1
|
Safransky M, Groh JR, Blennow K, Zetterberg H, Tripodis Y, Martin B, Weller J, Asken BM, Rabinovici GD, Qiu WWQ, McKee AC, Stein TD, Mez J, Henson RL, Long J, Morris JC, Perrin RJ, Schindler SE, Alosco ML. Lumipulse-Measured Cerebrospinal Fluid Biomarkers for the Early Detection of Alzheimer Disease. Neurology 2024; 103:e209866. [PMID: 39496102 PMCID: PMC11540457 DOI: 10.1212/wnl.0000000000209866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES CSF biomarkers of Aβ42 and phosphorylated tau (p-tau181) are used clinically for the detection of Alzheimer disease (AD) pathology during life. CSF biomarker validation studies have largely used clinical diagnoses and/or amyloid PET imaging as the reference standard. The few existing CSF-to-autopsy studies have been restricted to late-stage AD. This CSF-to-autopsy study investigated associations between CSF biomarkers of AD and AD neuropathologic changes among brain donors who had normal cognition at the time of lumbar puncture (LP). METHODS This was a retrospective study of brain donors from the National Alzheimer's Coordinating Center who had normal cognition at the time of LP and who had measurements of CSF Aβ42 and p-tau181 performed with Lumipulse assays. All brain donors were from Washington University Knight ADRC. Staging of AD neuropathologic change (ADNC) was made based on National Institute on Aging-Alzheimer's Association criteria. For this study, participants were divided into 2 categories: "AD-" (no AD/low ADNC) and "AD+" (intermediate/high ADNC). Accuracy of each biomarker for discriminating AD status was evaluated using area under the curve (AUC) statistics generated using predicted probabilities from binary logistic regressions that controlled for age, sex, APOE ε4, and interval between LP and death. RESULTS The average age at LP was 79.3 years (SD = 5.6), and the average age at death was 87.1 years (SD = 6.5). Of the 49 brain donors, 24 (49%) were male and 47 (95.9%) were White. 20 (40.8%) had autopsy-confirmed AD. The average interval from LP until death was 7.76 years (SD = 4.31). CSF p-tau181/Aβ42 was the optimal predictor of AD, having excellent discrimination accuracy (AUC = 0.97, 95% CI 0.94-1.00, p = 0.003). CSF p-tau181 alone had the second-best discrimination accuracy (AUC = 0.92, 95% CI 0.84-1.00, p = 0.001), followed by CSF Aβ42 alone (AUC = 0.92, 95% CI 0.85-1.00, p = 0.007), while CSF t-tau had the numerically lowest discrimination accuracy (AUC = 0.87, 95% CI 0.76-0.97, p = 0.005). Effects remained after controlling for prevalent comorbid neuropathologies. CSF p-tau181/Aβ42 was strongly associated with CERAD ratings of neuritic amyloid plaque scores and Braak staging of NFTs. DISCUSSION This study supports Lumipulse-measured CSF Aβ42 and p-tau181 and, particularly, the ratio of p-tau181 to Aβ42, for the early detection of AD pathophysiologic processes. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that Lumipulse measures of p-tau181/Aβ42 in the CSF accurately discriminated cognitively normal participants with and without Alzheimer disease neuropathologic change.
Collapse
Affiliation(s)
- Michelle Safransky
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Jenna R Groh
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Kaj Blennow
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Henrik Zetterberg
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Yorghos Tripodis
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Brett Martin
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Jason Weller
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Breton M Asken
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Gil D Rabinovici
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Wendy Wei Qiao Qiu
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Ann C McKee
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Thor D Stein
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Jesse Mez
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Rachel L Henson
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Justin Long
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - John C Morris
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Richard J Perrin
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Suzanne E Schindler
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| | - Michael L Alosco
- From the Boston University Alzheimer's Disease Research Center (M.S., J.R.G., J.W., W.W.Q.Q., A.C.M., T.D.S., J.M., M.L.A.), Boston University CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, MA; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (ICM) (K.B.), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; University of Science and Technology of China and First Affiliated Hospital of USTC (K.B.), Hefei, Anhui, P.R. China; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), UCL Institute of Neurology, University College London, United Kingdom; Department of Biostatistics (Y.T.); Biostatistics and Epidemiology Data Analytics Center (BEDAC) (B.M.), Boston University School of Public Health, MA; University of Florida (B.M.A.), Gainesville, FL; Memory & Aging Center (G.D.R.), Department of Neurology, Weill Institute for Neurosciences; Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Psychiatry (W.W.Q.Q.); Department of Pharmacology and Experimental Therapeutics (W.W.Q.Q.), Boston University Chobanian & Avedisian School of Medicine, MA; VA Boston Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Jamaica Plain, MA; Department of Pathology and Laboratory Medicine (A.C.M., T.D.S.), Boston University Chobanian & Avedisian School of Medicine; VA Bedford Healthcare System (A.C.M., T.D.S.), US Department of Veteran Affairs, Bedford; Framingham Heart Study (J.M.), Framingham, MA; Department of Neurology (R.L.H., J.L., J.C.M., R.J.P., S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine; Department of Neurology (M.L.A.), Boston Medical Center; and Department of Anatomy & Neurobiology (M.L.A.), Boston University Chobanian & Avedisian School of Medicine, MA
| |
Collapse
|
2
|
Verberk IMW, Jutte J, Kingma MY, Vigneswaran S, Gouda MMTEE, van Engelen M, Alcolea D, Arranz J, Fortea J, Lleó A, Chevalier C, Marizzoni M, van de Giessen EM, Lemstra AW, Pijnenburg YAL, van der Flier WM, den Braber A, Wilson D, Schut MC, van Harten AC, Teunissen CE. Development of thresholds and a visualization tool for use of a blood test in routine clinical dementia practice. Alzheimers Dement 2024; 20:6115-6132. [PMID: 39096164 PMCID: PMC11497719 DOI: 10.1002/alz.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.
