromodulation and neurostimulation treatments for treatment-resistant depression: magnetic seizure therapy; focal electrically administered seizure therapy; low field magnetic stimulation; transcranial pulsed electromagnetic fields; transcranial direct current stimulation; epidural cortical stimulation; trigeminal nerve stimulation; transcutaneous vagus nerve stimulation; transcranial focussed ultrasound; near infra-red transcranial radiation; closed loop stimulation. The role of new interventions is expanding, probably with more efficacy. Nowadays, still under experimentation, neuromodulation will probably revolutionise the field of neuroscience. At present, major efforts are still necessary before that these therapies are likely to become widespread.Key pointsThere is a critical need for new therapies for treatment resistant depression.Newer therapies are expanding. In the future, these therapies, as an evidence-based adjunctive treatments, could offer a good therapeutic choice for the patients with a TRD.The current trend in the new neuromodulation therapies is to apply a personalised treatment.These news therapies can be complementary.That treatment approaches can provide clinically significant benefits.
Collapse
Affiliation(s)
- Andrei Vlaicu
- Psychiatry Department, CHHM, Hospital Andre Breton, Saint-Dizier, France
| | | |
Collapse
|
20
|
McAllister-Williams RH, Arango C, Blier P, Demyttenaere K, Falkai P, Gorwood P, Hopwood M, Javed A, Kasper S, Malhi GS, Soares JC, Vieta E, Young AH, Papadopoulos A, Rush AJ. The identification, assessment and management of difficult-to-treat depression: An international consensus statement. J Affect Disord 2020; 267:264-282. [PMID: 32217227 DOI: 10.1016/j.jad.2020.02.023] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Many depressed patients are not able to achieve or sustain symptom remission despite serial treatment trials - often termed "treatment resistant depression". A broader, perhaps more empathic concept of "difficult-to-treat depression" (DTD) was considered. METHODS A consensus group discussed the definition, clinical recognition, assessment and management implications of the DTD heuristic. RESULTS The group proposed that DTD be defined as "depression that continues to cause significant burden despite usual treatment efforts". All depression management should include a thorough initial assessment. When DTD is recognized, a regular reassessment that employs a multi-dimensional framework to identify addressable barriers to successful treatment (including patient-, illness- and treatment-related factors) is advised, along with specific recommendations for addressing these factors. The emphasis of treatment, in the first instance, shifts from a goal of remission to optimal symptom control, daily psychosocial functional and quality of life, based on a patient-centred approach with shared decision-making to enhance the timely consideration of all treatment options (including pharmacotherapy, psychotherapy, neurostimulation, etc.) to optimize outcomes when sustained remission is elusive. LIMITATIONS The recommended definition and management of DTD is based largely on expert consensus. While DTD would seem to have clinical utility, its specificity and objectivity may be insufficient to define clinical populations for regulatory trial purposes, though DTD could define populations for service provision or phase 4 trials. CONCLUSIONS DTD provides a clinically useful conceptualization that implies a search for and remediation of specific patient-, illness- and treatment obstacles to optimizing outcomes of relevance to patients.
