1
|
Giménez-Palomo A, Andreu H, de Juan O, Olivier L, Ochandiano I, Ilzarbe L, Valentí M, Stoppa A, Llach CD, Pacenza G, Andreazza AC, Berk M, Vieta E, Pacchiarotti I. Mitochondrial Dysfunction as a Biomarker of Illness State in Bipolar Disorder: A Critical Review. Brain Sci 2024; 14:1199. [PMID: 39766398 PMCID: PMC11674880 DOI: 10.3390/brainsci14121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondria are organelles involved in different cellular functions, especially energy production. A relationship between mitochondrial dysfunction and mood disorders, especially bipolar disorder (BD), has been reported in the scientific literature, which suggests altered energy production and higher levels of oxidative stress compared to healthy controls. Specifically, in BD, the hypothesis of a biphasic pattern of energy availability has been postulated according to mood states. Current evidence highlights the presence of mitochondrial dysfunction in BD and variations between the manic, depressive, and euthymic phases. These findings need to be confirmed in future studies to identify biomarkers that may lead to individualized management of patients with BD and also to identify profiles with a higher risk of presenting an unfavorable course of illness, which would enable the design of preventive and therapeutic strategies in determined subpopulations of patients with BD. The limitations of this review include the non-systematic methodology, variety of mitochondrial-related functions associated with BD, heterogeneous study designs, preliminary evidence for specific findings, and limited recommendations regarding the use of mitochondrial modulators in BD.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Helena Andreu
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Oscar de Juan
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Luis Olivier
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Iñaki Ochandiano
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Lidia Ilzarbe
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Marc Valentí
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Aldo Stoppa
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5G 1M9, Canada;
| | - Giulio Pacenza
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
| | - Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON M5S 1A8, Canada
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Hurtado K, Scholpa NE, Schnellmann JG, Schnellmann RG. Serotonin regulation of mitochondria in kidney diseases. Pharmacol Res 2024; 203:107154. [PMID: 38521286 DOI: 10.1016/j.phrs.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Serotonin, while conventionally recognized as a neurotransmitter in the CNS, has recently gained attention for its role in the kidney. Specifically, serotonin is not only synthesized in the kidney, but it also regulates glomerular function, vascular resistance, and mitochondrial homeostasis. Because of serotonin's importance to mitochondrial health, this review is focused on the role of serotonin and its receptors in mitochondrial function in the context of acute kidney injury, chronic kidney disease, and diabetic kidney disease, all of which are characterized by mitochondrial dysfunction and none of which has approved pharmacological treatments. Evidence indicates that activation of certain serotonin receptors can stimulate mitochondrial biogenesis (MB) and restore mitochondrial homeostasis, resulting in improved renal function. Serotonin receptor agonists that induce MB are therefore of interest as potential therapeutic strategies for renal injury and disease. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is associated with many human renal diseases such as acute kidney injury, chronic kidney disease, and diabetic kidney disease, which are associated with increased morbidity and mortality. Unfortunately, none of these pathologies has an FDA-approved pharmacological intervention, underscoring the urgency of identifying new therapeutics for such disorders. Studies show that induction of mitochondrial biogenesis via serotonin (5-hydroxytryptamine, 5-HT) receptors reduces kidney injury markers, restores mitochondrial and renal function after kidney injury, and decreases mortality, suggesting that targeting 5-HT receptors may be a promising therapeutic avenue for mitochondrial dysfunction in kidney diseases. While numerous reviews describe the importance of mitochondria and mitochondrial quality control mechanisms in kidney disease, the relevance of 5-HT receptor-mediated mitochondrial metabolic modulation in the kidney has yet to be thoroughly explored.