Collapse
Affiliation(s)
- Inge M. W. Verberk
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jolien Jutte
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Translational Artificial Intelligence Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public HealthAmsterdamThe Netherlands
| | - Maurice Y. Kingma
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Translational Artificial Intelligence Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public HealthAmsterdamThe Netherlands
| | - Sinthujah Vigneswaran
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Mariam M. T. E. E. Gouda
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marie‐Paule van Engelen
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Claire Chevalier
- Memory Centre, Division of Geriatrics and RehabilitationUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Moira Marizzoni
- Laboratory of Biological PsychiatryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Elsmarieke M. van de Giessen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Afina W. Lemstra
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Public Health, Methodology & Digital HealthAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Anouk den Braber
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Martijn C. Schut
- Translational Artificial Intelligence Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public HealthAmsterdamThe Netherlands
| | - Argonde C. van Harten
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
3
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
4
|
Hawkins DM, Esquivel RN. A Quantile-Quantile Toolbox for Reference Intervals. J Appl Lab Med 2024; 9:357-370. [PMID: 38204173 DOI: 10.1093/jalm/jfad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Parametric statistical methods are generally better than nonparametric, but require that data follow a known, usually normal, distribution. One important application is finding reference limits and detection limits. Parametric analyses yield better estimates and measures of their uncertainty than nonparametric approaches, which rely solely on a few extreme values. Some reference data follow normal distributions; some can be transformed to normal; some are normal or transformable to normal apart from a few extreme values; and detection and quantitation limits can lead to data censoring. METHODS A quantile-quantile (QQ) toolbox provides powerful general methodology for all these settings. RESULTS QQ methodology leads to a family of simple methods for finding optimal power transformations, testing for normality before and after transformation, estimating reference limits, and constructing confidence intervals. CONCLUSIONS These parametric methods have a particular appeal to clinical laboratorians because, while statistically rigorous, they do not require specialized software or statistical expertise, but can be implemented even in spreadsheets. We conclude with an exploration of reference values for amyloid beta proteins associated with Alzheimer disease.
Collapse
Affiliation(s)
- Douglas M Hawkins
- School of Statistics, University of Minnesota, Minneapolis, MN, United States
| | - Rianne N Esquivel
- Scientific Affairs, Fujirebio Diagnostics Inc., Malvern, PA, United States
| |
Collapse
|
5
|
Sánchez-Soblechero A, López-García S, Lage C, Fernández-Matarrubia M, Irure J, López-Hoyos M, Jiménez-Bonilla J, Quirce R, de Arcocha-Torres M, Cuenca-Vera O, Martín-Arroyo J, Martínez-Dubarbie F, Pozueta A, García-Martínez M, Infante J, Sánchez-Juan P, Rodríguez-Rodríguez E. Where Should I Draw the Line: PET-Driven, Data-Driven, or Manufacturer Cut-Off? J Alzheimers Dis 2024; 98:957-967. [PMID: 38489172 DOI: 10.3233/jad-230678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The optimal cut-off for Alzheimer's disease (AD) CSF biomarkers remains controversial. Objective To analyze the performance of cut-off points standardized by three methods: one that optimized the agreement between 11C-Pittsburgh compound B PET (a-PET) and CSF biomarkers (Aβ1-42, pTau, tTau, and Aβ1-42/Aβ1-40 ratio) in our population, called PET-driven; an unbiased cut-off using data from a healthy research cohort, called data-driven, and that provided by the manufacturer. We also compare changes in ATN classification. Methods CSF biomarkers measured by the LUMIPULSE G600II platform and qualitative visualization of amyloid positron emission tomography (a-PET) were performed in all the patients. We established a cut-off for each single biomarker and Aβ1-42/Aβ1-40 ratio that optimized their agreement with a-PET using ROC curves. Sensitivity, Specificity, and Overall Percent of Agreement are assessed using a-PET or clinical diagnosis as gold standard for every cut-off. Also, we established a data-driven cut-off from our cognitively unimpaired cohort. We then analyzed changes in ATN classification. Results One hundred and ten patients were recruited. Sixty-six (60%) were a-PET positive. PET-driven cut-offs were: pTau > 57, tTau > 362.62, Aβ1-42/Aβ1-40 < 0.069. For a single biomarker, pTau showed the highest accuracy (AUC 0.926). New PET-driven cut-offs classified patients similarly to manufacturer cut-offs (only two patients changed). However, 20 patients (18%) changed when data-driven cut-offs were used. Conclusions We established our sample's best CSF biomarkers cut-offs using a-PET as the gold standard. These cut-offs categorize better symptomatic subjects than data-driven in ATN classification, but they are very similar to the manufacturer's.