Collapse
Affiliation(s)
- R H McAllister-Williams
- Northern Centre for Mood Disorders, Newcastle University, UK; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - C Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - P Blier
- Royal Ottawa Institute of Mental Health Research, University of Ottawa, Canada
| | - K Demyttenaere
- University Psychiatric Center KU Leuven, Faculty of Medicine KU Leuven, Belgium
| | - P Falkai
- Clinic for Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - P Gorwood
- CMME, Hopital Sainte-Anne (GHU Paris et Neurosciences). Paris-Descartes University, INSERM U1266, Paris, France
| | - M Hopwood
- University of Melbourne, Melbourne, Australia
| | - A Javed
- Faculty of the University of Warwick, UK
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G S Malhi
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, New South Wales, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065 Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065 Australia
| | - J C Soares
- University of Texas Health Science Center, Houston, TX, USA
| | - E Vieta
- Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - A H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, UK
| | | | - A J Rush
- Duke University School of Medicine, Durham, NC, USA; Texas Tech University Health Sciences Center, Permian Basin, Midland, TX, USA; Duke-NUS Medical School, Singapore
| |
Collapse
|
21
|
Borrione L, Bellini H, Razza LB, Avila AG, Baeken C, Brem AK, Busatto G, Carvalho AF, Chekroud A, Daskalakis ZJ, Deng ZD, Downar J, Gattaz W, Loo C, Lotufo PA, Martin MDGM, McClintock SM, O'Shea J, Padberg F, Passos IC, Salum GA, Vanderhasselt MA, Fraguas R, Benseñor I, Valiengo L, Brunoni AR. Precision non-implantable neuromodulation therapies: a perspective for the depressed brain. ACTA ACUST UNITED AC 2020; 42:403-419. [PMID: 32187319 PMCID: PMC7430385 DOI: 10.1590/1516-4446-2019-0741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD) include pharmacotherapy and cognitive-behavioral therapy. However, one-third of depressed patients do not achieve remission after multiple medication trials, and psychotherapy can be costly and time-consuming. Although non-implantable neuromodulation (NIN) techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, electroconvulsive therapy, and magnetic seizure therapy are gaining momentum for treating MDD, the efficacy of non-convulsive techniques is still modest, whereas use of convulsive modalities is limited by their cognitive side effects. In this context, we propose that NIN techniques could benefit from a precision-oriented approach. In this review, we discuss the challenges and opportunities in implementing such a framework, focusing on enhancing NIN effects via a combination of individualized cognitive interventions, using closed-loop approaches, identifying multimodal biomarkers, using computer electric field modeling to guide targeting and quantify dosage, and using machine learning algorithms to integrate data collected at multiple biological levels and identify clinical responders. Though promising, this framework is currently limited, as previous studies have employed small samples and did not sufficiently explore pathophysiological mechanisms associated with NIN response and side effects. Moreover, cost-effectiveness analyses have not been performed. Nevertheless, further advancements in clinical trials of NIN could shift the field toward a more “precision-oriented” practice.
Collapse
Affiliation(s)
- Lucas Borrione
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Helena Bellini
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Lais Boralli Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ana G Avila
- Centro de Neuropsicologia e Intervenção Cognitivo-Comportamental, Faculdade de Psicologia e Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna-Katharine Brem
- Max Planck Institute of Psychiatry, Munich, Germany.,Division of Interventional Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Adam Chekroud
- Spring Health, New York, NY, USA.,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutic & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Paulo A Lotufo
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Maria da Graça M Martin
- Laboratório de Ressonância Magnética em Neurorradiologia (LIM-44) and Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ives C Passos
- Laboratório de Psiquiatria Molecular e Programa de
Transtorno Bipolar, Hospital de Clínicas de Porto Alegre (HCPA), Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovanni A Salum
- Departamento de Psiquiatria, Seção de Afeto Negativo e Processos Sociais (SANPS), HCPA, UFRGS, Porto Alegre, RS, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Psychopathology and Affective Neuroscience Lab, Ghent University, Ghent, Belgium
| | - Renerio Fraguas
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Isabela Benseñor
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Magnetic seizure therapy (MST) for major depressive disorder. Neuropsychopharmacology 2020; 45:276-282. [PMID: 31486777 PMCID: PMC6901571 DOI: 10.1038/s41386-019-0515-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 11/08/2022]
Abstract
Electroconvulsive therapy (ECT) is effective for major depressive disorder (MDD) but its effects on memory limit its widespread use. Magnetic seizure therapy (MST) is a potential alternative to ECT that may not adversely affect memory. In the current trial, consecutive patients with MDD consented to receive MST applied over the prefrontal cortex according to an open-label protocol. Depressive symptoms and cognition were assessed prior to, during and at the end of treatment. Patients were treated two to three times per week with high-frequency MST (i.e., 100 Hz) (N = 24), medium frequency MST (i.e., 60 or 50 Hz) (N = 26), or low-frequency MST (i.e., 25 Hz MST) (N = 36) using 100% stimulator output. One hundred and forty patients were screened; 86 patients with MDD received a minimum of eight treatments and were deemed to have an adequate course of MST; and 47 completed the trial per protocol, either achieving remission (i.e., 24-item Hamilton Rating Scale for Depression score <10 and a relative reduction of >60% at two consecutive assessments; n = 17) or received a maximum of 24 sessions (n = 30). High-frequency (100 Hz) MST produced the highest remission rate (33.3%). Performance on most cognitive measures remained stable, with the exception of significantly worsened recall consistency of autobiographical information and significantly improved brief visuospatial memory task performance. Under open conditions, MST led to clinically meaningful reduction in depressive symptoms in patients with MDD and produced minimal cognitive impairment. Future studies should compare MST and ECT under double-blind randomized condition.