Collapse
Affiliation(s)
- Kevin Hurtado
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States
| | | | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
3
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
4
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
5
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
6
|
Ľupták M, Fišar Z, Hroudová J. Agomelatine, Ketamine and Vortioxetine Attenuate Energy Cell Metabolism-In Vitro Study. Int J Mol Sci 2022; 23:ijms232213824. [PMID: 36430306 PMCID: PMC9697131 DOI: 10.3390/ijms232213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
7
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
8
|
Chung JK, Ahn YM, Kim SA, Joo EJ. Differences in mitochondrial DNA copy number between patients with bipolar I and II disorders. J Psychiatr Res 2022; 145:325-333. [PMID: 33190840 DOI: 10.1016/j.jpsychires.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Mitochondria play a critical role in energy metabolism. Genetic, postmortem brain, and brain imaging studies of bipolar disorder (BD) patients indicated that mitochondrial dysfunction might explain BD pathophysiology. Mitochondrial function can be indirectly evaluated by measuring mitochondrial DNA (mtDNA) copy numbers. We recruited 186 bipolar I disorder (BD1) and 95 bipolar II disorder (BD2) patients, and age- and sex-matched controls. MtDNA copy numbers in peripheral blood cells were measured via quantitative polymerase chain reaction. We explored parameters (including age and clinical features) that might affect mtDNA copy numbers. We found that BD1 patients had a lower mtDNA copy number than controls and that mtDNA copy number was negatively associated with the number of mood episodes. BD2 patients had a higher mtDNA copy number than controls. Thus, changes in mitochondrial function may influence BD pathophysiology. The opposite directions of the association with mtDNA copy number in BD1 and BD2 patients suggests that the difference in pathophysiology may be associated with mitochondrial function.
Collapse
Affiliation(s)
- Jae Kyung Chung
- Department of Psychiatry, Eumsung-somang Hospital, Eumsung, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
10
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
11
|
Leong DY, Chee RY, Lui YS. Psychiatric care for a person with MELAS syndrome: A case report. Clin Case Rep 2021; 9:e04146. [PMID: 34026177 PMCID: PMC8134952 DOI: 10.1002/ccr3.4146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 11/24/2022] Open
Abstract
This report provides information for future clinicians who may be involved in treating patients with mitochondrial disorders manifesting with psychiatric problems, as literature in treatment is limited. The interventions focus on both carefully crafted medication therapy and nondrug methods to manage the challenging behaviors in a medically infirmed person.
Collapse
Affiliation(s)
- Douglas Yeung Leong
- Department of Psychological MedicineNational University HospitalSingapore CitySingapore
| | - Rei Yen Chee
- Department of Psychological MedicineNational University HospitalSingapore CitySingapore
| | - Yit Shiang Lui
- Department of Psychological MedicineNational University HospitalSingapore CitySingapore
| |
Collapse
|
12
|
Kozicz T, Morava E, Yardeni T. Powering the brain in health and disease. Eur J Neurosci 2021; 53:2943-2945. [PMID: 33861478 DOI: 10.1111/ejn.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Canter for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Canter for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tal Yardeni
- Children's Hospital of Philadelphia Research Institute, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Głombik K, Budziszewska B, Basta-Kaim A. Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion 2021; 58:169-178. [PMID: 33766747 DOI: 10.1016/j.mito.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Depression is an affective disease with a complex clinical picture that is characterized by mood and emotional disturbances. It is known that several factors contribute to the risk of developing depression. The concept that mitochondrial dysfunction is one of the causes of depression is supported by a wide range of studies on cell cultures, animal models, and clinical research. An understanding the relationship between mitochondrial processes and central nervous system abnormalities that occur in the course of depression can guide the development of novel mitochondrial targeted therapeutic strategies as well as the usage of currently available antidepressants in a new context. This brief review aims to summarize recent findings on mitochondria dysfunction in depression, provide insight into therapeutic strategies targeting mitochondrial pathways, allude to future promising therapies, and discuss factors that can be used to improve treatment outcomes. The main focus is on new aspects (the effects of nutraceuticals and physical activity on brain metabolism), which can be combined with the available treatment options [monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) and atypical drugs] to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland.