Collapse
Affiliation(s)
| | - Sara López-García
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmen Lage
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Fernández-Matarrubia
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Irure
- Immunology Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Marcos López-Hoyos
- Immunology Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Julio Jiménez-Bonilla
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Remedios Quirce
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - María de Arcocha-Torres
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Oriana Cuenca-Vera
- Nuclear Medicine Department, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Juan Martín-Arroyo
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
| | - Francisco Martínez-Dubarbie
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Pozueta
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María García-Martínez
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jon Infante
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Pascual Sánchez-Juan
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Eloy Rodríguez-Rodríguez
- Neurology Department, Cognitive Impairment Unit, 'Marqués de Valdecilla' University Hospital, Santander, Spain
- Institute for Research 'Marqués de Valdecilla' (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| |
Collapse
|
6
|
Dage JL, Eloyan A, Thangarajah M, Hammers DB, Fagan AM, Gray JD, Schindler SE, Snoddy C, Nudelman KNH, Faber KM, Foroud T, Aisen P, Griffin P, Grinberg LT, Iaccarino L, Kirby K, Kramer J, Koeppe R, Kukull WA, Joie RL, Mundada NS, Murray ME, Rumbaugh M, Soleimani-Meigooni DN, Toga AW, Touroutoglou A, Vemuri P, Atri A, Beckett LA, Day GS, Graff-Radford NR, Duara R, Honig LS, Jones DT, Masdeu JC, Mendez MF, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha SJ, Turner RS, Wingo TS, Wolk DA, Womack KB, Carrillo MC, Dickerson BC, Rabinovici GD, Apostolova LG. Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study. Alzheimers Dement 2023; 19 Suppl 9:S115-S125. [PMID: 37491668 PMCID: PMC10877673 DOI: 10.1002/alz.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). METHODS Cerebrospinal fluid (CSF) concentrations of Aβ1-40, Aβ1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. RESULTS Biomarkers were correlated with one another. Levels of CSF Aβ42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aβ42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. DISCUSSION This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.
Collapse
Affiliation(s)
- Jeffrey L. Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, Rhode Island, USA
| | - Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anne M. Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julia D. Gray
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Suzanne E. Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Casey Snoddy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kelly N. H. Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kelley M. Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, California, USA
| | - Percy Griffin
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, Illinois, USA
| | - Lea T. Grinberg
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
- Department of Pathology, University of California – San Francisco, San Francisco, California, USA
| | - Leonardo Iaccarino
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Kala Kirby
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joel Kramer
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Renaud La Joie
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Nidhi S Mundada
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | | | - Malia Rumbaugh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Arthur W. Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Laurel A. Beckett
- Department of Public Health Sciences, University of California-Davis, Davis, California, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami, Florida, USA
| | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph C. Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, Texas, USA
| | - Mario F. Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Sharon J. Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, USA
| | - Raymond S. Turner
- Department of Neurology, Georgetown University, Washington, D.C., USA
| | - Thomas S. Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle B. Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maria C. Carrillo
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, Illinois, USA
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D. Rabinovici
- Department of Neurology, University of California – San Francisco, San Francisco, California, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, California, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | | |
Collapse
|
7
|
Surpi A, Murgia M, López-Amoedo S, González-Gómez MA, Piñeiro Y, Rivas J, Perugini V, Santin M, Sobrino T, Greco P, Campos F, Dediu VA. Magnetic separation and concentration of Aβ 1-42 molecules dispersed at the threshold concentration for Alzheimer's disease diagnosis in clinically-relevant volumes of sample. J Nanobiotechnology 2023; 21:329. [PMID: 37710290 PMCID: PMC10503095 DOI: 10.1186/s12951-023-02095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia and loss of autonomy in the elderly, implying a progressive cognitive decline and limitation of social activities. The progressive aging of the population is expected to exacerbate this problem in the next decades. Therefore, there is an urgent need to develop quantitative diagnostic methodologies to assess the onset the disease and its progression especially in the initial phases. RESULTS Here we describe a novel technology to extract one of the most important molecular biomarkers of AD (Aβ1-42) from a clinically-relevant volume - 100 µl - therein dispersed in a range of concentrations critical for AD early diagnosis. We demonstrate that it is possible to immunocapture Aβ1-42 on 20 nm wide magnetic nanoparticles functionalized with hyperbranced KVLFF aptamers. Then, it is possible to transport them through microfluidic environments to a detection system where virtually all (~ 90%) the Aβ1-42 molecules are concentrated in a dense plug of ca.50 nl. The technology is based on magnetic actuation by permanent magnets, specifically designed to generate high gradient magnetic fields. These fields, applied through submillimeter-wide channels, can concentrate, and confine magnetic nanoparticles (MNPs) into a droplet with an optimized shape that maximizes the probability of capturing highly diluted molecular biomarkers. These advancements are expected to provide efficient protocols for the concentration and manipulation of molecular biomarkers from clinical samples, enhancing the accuracy and the sensitivity of diagnostic technologies. CONCLUSIONS This easy to automate technology allows an efficient separation of AD molecular biomarkers from volumes of biological solutions complying with the current clinical protocols and, ultimately, leads to accurate measurements of biomarkers. The technology paves a new way for a quantitative AD diagnosis at the earliest stage and it is also adaptable for the biomarker analysis of other pathologies.