Collapse
|
23
|
Xue SS, Xue F, Ma QR, Wang SQ, Wang Y, Tan QR, Wang HN, Zhou CH, Peng ZW. Repetitive high-frequency transcranial magnetic stimulation reverses depressive-like behaviors and protein expression at hippocampal synapses in chronic unpredictable stress-treated rats by enhancing endocannabinoid signaling. Pharmacol Biochem Behav 2019; 184:172738. [PMID: 31229467 DOI: 10.1016/j.pbb.2019.172738] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
The anti-depressant effect of repetitive transcranial magnetic stimulation (rTMS), a clinically-useful treatment for depression, is associated with changes to the endocannabinoid system (ECS). However, it is currently unknown whether different frequencies of rTMS alter the ECS differently. To test this, rats exposed to chronic unpredictable stress (CUS) were treated with rTMS at two different frequencies (5 (high) or 1 Hz (low), 1.26 Tesla) for 7 consecutive days. Twenty-four hours after the final rTMS treatment, we evaluated depressive-like behaviors and the expression of several synaptic proteins and ECS-related proteins in the hippocampus. In addition, we knocked-down diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R), two important components of the ECS, and measured depressive-like behaviors and synaptic protein expression following rTMS. Furthermore, we measured the expression levels of several components of the ECS system in hippocampal-derived astrocytes and neurons exposed to repetitive magnetic stimulation (rMS) with different parameters (5 or 1 Hz, 0.84 or 1.26 Tesla). Interestingly, we found that only high-frequency rTMS ameliorated depressive-like behaviors and normalized the expression of hippocampal synaptic proteins in CUS-treated rats; this effect was eliminated by knockdown of DAGLα or CB1R. Moreover, we found that rMS at 5 Hz increased the expression of DAGLα and CB1R in hippocampal astrocytes and neurons. Collectively, our results suggest that high-frequency rTMS exerts its anti-depressant effect by up-regulating DAGLα and CB1R.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Quan-Rui Ma
- Department of Human Anatomy and Histology and Embryology, Basic Medical College, Ningxia Medical University, 750004, China
| | - Shi-Quan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
24
|
Abstract
Magnetic seizure therapy (MST) is a noninvasive neuromodulation therapy under investigation for the treatment of severe neuropsychiatric disorders. MST involves inducing a therapeutic seizure under anesthesia in a setting similar to electroconvulsive therapy (ECT). To date, randomized controlled trials suggest that MST has similar antidepressant efficacy as ECT, but without significant cognitive adverse effects. Large scale clinical trials are currently underway to confirm these preliminary findings. So far, there has only been one study evaluating the clinical predictors of response to MST and more research is needed. This study found that patients with fewer episodes of depression and a positive family history of depression had a better response to MST. Overall, the ability of MST to focus the delivery of the electric field and the resultant seizure makes targeting seizure therapy to specific brain regions possible, and further research will be helpful in identifying personalized targets to maximize clinical benefit. In this review, we describe MST methodology and how it could be individualized to each patient. We also summarize the clinical and cognitive effects of MST and provide indications of which patients may be most likely to benefit. Finally, we summarize the studied neurophysiological predictors of response.
