1
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
2
|
Tang QQ, Wang ZD, An XH, Zhou XY, Zhang RZ, Zhan X, Zhang W, Zhou J. Apigenin Ameliorates H 2O 2-Induced Oxidative Damage in Melanocytes through Nuclear Factor-E2-Related Factor 2 (Nrf2) and Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (Akt)/Mammalian Target of Rapamycin (mTOR) Pathways and Reducing the Generation of Reactive Oxygen Species (ROS) in Zebrafish. Pharmaceuticals (Basel) 2024; 17:1302. [PMID: 39458943 PMCID: PMC11510047 DOI: 10.3390/ph17101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Apigenin is one of the natural flavonoids found mainly in natural plants, as well as some fruits and vegetables, with celery in particular being the most abundant. Apigenin has antioxidant, anti-tumor, anti-inflammatory, and anticancer effects. In this research, we attempted to further investigate the effects of apigenin on the mechanism of repairing oxidative cell damage. The present study hopes to provide a potential candidate for abnormal skin pigmentation disorders. Methods: We used 0.4 mM H2O2 to treat B16F10 cells for 12 h to establish a model of oxidative stress in melanocytes, and then we gave apigenin (0.1~5 μM) to B16F10 cells for 48 h, and detected the expression levels of melanin synthesis-related proteins, dendritic regulation-related proteins, antioxidant signaling pathway- and Nrf2 signaling pathway-related proteins, autophagy, and autophagy-regulated pathways by immunoblotting using Western blotting. The expression levels of PI3K/Akt/mTOR proteins were measured by β-galactosidase staining and Western blotting for cellular decay, JC-1 staining for mitochondrial membrane potential, and Western blotting for mitochondrial fusion- and mitochondrial autophagy-related proteins. Results: Apigenin exerts antioxidant effects by activating the Nrf2 pathway, and apigenin up-regulates the expression of melanin synthesis-related proteins Tyr, TRP1, TRP2, and gp100, which are reduced in melanocytes under oxidative stress. By inhibiting the expression of senescence-related proteins p53 and p21, and delaying cellular senescence, we detected the mitochondrial membrane potential using JC-1, and found that apigenin improved the reduction in mitochondrial membrane potential in melanocytes under oxidative stress, and maintained the normal function of mitochondria. In addition, we further detected the key regulatory proteins of mitochondrial fusion and division, MFF, p-DRP1 (S637), and p-DRP1 (S616), and found that apigenin inhibited the down-regulation of fusion-associated protein, p-DRP1 (S637), and the up-regulation of division-associated proteins, MFF and p-DRP1 (S616), due to oxidative stress in melanocytes, and promoted the mitochondrial fusion and ameliorated the imbalance between mitochondrial division and fusion. We further detected the expression of fusion-related proteins OPA1 and Mitofusion-1, and found that apigenin restored the expression of the above fusion proteins under oxidative stress, which further indicated that apigenin promoted mitochondrial fusion, improved the imbalance between mitochondrial division and fusion, and delayed the loss of mitochondrial membrane potential. Apigenin promotes the expression of melanocyte autophagy-related proteins and the key mitochondrial autophagy proteins BNIP3L/Nix under oxidative stress, and activates the PINK1/Parkin signaling pathway by up-regulating the expression of autophagy-related proteins, as well as the expression of PINK1 and Parkin proteins, to promote melanocyte autophagy and mitochondrial autophagy. Conclusions: Apigenin exerts anti-melanocyte premature aging and detachment effects by promoting melanin synthesis, autophagy, and mitochondrial autophagy in melanocytes, and inhibiting oxidative cell damage and senescence.