Collapse
Affiliation(s)
- Alessandro Surpi
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, 40129, Italy.
- Istituto per la Microelettronica e i Microsistemi, IMM-CNR, 40129, Bologna, Italy.
| | - Mauro Murgia
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, 40129, Italy
- Center for Translational Neurophysiology (IIT), Italian Institute of Technology, Ferrara, 44121, Italy
| | - Sonia López-Amoedo
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC) , Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| | - Manuel A González-Gómez
- NANOMAG Laboratory, Applied Physics Department, iMATUS Materials Institute, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Yolanda Piñeiro
- NANOMAG Laboratory, Applied Physics Department, iMATUS Materials Institute, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Rivas
- NANOMAG Laboratory, Applied Physics Department, iMATUS Materials Institute, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Tomás Sobrino
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, 28029, Spain
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Pierpaolo Greco
- Center for Translational Neurophysiology (IIT), Italian Institute of Technology, Ferrara, 44121, Italy
- Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Ferrara, 44121, Italy
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC) , Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain.
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, 40129, Italy.
| |
Collapse
|
8
|
Giangrande C, Delatour V, Andreasson U, Blennow K, Gobom J, Zetterberg H. Harmonization and standardization of biofluid-based biomarker measurements for AT(N) classification in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12465. [PMID: 37600860 PMCID: PMC10432775 DOI: 10.1002/dad2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
Fluid biomarkers are currently measured in cerebrospinal fluid and blood for Alzheimer's disease diagnosis and are promising targets for drug development and for patients' follow-up in clinical trials. These biomarkers have been grouped in an unbiased research framework, the amyloid (Aβ), tau, and neurodegeneration (AT[N]) biomarker system to aid patients' early diagnosis and stratification. Metrological approaches relying on mass spectrometry have been used for the development of reference materials and reference measurement procedures. Despite their excellent performances as clinical tools, fluid biomarkers often present an important between-laboratory variation. Standardization efforts were carried out on the biomarkers currently included in the AT(N) classification system, involving the collaboration of national metrology institutes, clinicians, researchers, and in vitro diagnostic providers. This article provides an overview of current activities towards standardization. These reference methods and reference materials may be used for recalibration of immunoassays and the establishment of standardized cutoff values allowing a better stratification of Alzheimer's disease patients. Highlights The AT(N) biomarker system allows stratifying AD patients on the basis of biomarker profiles.Fluid biomarker measurements often present an important between-laboratory variation preventing the establishment of standardized cutoff values.Overview on the standardization initiatives involving the fluid biomarkers currently included in the AT(N) framework.
Collapse
Affiliation(s)
- Chiara Giangrande
- Laboratoire National de Métrologie et d'Essais (LNE)Department of BioanalysesParis, Cedex 15France
| | - Vincent Delatour
- Laboratoire National de Métrologie et d'Essais (LNE)Department of BioanalysesParis, Cedex 15France
| | - Ulf Andreasson
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Johan Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of Gothenburg, MölndalGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
9
|
Konen FF, Maier HB, Neyazi A, Bleich S, Neumann K, Skripuletz T. Alzheimer's disease biomarkers in cerebrospinal fluid are stable with the Elecsys immunoassay to most pre-analytical influencing factors except freezing at -80 °C. Neurol Res Pract 2023; 5:30. [PMID: 37381021 PMCID: PMC10308606 DOI: 10.1186/s42466-023-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Alzheimer´s disease is considered a neurodegenerative disease and is diagnosed by exclusion, while the detection of specific cerebrospinal fluid (CSF) biomarkers, namely amyloid-beta (Aβ) peptides Aβ1-42 (Aß42), phospho-tau (181P; P-tau), and total-tau (T-tau), has been shown to improve diagnostic accuracy. Recently, a new generation of sample tubes (Sarstedt false-bottom tubes) for the Elecsys CSF immunoassay for the determination of Alzheimer´s disease biomarkers in CSF was introduced, promising better measurability. However, the pre-analytic influencing factors have not yet been sufficiently investigated. METHODS In 29 patients without Alzheimer's disease diagnosis, CSF concentrations of Aß42, P-tau and T-tau were examined in native CSF and after different influencing interventions using the Elecsys immunoassay test method. The following influencing factors were analyzed: contamination with blood (10,000 and 20,000 erythrocytes/µl CSF), 14-day storage at 4 °C, blood contamination of CSF and 14-day storage at 4 °C, 14-day freezing at -80 °C in Sarstedt tubes or glass vials, 3-month intermediate storage at -80 °C in glass vials. RESULTS Both storage at -80 °C for 14 days in Sarstedt false-bottom tubes and in glass vials and storage at -80 °C for 3 months in glass vials resulted in significant decreases in Aß42 (13% after 14 days in Sarstedt and 22% in glass vials, 42% after 3 months in glass vials), P-tau (9% after 14 days in Sarstedt and 13% in glass vials, 12% after 3 months in glass vials) and T-tau (12% after 14 days in Sarstedt and 19% in glass vials, 20% after 3 months in glass vials) concentrations in CSF. No significant differences were found for the other pre-analytical influencing factors. CONCLUSIONS Measurements of the concentrations of Aß42, P-tau, and T-tau in CSF with use of the Elecsys immunoassay are robust to the pre-analytical influencing factors of blood contamination and duration of storage. Freezing at -80 °C results in significant reduction of biomarker concentrations regardless of the storage tube and must be considered in retrospective analysis.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Bleich