Collapse
|
25
|
Mutz J, Vipulananthan V, Carter B, Hurlemann R, Fu CHY, Young AH. Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis. BMJ 2019; 364:l1079. [PMID: 30917990 PMCID: PMC6435996 DOI: 10.1136/bmj.l1079] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To estimate the comparative clinical efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults. DESIGN Systematic review with pairwise and network meta-analysis. DATA SOURCES Electronic search of Embase, PubMed/Medline, and PsycINFO up to 8 May 2018, supplemented by manual searches of bibliographies of several reviews (published between 2009 and 2018) and included trials. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Clinical trials with random allocation to electroconvulsive therapy (ECT), transcranial magnetic stimulation (repetitive (rTMS), accelerated, priming, deep, and synchronised), theta burst stimulation, magnetic seizure therapy, transcranial direct current stimulation (tDCS), or sham therapy. MAIN OUTCOME MEASURES Primary outcomes were response (efficacy) and all cause discontinuation (discontinuation of treatment for any reason) (acceptability), presented as odds ratios with 95% confidence intervals. Remission and continuous depression severity scores after treatment were also examined. RESULTS 113 trials (262 treatment arms) that randomised 6750 patients (mean age 47.9 years; 59% women) with major depressive disorder or bipolar depression met the inclusion criteria. The most studied treatment comparisons were high frequency left rTMS and tDCS versus sham therapy, whereas recent treatments remain understudied. The quality of the evidence was typically of low or unclear risk of bias (94 out of 113 trials, 83%) and the precision of summary estimates for treatment effect varied considerably. In network meta-analysis, 10 out of 18 treatment strategies were associated with higher response compared with sham therapy: bitemporal ECT (summary odds ratio 8.91, 95% confidence interval 2.57 to 30.91), high dose right unilateral ECT (7.27, 1.90 to 27.78), priming transcranial magnetic stimulation (6.02, 2.21 to 16.38), magnetic seizure therapy (5.55, 1.06 to 28.99), bilateral rTMS (4.92, 2.93 to 8.25), bilateral theta burst stimulation (4.44, 1.47 to 13.41), low frequency right rTMS (3.65, 2.13 to 6.24), intermittent theta burst stimulation (3.20, 1.45 to 7.08), high frequency left rTMS (3.17, 2.29 to 4.37), and tDCS (2.65, 1.55 to 4.55). Network meta-analytic estimates of active interventions contrasted with another active treatment indicated that bitemporal ECT and high dose right unilateral ECT were associated with increased response. All treatment strategies were at least as acceptable as sham therapy. CONCLUSIONS These findings provide evidence for the consideration of non-surgical brain stimulation techniques as alternative or add-on treatments for adults with major depressive episodes. These findings also highlight important research priorities in the specialty of brain stimulation, such as the need for further well designed randomised controlled trials comparing novel treatments, and sham controlled trials investigating magnetic seizure therapy.