Collapse
Affiliation(s)
- Qing-Qing Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Zu-Ding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xiao-Hong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xin-Yuan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Rong-Zhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| |
Collapse
|
3
|
Chuang YT, Yen CY, Tang JY, Wu KC, Chang FR, Tsai YH, Chien TM, Chang HW. Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem Biol Interact 2024; 399:111142. [PMID: 39019423 DOI: 10.1016/j.cbi.2024.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells. However, the potential antioxidant targets of such drugs have been rarely explored. This review aims to categorize the marine-drug-modulated miRNAs that downregulate their antioxidant targets, causing oxidative stress in anticancer treatments. We also categorize the downregulation of oxidative-stress-inducing miRNAs in antioxidant protection among non-cancer cells. We summarize the putative antioxidant targets of miRNA-modulating marine drugs by introducing a bioinformatics tool (miRDB). Finally, the marine drugs affecting antioxidant targets are surveyed. In this way, the connections between marine drugs and their modulating miRNA and antioxidant targets are innovatively categorized to provide a precise network for exploring their potential anticancer functions and protective effects on non-cancer cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, 900392, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, 907101, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym 2024; 324:121555. [PMID: 37985117 DOI: 10.1016/j.carbpol.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
The large-scale collections, screening and discovery of biologically active and pharmacologically significant marine-derived natural products have garnered tremendous attraction. Edible brown algae are rich in fucoidan. Importantly, fucoidan has been reported to inhibit carcinogenesis and metastasis mainly through the regulation of deregulated cell signaling pathways. This review summarizes the structural features of fucoidan, including monosaccharide type, sulfate content, and main chain structure. We have set spotlight on fucoidan-mediated tumor suppressive effects in cell cultures studies and tumor-bearing rodent models. Fucoidan exerts anti-tumor effects primarily through the inhibition of tumor cell viability, proliferation and metastatic dissemination of cancer cells from primary tumor sites to distant secondary sites. Fucoidan not only promotes immunological responses in tumor microenvironment but also induces apoptotic death in cancer cells. In addition, fucoidan can be used as a dietary supplement for preventive purposes, in combination with other drugs as complementary and alternative medicine or with nanoparticle modifications will be the future of fucoidan use. Cutting-edge research related to fucoidan has catalyzed the transition of fucoidan from preclinical studies to different phases of clinical trials. Rationally designed clinical trials for the critical evaluation of fucoidan against different cancers will be valuable to reap full benefits.
Collapse
Affiliation(s)
- Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Kang Y, Park C, Lee H, Kang S, Cheon C, Kim B. Natural Products as New Approaches for Treating Bladder Cancer: From Traditional Medicine to Novel Drug Discovery. Pharmaceutics 2023; 15:pharmaceutics15041117. [PMID: 37111603 PMCID: PMC10145408 DOI: 10.3390/pharmaceutics15041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease that a tumor develops in the bladder lining and in some cases, the bladder muscle. Chemotherapy and immunotherapy are commonly used to treat bladder cancer. However, chemotherapy can cause burning and irritation in the bladder while BCG immunotherapy, which is the main type of intravesical immunotherapy for bladder cancer, can also cause burning in the bladder and flu-like symptoms. Thus, drugs originating from natural products have attracted much attention due to the reports that they have anti-cancer properties with low adverse effects. In this study, eighty-seven papers that dealt with natural products preventing or treating bladder cancer were reviewed. The studies were classified into the following mechanism: 71 papers on cell death, 5 papers on anti-metastasis, 3 papers on anti-angiogenesis, 1 paper on anti-resistance, and 7 papers on clinical trials. Most of the natural products that induced apoptosis up-regulated proteins such as caspase-3 and caspase-9. Regarding anti-metastasis, MMP-2 and MMP-9 are regulated frequently. Regarding anti-angiogenesis, HIF-1α and VEGF-A are down-regulated frequently. Nevertheless, the number of papers regarding anti-resistance and clinical trial are too few, so more studies are needed. In conclusion, this database will be useful for future in vivo studies of the anti-bladder cancer effect of natural products, in the process of selecting materials used for the experiment.