- Department of Psychiatry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
10
|
Palmqvist S, Stomrud E, Cullen N, Janelidze S, Manuilova E, Jethwa A, Bittner T, Eichenlaub U, Suridjan I, Kollmorgen G, Riepe M, von Arnim CA, Tumani H, Hager K, Heidenreich F, Mattsson-Carlgren N, Zetterberg H, Blennow K, Hansson O. An accurate fully automated panel of plasma biomarkers for Alzheimer's disease. Alzheimers Dement 2023; 19:1204-1215. [PMID: 35950735 PMCID: PMC9918613 DOI: 10.1002/alz.12751] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION There is a great need for fully automated plasma assays that can measure amyloid beta (Aβ) pathology and predict future Alzheimer's disease (AD) dementia. METHODS Two cohorts (n = 920) were examined: Panel A+ (n = 32 cognitively unimpaired [CU], n = 106 mild cognitive impairment [MCI], and n = 89 AD) and BioFINDER-1 (n = 461 CU, n = 232 MCI). Plasma Aβ42/Aβ40, phosphorylated tau (p-tau)181, two p-tau217 variants, ApoE4 protein, neurofilament light, and GFAP were measured using Elecsys prototype immunoassays. RESULTS The best biomarker for discriminating Aβ-positive versus Aβ-negative participants was Aβ42/Aβ40 (are under the curve [AUC] 0.83-0.87). Combining Aβ42/Aβ40, p-tau181, and ApoE4 improved the AUCs significantly (0.90 to 0.93; P< 0.01). Adding additional biomarkers had marginal effects (ΔAUC ≤0.01). In BioFINDER, p-tau181, p-tau217, and ApoE4 predicted AD dementia within 6 years in CU (AUC 0.88) and p-tau181, p-tau217, and Aβ42/Aβ40 in MCI (AUC 0.87). DISCUSSION The high accuracies for Aβ pathology and future AD dementia using fully automated instruments are promising for implementing plasma biomarkers in clinical trials and clinical routine.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | | | | | | | | | | | | | - Matthias Riepe
- Division of Geriatric Psychiatry, Ulm University, Germany
| | - Christine A.F. von Arnim
- Division of Geriatrics, University Medical Center Göttingen, Georg-August-University, Goettingen, Germany
| | | | - Klaus Hager
- Institute for General Medicine and Palliative Medicine, Hannover Medical School, Germany
| | - Fedor Heidenreich
- Dept. of Neurology and Clinical Neurophysiology, Diakovere Krankenhaus Henriettenstift, Hannover, Germany
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Lin Z, Lim C, Jiang D, Soldan A, Pettigrew C, Oishi K, Zhu Y, Moghekar A, Liu P, Albert M, Lu H. Longitudinal changes in brain oxygen extraction fraction (OEF) in older adults: Relationship to markers of vascular and Alzheimer's pathology. Alzheimers Dement 2023; 19:569-577. [PMID: 35791732 PMCID: PMC10838398 DOI: 10.1002/alz.12727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Oxygen extraction fraction (OEF) reflects the balance between oxygen delivery and consumption. We longitudinally measured OEF in older adults to examine the relationship with markers of Alzheimer's disease (AD) and vascular pathology. METHODS One hundred thirty-seven participants were studied at two time-points at an interval of 2.16 years. OEF was measured using T2 -relaxation-under-spin-tagging (TRUST) magnetic resonance imaging (MRI). The association between OEF and vascular risks, white matter hyperintensities (WMH), cerebrospinal fluid (CSF) measures of amyloid beta (Aβ), total tau (t-tau), and phosphorylated tau 181 (p-tau181) was examined. RESULTS OEF increased from baseline to follow-up. The increase in OEF was more prominent in individuals with high vascular risks compared to those with low vascular risks, and was associated with progression of vascular risks and the growth in WMH volume. OEF change was not related to CSF markers of AD pathology or their progression. DISCUSSION Longitudinal OEF change in older adults is primarily related to vascular pathology.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle Lim
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kumiko Oishi
- Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuxin Zhu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Nasreddine Z, Garibotto V, Kyaga S, Padovani A. The Early Diagnosis of Alzheimer's Disease: A Patient-Centred Conversation with the Care Team. Neurol Ther 2023; 12:11-23. [PMID: 36528836 PMCID: PMC9837364 DOI: 10.1007/s40120-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60-80% of dementia cases, affecting approximately 10 million people in Europe. Neuroimaging techniques and cerebrospinal fluid biomarkers used in combination with cognitive assessment tools open the door to early diagnosis of AD. However, these tools present some challenges that need to be overcome, such as low sensitivity or specificity, high cost, limited availability or invasiveness. Thus, low-cost and non-invasive alternatives, such as plasma biomarkers, have the potential to drive changes in AD screening and diagnosis. In addition to the technical aspects, organisational challenges as well as ethical concerns need to be addressed. In many countries, there is an insufficient number of specialists to recognise, evaluate and diagnose dementia and the waiting times to see a specialist are long. Given that there is currently no cure for AD, it is important to consider the potential psychological impact of an early diagnosis. In addition, counselling before biomarker sampling and during diagnosis disclosure is vital to guarantee that the patients have all the information necessary and their queries are addressed in a sensitive manner. Here, we illustrate (using a clinical vignette) current challenges of diagnosis and discuss some of the benefits and challenges of early diagnosis in AD including the value of biomarkers in combination with clinical evaluation. Lastly, some guidelines for disclosing early diagnosis of AD are provided based on our experiences.