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| |
Collapse
|
14
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
15
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
17
|
Emmerzaal TL, Jacobs L, Geenen B, Verweij V, Morava E, Rodenburg RJ, Kozicz T. Chronic fluoxetine or ketamine treatment differentially affects brain energy homeostasis which is not exacerbated in mice with trait suboptimal mitochondrial function. Eur J Neurosci 2020; 53:2986-3001. [PMID: 32644274 DOI: 10.1111/ejn.14901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
Antidepressants have been shown to influence mitochondrial function directly, and suboptimal mitochondrial function (SMF) has been implicated in complex psychiatric disorders. In the current study, we used a mouse model for trait SMF to test the hypothesis that chronic fluoxetine treatment in mice subjected to chronic stress would negatively impact brain bioenergetics, a response that would be more pronounced in mice with trait SMF. In contrast, we hypothesized that chronic ketamine treatment would positively impact mitochondrial function in both WT and mice with SMF. We used an animal model for trait SMF, the Ndufs4GT/GT mice, which exhibit 25% lower mitochondrial complex I activity. In addition to antidepressant treatment, mice were subjected to chronic unpredictable stress (CUS). This paradigm is widely used to model complex behaviours expressed in various psychiatric disorders. We assayed several physiological indices as proxies for the impact of chronic stress and antidepressant treatment. Furthermore, we measured brain mitochondrial complex activities using clinically validated assays as well as established metabolic signatures using targeted metabolomics. As hypothesized, we found evidence that chronic fluoxetine treatment negatively impacted brain bioenergetics. This phenotype was, however, not further exacerbated in mice with trait SMF. Ketamine did not have a significant influence on brain mitochondrial function in either genotype. Here we report that trait SMF could be a moderator for an individual's response to antidepressant treatment. Based on these results, we propose that in individuals with SMF and comorbid psychopathology, fluoxetine should be avoided, whereas ketamine could be a safer choice of treatment.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Leah Jacobs
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Effects of resveratrol on the levels of ATP, 5-HT and GAP-43 in the hippocampus of mice exposed to chronic unpredictable mild stress. Neurosci Lett 2020; 735:135232. [PMID: 32621948 DOI: 10.1016/j.neulet.2020.135232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence suggested that energy deficiency might be involved in the pathophysiological mechanism of depression. Energy deficiency, mainly results from mitochondrial damage, can lead to the dysfunction of synaptic neurotransmission, and further cause depressive-like behavior. The antidepressant effect of resveratrol had been widely demonstrated in previous studies; however, the underlying mechanism remains poorly understood. The present study aimed to investigate whether the antidepressant effects of resveratrol involved in the energy levels and neurotransmission in the hippocampus. We found that resveratrol and fluoxetine significantly attenuated depressive-like behaviors induced by chronic unpredictable mild stress (CUMS), which evidenced by the increased sucrose preference and the reduced immobility time in a forced swimming test. In addition, resveratrol increased hippocampal ATP levels, decreased Na+-K+-ATPase and pyruvate levels, and upregulated the levels of mitochondrial DNA (mtDNA), mRNA expression of sirtuin (SIRT)1 and peroxisome proliferator-activated receptor γ coactivator (PGC)1α. Furthermore, resveratrol and fluoxetine increased serotonin (5-HT) levels and downregulated the mRNA expression of 5-HT transporter (SERT) in the hippocampus. The decreased protein expression of growth-associated protein (GAP)-43 induced by CUMS was also ameliorated by resveratrol and fluoxetine. These findings demonstrated the antidepressant effects of resveratrol and suggested that resveratrol was able to promote mitochondrial biogenesis, enhance ATP and 5-HT levels, as well as upregulate GAP-43 expression in the hippocampus.
Collapse
|
19
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res 2020; 217:136-147. [PMID: 31744750 PMCID: PMC7228833 DOI: 10.1016/j.schres.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Collapse
Affiliation(s)
- Shawna T Chan
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA; School of Medicine University of California, Irvine, USA
| | - Michael J McCarthy
- Psychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of California, San Diego, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA.
| |
Collapse
|
21
|
Abstract
In seeking to understand mental health and disease, it is fundamental to identify the biological substrates that draw together the experiences and physiological processes that underlie observed psychological changes. Mitochondria are subcellular organelles best known for their central role in energetics, producing adenosine triphosphate to power most cellular processes. Converging lines of evidence indicate that mitochondria play a key role in the biological embedding of adversity. Preclinical research documents the effects of stress exposure on mitochondrial structure and function, and recent human research suggests alterations constituting recalibrations, both adaptive and nonadaptive. Current research suggests dynamic relationships among stress exposure, neuroendocrine signaling, inflammation, and mitochondrial function. These complex relationships are implicated in disease risk, and their elucidation may inform prevention and treatment of stress- and trauma-related disorders. We review and evaluate the evidence for mitochondrial dysfunction as a consequence of stress exposure and as a contributing factor to psychiatric disease.