Collapse
Affiliation(s)
- Julian Mutz
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Ben Carter
- Department of Biostatistics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn Medical Centre, Bonn, Germany
| | - Cynthia H Y Fu
- School of Psychology, College of Applied Health and Communities, University of East London, London, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Allan H Young
- South London and Maudsley Foundation NHS Trust, London, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
26
|
Daskalakis AA, Daskalakis ZJ. Treating resistant depression with 2 forms of convulsive therapy: a clinical case study. J Psychiatry Neurosci 2019; 44:143-144. [PMID: 30810025 PMCID: PMC6397037 DOI: 10.1503/jpn.180141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
27
|
McClintock SM, Kallioniemi E, Martin DM, Kim JU, Weisenbach SL, Abbott CC. A Critical Review and Synthesis of Clinical and Neurocognitive Effects of Noninvasive Neuromodulation Antidepressant Therapies. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:18-29. [PMID: 31975955 PMCID: PMC6493152 DOI: 10.1176/appi.focus.20180031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a plethora of current and emerging antidepressant therapies in the psychiatric armamentarium for the treatment of major depressive disorder. Noninvasive neuromodulation therapies are one such therapeutic category; they typically involve the transcranial application of electrical or magnetic stimulation to modulate cortical and subcortical brain activity. Although electroconvulsive therapy (ECT) has been used since the 1930s, with the prevalence of major depressive disorder and treatment-resistant depression (TRD), the past three decades have seen a proliferation of noninvasive neuromodulation antidepressant therapeutic development. The purpose of this critical review was to synthesize information regarding the clinical effects, neurocognitive effects, and possible mechanisms of action of noninvasive neuromodulation therapies, including ECT, transcranial magnetic stimulation, magnetic seizure therapy, and transcranial direct current stimulation. Considerable research has provided substantial information regarding their antidepressant and neurocognitive effects, but their mechanisms of action remain unknown. Although the four therapies vary in how they modulate neurocircuitry and their resultant antidepressant and neurocognitive effects, they are nonetheless useful for patients with acute and chronic major depressive disorder and TRD. Continued research is warranted to inform dosimetry, algorithm for administration, and integration among the noninvasive neuromodulation therapies and with other antidepressant strategies to continue to maximize their safety and antidepressant benefit.
Collapse
Affiliation(s)
- Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Elisa Kallioniemi
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Donel M Martin
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Joseph U Kim
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Sara L Weisenbach
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| | - Christopher C Abbott
- Neurocognitive Research Laboratory, Department of Psychiatry, University of Texas (UT) Southwestern Medical Center, Dallas, Texas (McClintock, Kallioniemi, Martin); Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina (McClintock); Black Dog Institute, Sydney, Australia, and School of Psychiatry, University of New South Wales, Sydney (Martin); Department of Psychiatry, University of Utah School of Medicine, Salt Lake City (Kim, Weisenbach); VA Salt Lake City, Mental Health Program (Weisenbach); Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque (Abbott)
| |
Collapse
|
28
|
|
29
|
Limandri BJ. Treatment-Resistant Depression: Identification and Treatment Strategies. J Psychosoc Nurs Ment Health Serv 2018; 56:11-15. [DOI: 10.3928/02793695-20180808-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Jiang J, Li Q, Sheng J, Yang F, Cao X, Zhang T, Jia Y, Wang J, Li C. 25 Hz Magnetic Seizure Therapy Is Feasible but Not Optimal for Chinese Patients With Schizophrenia: A Case Series. Front Psychiatry 2018; 9:224. [PMID: 29896130 PMCID: PMC5986936 DOI: 10.3389/fpsyt.2018.00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 11/22/2022] Open
Abstract
Magnetic seizure therapy (MST) is a potential alternative to electroconvulsive therapy (ECT), but there is currently a lack of reports about MST in Chinese patients with schizophrenia. Our objective was to investigate the feasibility and acceptability of add-on MST in the treatment of patients with schizophrenia. Eight patients with schizophrenia were enrolled in a case series study to receive 10 sessions of add-on MST over 4 weeks. The MST was administrated using 25 Hz at 100% output with a titration duration ranging from 4 to 20 s by 4 s. The Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were employed to measure the symptom improvements and the cognitive effects, respectively. Six patients completed at least one-half of the planned sessions. Five showed a reduction in PANSS total score, and three achieved clinical response (≥30% reduction). Three of the participants receiving the RBANS, showed either improvements or no changes in the memory function. Regarding the subjective complaints about MST, two reported dizziness, and only one reported memory loss. Approximately one-fourth of the treatment sessions produced only brief seizures (<15 s). Overall, employing MST to treat Chinese patients with schizophrenia appeared feasible and acceptable. However, further evidence is needed to determine the therapeutic efficacy and effects of MST on the cognitive functions of patients with schizophrenia.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuzhong Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|