Collapse
Affiliation(s)
| | - Valentina Garibotto
- University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Simon Kyaga
- Biogen International GmbH, Neuhofstrasse 30, 6340, Baar, Switzerland.
| | | |
Collapse
|
13
|
Blennow K, Stomrud E, Zetterberg H, Borlinghaus N, Corradini V, Manuilova E, Müller-Hübner L, Quevenco FC, Rutz S, Hansson O. Second-generation Elecsys cerebrospinal fluid immunoassays aid diagnosis of early Alzheimer's disease. Clin Chem Lab Med 2023; 61:234-244. [PMID: 36282960 DOI: 10.1515/cclm-2022-0516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Timely diagnosis of Alzheimer's disease (AD) is critical for appropriate treatment/patient management. Cerebrospinal fluid (CSF) biomarker analysis is often used to aid diagnosis. We assessed analytical performance of second-generation (Gen II) Elecsys® CSF immunoassays (Roche Diagnostics International Ltd), and adjusted existing cut-offs, to evaluate their potential utility in clinical routine. METHODS Analytical performance was assessed using CSF samples measured with Elecsys CSF Gen II immunoassays on cobas e analyzers. Aβ42 Gen I/Gen II immunoassay method comparisons were performed (Passing-Bablok regression). Cut-off values were adjusted using estimated bias in biomarker levels between BioFINDER protocol aliquots/Gen I immunoassays and Gen II protocol aliquots/immunoassays. Distribution of Gen II immunoassay values was evaluated in AD, mild cognitive impairment (MCI), and cognitively normal cohorts; percentage observations outside the measuring range were derived. RESULTS The Gen II immunoassays demonstrated good analytical performance, including repeatability, intermediate precision, lot-to-lot agreement (Pearson's r: ≥0.999), and platform agreement (Pearson's r: ≥0.995). Aβ42 Gen I/Gen II immunoassay measurements were strongly correlated (Pearson's r: 0.985-0.999). Aβ42 Gen II immunoassay cut-offs were adjusted to 1,030 and 800 ng/L, and pTau181/Aβ42 ratio cut-offs to 0.023 and 0.029, for Gen II and I protocols, respectively. No observations were below the lower limit of the measuring range; above the upper limit, there were none from the AD cohort, and 2.6 and 6.8% from the MCI and cognitively normal cohorts, respectively. CONCLUSIONS Our findings suggest that the Gen II immunoassays have potential utility in clinical routine to aid diagnosis of AD.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Disease, Shatin, N.T., Hong Kong, P.R. China
| | | | | | | | | | | | | | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Yamashita K, Miura M, Watanabe S, Ishiki K, Arimatsu Y, Kawahira J, Kubo T, Sasaki K, Arai T, Hagino K, Irino Y, Nagai K, Verbel D, Koyama A, Dhadda S, Niiro H, Iwanaga S, Sato T, Yoshida T, Iwata A. Fully automated and highly specific plasma β-amyloid immunoassays predict β-amyloid status defined by amyloid positron emission tomography with high accuracy. Alzheimers Res Ther 2022; 14:86. [PMID: 35739591 PMCID: PMC9219197 DOI: 10.1186/s13195-022-01029-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Clinicians, researchers, and patients alike would greatly benefit from more accessible and inexpensive biomarkers for neural β-amyloid (Aβ). We aimed to assess the performance of fully automated plasma Aβ immunoassays, which correlate significantly with immunoprecipitation mass spectrometry assays, in predicting brain Aβ status as determined by visual read assessment of amyloid positron emission tomography (PET).
Methods
The plasma Aβ42/Aβ40 ratio was measured using a fully automated immunoassay platform (HISCL series) in two clinical studies (discovery and validation studies). The discovery and validation sample sets were retrospectively and randomly selected from participants with early Alzheimer’s disease (AD) identified during screening for the elenbecestat Phase 3 program.
Results
We included 197 participants in the discovery study (mean [SD] age 71.1 [8.5] years; 112 females) and 200 in the validation study (age 70.8 [7.9] years; 99 females). The plasma Aβ42/Aβ40 ratio predicted amyloid PET visual read status with areas under the receiver operating characteristic curves of 0.941 (95% confidence interval [CI] 0.910–0.973) and 0.868 (95% CI 0.816–0.920) in the discovery and validation studies, respectively. In the discovery study, a cutoff value of 0.102 was determined based on maximizing the Youden Index, and the sensitivity and specificity were calculated to be 96.0% (95% CI 90.1–98.9%) and 83.5% (95% CI 74.6–90.3%), respectively. Using the same cutoff value, the sensitivity and specificity in the validation study were calculated to be 88.0% (95% CI 80.0–93.6%) and 72.0% (95% CI 62.1–80.5%), respectively.
Conclusions
The plasma Aβ42/Aβ40 ratio measured using the HISCL series achieved high accuracy in predicting amyloid PET status. Since our blood-based immunoassay system is less invasive and more accessible than amyloid PET and cerebrospinal fluid testing, it may contribute to the diagnosis of AD in routine clinical practice.