Collapse
Affiliation(s)
- Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Elizabeth M Olsen
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
22
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
23
|
Zhang C, Rong H. Genetic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:19-57. [PMID: 31784956 DOI: 10.1007/978-981-32-9271-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BPD) are both chronic, severe mood disorder with high misdiagnosis rate, leading to substantial health and economic burdens to patients around the world. There is a high misdiagnosis rate of bipolar depression (BD) just based on symptomology in depressed patients whose previous manic or mixed episodes have not been well recognized. Therefore, it is important for psychiatrists to identify these two major psychiatric disorders. Recently, with the accumulation of clinical sample sizes and the advances of methodology and technology, certain progress in the genetics of major depression and bipolar disorder has been made. This article reviews the candidate genes for MDD and BD, genetic variation loci, chromosome structural variation, new technologies, and new methods.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Rong
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Czarny P, Bialek K, Ziolkowska S, Strycharz J, Sliwinski T. DNA damage and repair in neuropsychiatric disorders. What do we know and what are the future perspectives? Mutagenesis 2019; 35:79-106. [DOI: 10.1093/mutage/gez035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractOver the past two decades, extensive research has been done to elucidate the molecular etiology and pathophysiology of neuropsychiatric disorders. In majority of them, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), schizophrenia and major depressive disorder, increased oxidative and nitrosative stress was found. This stress is known to induce oxidative damage to biomolecules, including DNA. Accordingly, increased mitochondrial and nuclear DNA, as well as RNA damage, were observed in patients suffering from these diseases. However, recent findings indicate that the patients are characterised by impaired DNA repair pathways, which may suggest that these DNA lesions could be also a result of their insufficient repair. In the current systematic, critical review, we aim to sum up, using available literature, the knowledge about the involvement of nuclear and mitochondrial DNA damage and repair, as well as about damage to RNA in pathoetiology of neuropsychiatric disorders, i.e., AD, PD, ALS, BD, schizophrenia and major depressive disorder, as well as the usefulness of the discussed factors as being diagnostic markers and targets for new therapies. Moreover, we also underline the new directions to which future studies should head to elucidate these phenomena.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
26
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
27
|
Holper L, Lan MJ, Brown PJ, Sublette ME, Burke A, Mann JJ. Brain cytochrome-c-oxidase as a marker of mitochondrial function: A pilot study in major depression using NIRS. Depress Anxiety 2019; 36:766-779. [PMID: 31111623 PMCID: PMC6716511 DOI: 10.1002/da.22913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain mitochondrial dysfunction is implicated in the pathophysiology of mood disorders. Brain cytochrome-c-oxidase (COX) activity is associated with the mitochondrial function. Near-infrared spectroscopy (NIRS) noninvasively measures oxidized COX (oxCOX) and tissue oxygenation index (TOI) reflecting cerebral blood flow and oxygenation. METHODS oxCOX and TOI were assessed in prefrontal cortex (Fp1/2, Brodmann area 10) in patients in a major depressive episode (N = 13) with major depressive disorder (MDD; N = 7) and bipolar disorder (BD; N = 6) compared with the controls (N = 10). One patient with MDD and all the patients with BD were taking medications. Computational modeling estimated oxCOX and TOI related indices of mitochondrial function and cerebral blood flow, respectively. RESULTS oxCOX was lower in patients than controls (p = .014) correlating inversely with depression severity (r = -.72; p = .006), driven primarily by lower oxCOX in BD compared with the controls. Computationally modeled mitochondrial parameters of the electron transport chain, such as the nicotinamide adenine dinucleotide ratio (NAD+ /NADH; p = .001) and the proton leak rate across the inner mitochondrial membrane (klk2 ; p = .008), were also lower in patients and correlated inversely with depression severity. No such effects were found for TOI. CONCLUSIONS In this pilot study, oxCOX and related mitochondrial parameters assessed by NIRS indicate an abnormal cerebral metabolic state in mood disorders proportional to depression severity, potentially providing a biomarker of antidepressant effect. Because the effect was driven by the medicated BD group, findings need to be evaluated in a larger, medication-free population.