Collapse
|
7
|
Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15030715. [PMID: 36765670 PMCID: PMC9913163 DOI: 10.3390/cancers15030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Seaweed-derived bioactive compounds are regularly employed to treat human diseases. Sulfated polysaccharides are potent chemotherapeutic or chemopreventive medications since it has been discovered. They have exhibited anti-cancer properties by enhancing immunity and driving apoptosis. Through dynamic modulation of critical intracellular signalling pathways, such as control of ROS generation and preservation of essential cell survival and death processes, sulfated polysaccharides' antioxidant and immunomodulatory potentials contribute to their disease-preventive effectiveness. Sulfated polysaccharides provide low cytotoxicity and good efficacy therapeutic outcomes via dynamic modulation of apoptosis in cancer. Understanding how sulfated polysaccharides affect human cancer cells and their molecular involvement in cell death pathways will showcase a new way of chemoprevention. In this review, the significance of apoptosis and autophagy-modulating sulfated polysaccharides has been emphasized, as well as the future direction of enhanced nano-formulation for greater clinical efficacy. Moreover, this review focuses on the recent findings about the possible mechanisms of chemotherapeutic use of sulfated polysaccharides, their potential as anti-cancer drugs, and proposed mechanisms of action to drive apoptosis in diverse malignancies. Because of their unique physicochemical and biological properties, sulfated polysaccharides are ideal for their bioactive ingredients, which can improve function and application in disease. However, there is a gap in the literature regarding the physicochemical properties and functionalities of sulfated polysaccharides and the use of sulfated polysaccharide-based delivery systems in functional cancer. Furthermore, the preclinical and clinical trials will reveal the drug's efficacy in cancer.
Collapse
|
8
|
Guo X, Luo J, Qi J, Zhao X, An P, Luo Y, Wang G. The Role and Mechanism of Polysaccharides in Anti-Aging. Nutrients 2022; 14:nu14245330. [PMID: 36558488 PMCID: PMC9785760 DOI: 10.3390/nu14245330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The elderly proportion of the population is gradually increasing, which poses a great burden to society, the economy, and the medical field. Aging is a physiological process involving multiple organs and numerous reactions, and therefore it is not easily explained or defined. At present, a growing number of studies are focused on the mechanisms of aging and potential strategies to delay aging. Some clinical drugs have been demonstrated to have anti-aging effects; however, many still have deficits with respect to safety and long-term use. Polysaccharides are natural and efficient biological macromolecules that act as antioxidants, anti-inflammatories, and immune regulators. Not surprisingly, these molecules have recently gained attention for their potential use in anti-aging therapies. In fact, multiple polysaccharides have been found to have excellent anti-aging effects in different animal models including Caenorhabditis elegans, Drosophila melanogaster, and mice. The anti-aging qualities of polysaccharides have been linked to several mechanisms, such as improved antioxidant capacity, regulation of age-related gene expression, and improved immune function. Here, we summarize the current findings from research related to anti-aging polysaccharides based on various models, with a focus on the main anti-aging mechanisms of oxidative damage, age-related genes and pathways, immune modulation, and telomere attrition. This review aims to provide a reference for further research on anti-aging polysaccharides.
Collapse
Affiliation(s)
- Xinlu Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiya Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.L.); (G.W.)
| | - Guisheng Wang
- Department of Radiology, the Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
- Correspondence: (Y.L.); (G.W.)
| |
Collapse
|
9
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
10
|
Fucoidan/UVC Combined Treatment Exerts Preferential Antiproliferation in Oral Cancer Cells but Not Normal Cells. Antioxidants (Basel) 2022; 11:antiox11091797. [PMID: 36139871 PMCID: PMC9495684 DOI: 10.3390/antiox11091797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/29/2022] Open
Abstract
Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S–G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2’-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.