Collapse
|
15
|
Nojima H, Ito S, Kushida A, Abe A, Motsuchi W, Verbel D, Vandijck M, Jannes G, Vandenbroucke I, Aoyagi K. Clinical utility of cerebrospinal fluid biomarkers measured by LUMIPULSE ® system. Ann Clin Transl Neurol 2022; 9:1898-1909. [PMID: 36321325 PMCID: PMC9735374 DOI: 10.1002/acn3.51681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are well-established in research settings, but their use in routine clinical practice remains a largely unexploited potential. Here, we examined the relationship between CSF biomarkers, measured by a fully automated immunoassay platform, and brain β-amyloid (Aβ) deposition status confirmed by amyloid positron emission tomography (PET). METHODS One hundred ninety-nine CSF samples from clinically diagnosed AD patients enrolled in a clinical study and who underwent amyloid PET were used for the measurement of CSF biomarkers Aβ 1-40 (Aβ40), Aβ 1-42 (Aβ42), total tau (t-Tau), and phosphorylated tau-181 (p-Tau181) using the LUMIPULSE system. These biomarkers and their combinations were compared to amyloid PET classification (negative or positive) using visual read assessments. Several combinations were also analyzed with a multivariable logistic regression model. RESULTS Aβ42, t-Tau, and p-Tau181, and the ratios of Aβ42 with other biomarkers had a good diagnostic agreement with amyloid PET imaging. The multivariable logistic regression analysis showed that amyloid PET status was associated with Aβ40 and Aβ42, but other factors, such as MMSE, sex, t-Tau, and p-Tau181, did not significantly add information to the model. CONCLUSIONS CSF biomarkers measured with the LUMIPULSE system showed good agreement with amyloid PET imaging. The ratio of Aβ42 with the other analyzed biomarkers showed a higher correlation with amyloid PET than Aβ42 alone, suggesting that the combinations of biomarkers could be useful in the diagnostic assessment in clinical research and potentially in routine clinical practice.
Collapse
Affiliation(s)
- Hisashi Nojima
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Satoshi Ito
- Eisai Co., Ltd. 4‐6‐10 KoishikawaBunkyo‐kuTokyo112‐8088Japan,Eisai Inc.200 Metro BoulevardNutleyNew Jersey07110USA
| | - Akira Kushida
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Aki Abe
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Wataru Motsuchi
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - David Verbel
- Eisai Inc.200 Metro BoulevardNutleyNew Jersey07110USA
| | - Manu Vandijck
- Fujirebio‐Europe N.V.Technologiepark 69052GhentBelgium
| | - Geert Jannes
- Fujirebio‐Europe N.V.Technologiepark 69052GhentBelgium
| | | | - Katsumi Aoyagi
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| |
Collapse
|
16
|
Greenberg BD, Pettigrew C, Soldan A, Wang J, Wang MC, Darrow JA, Albert MS, Moghekar A. CSF Alzheimer Disease Biomarkers: Time-Varying Relationships With MCI Symptom Onset and Associations With Age, Sex, and ApoE4. Neurology 2022; 99:e1640-e1650. [PMID: 36216518 PMCID: PMC9559947 DOI: 10.1212/wnl.0000000000200953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to examine whether baseline CSF measures of Alzheimer disease (AD)-related pathology are associated with the time to onset of mild cognitive impairment (MCI) and whether these associations differ by age, sex, Apolipoprotein E (ApoE4) status, and proximal (≤7 years) vs distal (>7 years) time to symptom onset. METHODS Measures of amyloid (Aβ1-42 and Aβ1-40), phospho-tau (ptau181), and total tau (t-tau) were determined from CSF samples obtained at baseline from participants in an ongoing longitudinal project, known as the Biomarkers for Older Controls at Risk for Alzheimer Disease study (BIOCARD) study. The fully automated, Lumipulse G immunoassay was used to analyze the specimens. Cox regression models were used to examine the relationship of baseline biomarker levels with time to symptom onset of MCI and interactions with age, sex, and ApoE allelic status in subjects who progressed from normal cognition to MCI. RESULTS Analyses included 273 participants from the BIOCARD cohort, who were cognitively normal and predominantly middle-aged at baseline, and have been followed for an average of 16 years (max = 23.6). During follow-up, 94 progressed to MCI (median time to symptom onset = 6.9 years). In Cox regression models, elevated ptau181 and t-tau levels were associated with time to MCI symptom onset if it occurred within 7 years of baseline (HR 1.386 and 1.329; p = 0.009 and 0.017, respectively), while a lower Aβ42/Aβ40 ratio was associated with symptom onset if it occurred >7 years from baseline (HR 0.596, p = 0.003). There were also significant 3-way CSF × age × sex interactions for ptau181 and Aβ42/Aβ40, with follow-up analyses indicating that associations between these biomarkers and progression to MCI were stronger among men than among women, but this difference between sexes diminished with increasing age. DISCUSSION The lengthy follow-up of BIOCARD participants permitted an examination of time-varying associations between CSF AD biomarkers with MCI symptom onset and the influence of sex, baseline age, and ApoE4 genotype on these associations. These factors may inform clinical trial enrollment strategies, or trial duration and outcomes, which may use these measures as surrogate markers of treatment response.