Collapse
Affiliation(s)
- L Holper
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, 8032 Zurich, Switzerland
| | - MJ Lan
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - PJ Brown
- Geriatric Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, NY
| | - ME Sublette
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - A Burke
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - JJ Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Radiology, Columbia University, New York, NY
| |
Collapse
|
28
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
29
|
Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front Neurosci 2018; 12:386. [PMID: 29928190 PMCID: PMC5997778 DOI: 10.3389/fnins.2018.00386] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human and animal studies suggest an intriguing link between mitochondrial diseases and depression. Although depression has historically been linked to alterations in monoaminergic pharmacology and adult hippocampal neurogenesis, new data increasingly implicate broader forms of dampened plasticity, including plasticity within the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also regulate brain function through oxidative stress and apoptosis. In this paper, we make the case that mitochondrial dysfunction could play an important role in the pathophysiology of depression. Alterations in mitochondrial functions such as oxidative phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress and apoptosis, may precede the development of depressive symptoms. However, the data in relation to antidepressant drug effects are contradictory: some studies reveal they have no effect on mitochondrial function or even potentiate dysfunction, whereas other studies show more beneficial effects. Overall, the data suggest an intriguing link between mitochondrial function and depression that warrants further investigation. Mitochondria could be targeted in the development of novel antidepressant drugs, and specific forms of mitochondrial dysfunction could be identified as biomarkers to personalize treatment and aid in early diagnosis by differentiating between disorders with overlapping symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
30
|
Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, Westrin Å, Hough CM, Lin J, Reus VI, Epel ES, Mellon SH. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 2018; 43:1557-1564. [PMID: 29453441 PMCID: PMC5983469 DOI: 10.1038/s41386-017-0001-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) has been linked to mitochondrial defects, which could manifest in mitochondrial DNA (mtDNA) polymorphisms or mutations. Additionally, copy number of mtDNA (mtDNA-cn) can be quantified in peripheral blood mononuclear cells (PBMC)s, indirectly reflecting cellular energetics, or in the circulating cell-free mtDNA (ccf-mtDNA) levels, which may reflect a fraction of the mitochondrial genome released during cellular stress. Few studies have examined ccf-mtDNA in MDD, and no studies have tested its relationship with intracellular mtDNA-cn or with antidepressant treatment response. Here, mtDNA levels were quantified in parallel from: (i) PBMCs and (ii) cell-free plasma of 50 unmedicated MDD subjects and 55 controls, in parallel with PBMC telomere length (TL) and antioxidant enzyme glutathione peroxidase (GpX) activity. MtDNA measures were repeated in 19 MDD subjects after 8 weeks of open-label SSRI treatment. In analyses adjusted for age, sex, BMI, and smoking, MDD subjects had significantly elevated levels of ccf-mtDNA (F = 20.6, p = 0.00002). PBMC mtDNA-cn did not differ between groups (p > 0.4). In preliminary analyses, we found that changes in ccf-mtDNA with SSRI treatment differed between SSRI responders and non-responders (F = 6.47, p = 0.02), with the non-responders showing an increase in ccf-mtDNA and responders not changing. Baseline ccf-mtDNA was positively correlated with GpX (r = 0.32, p = 0.001), and PBMC mtDNA correlated positively with PBMC TL (r = 0.38, p = 0.0001). These data suggest that plasma ccf-mtDNA and PBMC mtDNA-cn reflect different cellular processes and that the former may be more reflective of certain aspects of MDD pathophysiology and of the response to SSRI antidepressants.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden. .,Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA. .,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden.