Collapse
Affiliation(s)
- Barry D Greenberg
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
| | - Corinne Pettigrew
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Anja Soldan
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jiangxia Wang
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mei-Cheng Wang
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jacqueline A Darrow
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Marilyn S Albert
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Abhay Moghekar
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
17
|
Prins S, de Kam ML, Teunissen CE, Groeneveld GJ. Inflammatory plasma biomarkers in subjects with preclinical Alzheimer's disease. Alzheimers Res Ther 2022; 14:106. [PMID: 35922871 PMCID: PMC9347121 DOI: 10.1186/s13195-022-01051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND This study investigated plasma biomarkers for neuroinflammation associated with Alzheimer's disease (AD) in subjects with preclinical AD compared to healthy elderly. How these biomarkers behave in patients with AD, compared to healthy elderly is well known, but determining these in subjects with preclinical AD is not and will add information related to the onset of AD. When found to be different in preclinical AD, these inflammatory biomarkers may be used to select preclinical AD subjects who are most likely to develop AD, to participate in clinical trials with new disease-modifying drugs. METHODS Healthy elderly (n= 50; age 71.9; MMSE >24) and subjects with preclinical AD (n=50; age 73.4; MMSE >24) defined by CSF Aβ1-42 levels < 1000 pg/mL were included. Four neuroinflammatory biomarkers were determined in plasma, GFAP, YKL-40, MCP-1, and eotaxin-1. Differences in biomarker outcomes were compared using ANCOVA. Subject characteristics age, gender, and APOE ε4 status were reported per group and were covariates in the ANCOVA. Least square means were calculated for all 4 inflammatory biomarkers using both the Aβ+/Aβ- cutoff and Ptau/Aβ1-42 ratio. RESULTS The mean (standard deviation, SD) age of the subjects (n=100) was 72.6 (4.6) years old with 62 male and 38 female subjects. Mean (SD) overall MMSE score was 28.7 (0.49) and 32 subjects were APOE ε4 carriers. The number of subjects in the different APOE ε4 status categories differed significantly between the Aβ+ and Aβ- groups. Plasma GFAP concentration was significantly higher in the Aβ+ group compared to the Aβ- group with significant covariates age and sex, variables that also correlated significantly with GFAP. CONCLUSION GFAP was significantly higher in subjects with preclinical AD compared to healthy elderly which agrees with previous studies. When defining preclinical AD based on the Ptau181/Aβ1-42 ratio, YKL-40 was also significantly different between groups. This could indicate that GFAP and YKL-40 are more sensitive markers of the inflammatory process in response to the Aβ misfolding and aggregation that is ongoing as indicated by the lowered Aβ1-42 levels in the CSF. Characterizing subjects with preclinical AD using neuroinflammatory biomarkers is important for subject selection in new disease-modifying clinical trials. TRIAL REGISTRATION ISRCTN.org identifier: ISRCTN79036545 (retrospectively registered).
Collapse
Affiliation(s)
- Samantha Prins
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, the Netherlands.
- Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
18
|
Willemse EAJ, Scheltens P, Teunissen CE, Vijverberg EGB. A neurologist's perspective on serum neurofilament light in the memory clinic: a prospective implementation study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:101. [PMID: 34006321 PMCID: PMC8132439 DOI: 10.1186/s13195-021-00841-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Background Neurofilament light in serum (sNfL) is a biomarker for axonal damage with elevated levels in many neurological disorders, including neurodegenerative dementias. Since within-group variation of sNfL is large and concentrations increase with aging, sNfL’s clinical use in memory clinic practice remains to be established. The objective of the current study was to evaluate the clinical use of serum neurofilament light (sNfL), a cross-disease biomarker for axonal damage, in a tertiary memory clinic cohort. Methods Six neurologists completed questionnaires regarding the usefulness of sNfL (n = 5–42 questionnaires/neurologist). Patients that visited the Alzheimer Center Amsterdam for the first time between May and October 2019 (n = 109) were prospectively included in this single-center implementation study. SNfL levels were analyzed on Simoa and reported together with normal values in relation to age, as part of routine diagnostic work-up and in addition to cerebrospinal fluid (CSF) biomarker analysis. Results SNfL was perceived as useful in 53% (n = 58) of the cases. SNfL was more often perceived as useful in patients < 62 years (29/48, 60%, p = 0.05) and males (41/65, 63%, p < 0.01). Availability of CSF biomarker results at time of result discussion had no influence. We observed non-significant trends for increased perceived usefulness of sNfL for patients with the diagnosis subjective cognitive decline (64%), psychiatric disorder (71%), or uncertain diagnosis (67%). SNfL was mostly helpful to neurologists in confirming or excluding neurodegeneration. Whether sNfL was regarded as useful strongly depended on which neurologist filled out the questionnaire (ranging from 0 to 73% of useful cases/neurologist). Discussion Regardless of the availability of CSF biomarker results, sNfL was perceived as a useful tool in more than half of the evaluated cases in a tertiary memory clinic practice. Based on our results, we recommend the analysis of the biomarker sNfL to confirm or exclude neurodegeneration in patients below 62 years old and in males. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00841-4.
Collapse
Affiliation(s)
- E A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - P Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - E G B Vijverberg
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| |
Collapse
|