| | - Owen M. Wolkowitz
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Martin Picard
- 0000 0001 2285 2675grid.239585.0Division of Behavioral Medicine, Department of Psychiatry, Columbia University Medical Center, New York, NY USA ,0000 0001 2285 2675grid.239585.0Department of Neurology and Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY USA ,0000 0001 2285 2675grid.239585.0Columbia Aging Center, Columbia University Medical Center, New York, NY USA
| | - Lars Ohlsson
- 0000 0000 9961 9487grid.32995.34Department of Biomedical Science, Malmö University, Malmö, Sweden
| | - Francesco S. Bersani
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA ,grid.7841.aDepartment of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Johan Fernström
- 0000 0001 0930 2361grid.4514.4Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden ,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Åsa Westrin
- 0000 0001 0930 2361grid.4514.4Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden ,Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Christina M. Hough
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA ,0000 0000 9632 6718grid.19006.3ePresent Address: Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jue Lin
- 0000 0001 2297 6811grid.266102.1Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Victor I. Reus
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Elissa S. Epel
- 0000 0001 2297 6811grid.266102.1Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| | - Synthia H. Mellon
- 0000 0001 2297 6811grid.266102.1Department of OB/GYN and Reproductive Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA USA
| |
Collapse
|
31
|
Tymofiyeva O, Blom EH, Ho TC, Connolly CG, Lindqvist D, Wolkowitz OM, Lin J, LeWinn KZ, Sacchet MD, Han LKM, Yuan JP, Bhandari SP, Xu D, Yang TT. High levels of mitochondrial DNA are associated with adolescent brain structural hypoconnectivity and increased anxiety but not depression. J Affect Disord 2018; 232:283-290. [PMID: 29500956 PMCID: PMC5864120 DOI: 10.1016/j.jad.2018.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adolescent anxiety and depression are highly prevalent psychiatric disorders that are associated with altered molecular and neurocircuit profiles. Recently, increased mitochondrial DNA copy number (mtDNA-cn) has been found to be associated with several psychopathologies in adults, especially anxiety and depression. The associations between mtDNA-cn and anxiety and depression have not, however, been investigated in adolescents. Moreover, to date there have been no studies examining associations between mtDNA-cn and brain network alterations in mood disorders in any age group. METHODS The first aim of this study was to compare salivary mtDNA-cn between 49 depressed and/or anxious adolescents and 35 well-matched healthy controls. The second aim of this study was to identify neural correlates of mtDNA-cn derived from diffusion tensor imaging (DTI) and tractography, in the full sample of adolescents. RESULTS There were no diagnosis-specific alterations in mtDNA-cn. However, there was a positive correlation between mtDNA-cn and levels of anxiety, but not depression, in the full sample of adolescents. A subnetwork of connections largely corresponding to the left fronto-occipital fasciculus had significantly lower fractional anisotropy (FA) values in adolescents with higher than median mtDNA-cn. LIMITATIONS Undifferentiated analysis of free and intracellular mtDNA and use of DTI-based tractography represent this study's limitations. CONCLUSIONS The results of this study help elucidate the relationships between clinical symptoms, molecular changes, and neurocircuitry alterations in adolescents with and without anxiety and depression, and they suggest that increased mtDNA-cn is associated both with increased anxiety symptoms and with decreased fronto-occipital structural connectivity in this population.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States.
| | - Eva Henje Blom
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Clinical Sciences/ Child- and Adolescent Psychiatry, Umeå University, Umeå, Sweden
| | - Tiffany C. Ho
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Department of Psychology, Stanford University, United States
| | - Colm G. Connolly
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Daniel Lindqvist
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Psychiatry, Sweden
| | - Owen M. Wolkowitz
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| | - Matthew D. Sacchet
- Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Laura K. M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Justin P. Yuan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Sarina P. Bhandari
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California San Francisco, United States
| | - Tony T. Yang
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, United States
| |
Collapse
|
32
|
Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol Rep 2018; 70:322-330. [DOI: 10.1016/j.pharep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
33
|
Villa RF, Ferrari F, Moretti A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacol Ther 2018; 184:131-144. [DOI: 10.1016/j.pharmthera.2017.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Culmsee C, Michels S, Scheu S, Arolt V, Dannlowski U, Alferink J. Mitochondria, Microglia, and the Immune System-How Are They Linked in Affective Disorders? Front Psychiatry 2018; 9:739. [PMID: 30687139 PMCID: PMC6333629 DOI: 10.3389/fpsyt.2018.00739] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mood disorder and frequently associated with alterations of the immune system characterized by enhanced levels of circulating pro-inflammatory cytokines and microglia activation in the brain. Increasing evidence suggests that dysfunction of mitochondria may play a key role in the pathogenesis of MDD. Mitochondria are regulators of numerous cellular functions including energy metabolism, maintenance of redox and calcium homeostasis, and cell death and therefore modulate many facets of the innate immune response. In depression-like behavior of rodents, mitochondrial perturbation and release of mitochondrial components have been shown to boost cytokine production and neuroinflammation. On the other hand, pro-inflammatory cytokines may influence mitochondrial functions such as oxidative phosphorylation, production of adenosine triphosphate, and reactive oxygen species, thereby aggravating inflammation. There is strong interest in a better understanding of immunometabolic pathways in MDD that may serve as diagnostic markers and therapeutic targets. Here, we review the interaction between mitochondrial metabolism and innate immunity in the pathophysiology of MDD. We specifically focus on immunometabolic processes that govern microglial and peripheral myeloid cell functions, both cellular components involved in neuroinflammation in depression-like behavior. We finally discuss microglial polarization and associated metabolic states in depression-associated behavior and in MDD.
Collapse
Affiliation(s)
- Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Marburg, Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Marburg, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.,Cells in Motion, Cluster of Excellence, University of Münster, Münster, Germany
| |
Collapse
|
35
|
Rollins BL, Morgan L, Hjelm BE, Sequeira A, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Potkin SG, Bunney WE, Vawter MP. Mitochondrial Complex I Deficiency in Schizophrenia and Bipolar Disorder and Medication Influence. MOLECULAR NEUROPSYCHIATRY 2017; 3:157-169. [PMID: 29594135 DOI: 10.1159/000484348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Subjects with schizophrenia (SZ) and bipolar disorder (BD) show decreased protein and transcript levels for mitochondrial complex I. In vitro results suggest antipsychotic and antidepressant drugs may be responsible. We measured complex I activity in BD, SZ, and controls and presence of antipsychotic and antidepressant medications, mitochondrial DNA (mtDNA) copy number, and the mtDNA "common deletion" in the brain. Complex I activity in the prefrontal cortex was decreased by 45% in SZ compared to controls (p = 0.02), while no significant difference was found in BD. Complex I activity was significantly decreased (p = 0.01) in pooled cases (SZ and BD) that had detectable psychotropic medications and drugs compared to pooled cases with no detectable levels. Subjects with age at onset in their teens and psychotropic medications showed decreased (p < 0.05) complex I activity compared to subjects with an adult age at onset. Both SZ and BD groups displayed significant increases (p < 0.05) in mtDNA copy number compared to controls; however, common deletion burden was not altered. Complex I deficiency is found in SZ brain tissue, and psychotropic medications may play a role in mitochondrial dysfunction. Studies of medication-free first-episode psychosis patients are needed to elucidate whether mitochondrial pathophysiology occurs independent of medication effects.
Collapse
Affiliation(s)
- Brandi L Rollins
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Ling Morgan
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Brooke E Hjelm
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College, Ithaca, NJ, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, Ithaca, NJ, USA
| | - Rick M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Huda Akil
- MBNI, University of Michigan, Ann Arbor, MI, USA
| | - Steven G Potkin
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
36
|
Murphy LC, Millar JK. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr Res 2017; 187:55-61. [PMID: 28082141 DOI: 10.1016/j.schres.2016.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are dynamic organelles that are essential to power the process of neurotransmission. Neurons must therefore ensure that mitochondria maintain their functional integrity and are efficiently transported along the full extent of the axons and dendrites, from soma to synapses. Mitochondrial dynamics (trafficking, fission and fusion) co-ordinately regulate mitochondrial quality control and function. DISC1 is a component of the mitochondrial transport machinery and regulates mitochondrial dynamics. DISC1's role in this is adversely affected by sequence variants connected to brain structure/function and disease risk, and by mutant truncation. The DISC1 interactors NDE1 and GSK3β are also involved, indicating a convergence of putative risk factors for psychiatric illness upon mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
37
|
Shen P, Hu Q, Dong M, Bai S, Liang Z, Chen Z, Li P, Hu Z, Zhong X, Zhu D, Wang H, Xie P. Venlafaxine exerts antidepressant effects possibly by activating MAPK-ERK1/2 and P13K-AKT pathways in the hippocampus. Behav Brain Res 2017; 335:63-70. [PMID: 28797602 DOI: 10.1016/j.bbr.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022]
Abstract
Serotonin noradrenaline reuptake inhibitors are effective antidepressant drugs, which include venlafaxine and duloxetine. Venlafaxine is commonly used in a clinical context, but the molecular biological mechanisms behind its effects have not been fully determined. Here, we explored the potential biological effects of venlafaxine on mouse hippocampus. Mice were randomly divided into two groups and injected daily with 0.9% NaCl solution or venlafaxine. A GC-MS-based metabolomic approach was used to identify possible metabolic differences between these groups, and the key proteins involved in the relevant pathways were validated by western blotting. In our experiments, 27 hippocampal metabolites that distinguished the venlafaxine group from the control group were identified. These differential metabolites were subjected to Ingenuity Pathway Analysis, which revealed that they were strongly related to two metabolic pathways (MAPK-ERK1/2 and P13K-AKT signaling pathways). Six key proteins, BDNF, p-c-Raf, p-MAPK, p-MEK, p-AKT, and CREB, were verified by western blotting and the results were consistent with the differential metabolites identified by GC-MS. This study sheds light on the biological mechanisms underlying the effects of venlafaxine.
Collapse
Affiliation(s)
- Peng Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Qingchuan Hu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meixue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zihong Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhi Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Pengfei Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Zicheng Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Villa RF, Ferrari F, Bagini L, Gorini A, Brunello N, Tascedda F. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine. Neuropharmacology 2017; 121:30-38. [DOI: 10.1016/j.neuropharm.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023]
|
39
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.). First evidence that IGF-II reverts oxidative synaptic damage produced by corticoids. IGF-II recovers mitochondrial function in synapses after oxidative damage. IGF-II restores mitochondrial distribution in neurons after oxidative damage. Evidence of the involvement of IGF-II receptor in the recovery of synaptic function. IGF-II reverts neurodegeneration induced by oxidative damage produced by corticoids.
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
40
|
New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep 2017; 7:44277. [PMID: 28281674 PMCID: PMC5345070 DOI: 10.1038/srep44277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Cationic amphiphilic drugs (CADs) comprise a wide variety of different substance classes such as antidepressants, antipsychotics, and antiarrhythmics. It is well recognized that CADs accumulate in certain intracellular compartments leading to specific morphological changes of cells. So far, no adequate technique exists allowing for ultrastructural analysis of CAD in intact cells. Azidobupramine, a recently described multifunctional antidepressant analogue, allows for the first time to perform high-resolution studies of CADs on distribution pattern and morphological changes in intact cells. We showed here that the intracellular distribution pattern of azidobupramine strongly depends on drug concentration and exposure time. The mitochondrial compartment (mDsRed) and the late endo-lysosomal compartment (CD63-GFP) were the preferred localization sites at low to intermediate concentrations (i.e. 1 μM, 5 μM). In contrast, the autophagosomal compartment (LC3-GFP) can only be reached at high concentrations (10 μM) and long exposure times (72 hrs). At the morphological level, LC3-clustering became only prominent at high concentrations (10 μM), while changes in CD63 pattern already occurred at intermediate concentrations (5 μM). To our knowledge, this is the first study that establishes a link between intracellular CAD distribution pattern and morphological changes. Therewith, our results allow for gaining deeper understanding of intracellular effects of CADs.
Collapse
|