Collapse
|
11
|
Shiau JP, Chuang YT, Cheng YB, Tang JY, Hou MF, Yen CY, Chang HW. Impacts of Oxidative Stress and PI3K/AKT/mTOR on Metabolism and the Future Direction of Investigating Fucoidan-Modulated Metabolism. Antioxidants (Basel) 2022; 11:911. [PMID: 35624775 PMCID: PMC9137824 DOI: 10.3390/antiox11050911] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
The critical factors for regulating cancer metabolism are oxidative stress and phosphoinositide-3-kinase/AKT serine-threonine kinase/mechanistic target of the rapamycin kinase (PI3K/AKT/mTOR). However, the metabolic impacts of oxidative stress and PI3K/AKT/mTOR on individual mechanisms such as glycolysis (Warburg effect), pentose phosphate pathway (PPP), fatty acid synthesis, tricarboxylic acid cycle (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS) are complicated. Therefore, this review summarizes the individual and interacting functions of oxidative stress and PI3K/AKT/mTOR on metabolism. Moreover, natural products providing oxidative stress and PI3K/AKT/mTOR modulating effects have anticancer potential. Using the example of brown algae-derived fucoidan, the roles of oxidative stress and PI3K/AKT/mTOR were summarized, although their potential functions within diverse metabolisms were rarely investigated. We propose a potential application that fucoidan may regulate oxidative stress and PI3K/AKT/mTOR signaling to modulate their associated metabolic regulations. This review sheds light on understanding the impacts of oxidative stress and PI3K/AKT/mTOR on metabolism and the future direction of metabolism-based cancer therapy of fucoidan.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- Department of Oral, Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Shiau JP, Chuang YT, Yang KH, Chang FR, Sheu JH, Hou MF, Jeng JH, Tang JY, Chang HW. Brown Algae-Derived Fucoidan Exerts Oxidative Stress-Dependent Antiproliferation on Oral Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11050841. [PMID: 35624705 PMCID: PMC9138104 DOI: 10.3390/antiox11050841] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a dietary brown algae-derived fucose-rich polysaccharide. However, the anticancer effects of fucoidan for oral cancer treatment remain unclear, particularly in terms of its preferential antiproliferation ability and oxidative-stress-associated responses. This study first evaluated the effects and mechanisms of the preferential antiproliferation of fucoidan between oral cancer and non-malignant oral cells (S–G). In a 48 h MTS assay, fucoidan showed higher antiproliferation in response to five types of oral cancer cells, but not S–G cells, demonstrating preferential antiproliferation of oral cancer cells. Oral cancer cells (Ca9-22 and CAL 27) showing high sensitivity to fucoidan were selected to explore the antiproliferation mechanism compared to S–G cells. Fucoidan showed subG1 accumulation and an annexin V increase in apoptosis, accompanied by caspase 8, 9, and 3 activations in oral cancer cells, but not in S–G cells. Fucoidan increased reactive oxygen species and mitochondrial superoxide levels and decreased cellular glutathione in oral cancer cells compared with S–G cells. These oxidative stress effects were attributed to the downregulation of antioxidant signaling genes (NRF2, TXN, and HMOX1) in oral cancer cells rather than S–G cells. Fucoidan showed DNA damage-inducible effects (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer cells but not in S–G cells. Accordingly, these preferential changes in oral cancer but not in non-malignant cells contribute to the preferential antiproliferation mechanism of fucoidan. Furthermore, these changes were reverted by pretreatment with the antioxidant N-acetylcysteine. Therefore, for the first time, this study provides a detailed understanding of the preferential antiproliferation effects and mechanisms of fucoidan in oral cancer cells.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (F.-R.C.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
13
|
Al Monla R, Dassouki Z, Sari-Chmayssem N, Mawlawi H, Gali-Muhtasib H. Fucoidan and Alginate from the Brown Algae Colpomenia sinuosa and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer. Molecules 2022; 27:358. [PMID: 35056673 PMCID: PMC8777791 DOI: 10.3390/molecules27020358] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL-1) lower than that of alginate (690 µg/mL-1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.
Collapse
Affiliation(s)
- Reem Al Monla
- AZM Center for Research in Biotechnology and Its Applications, Laboratory of Applied Biotechnology (LBA3B), Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (Z.D.); (N.S.-C.); (H.M.)
| | - Zeina Dassouki
- AZM Center for Research in Biotechnology and Its Applications, Laboratory of Applied Biotechnology (LBA3B), Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (Z.D.); (N.S.-C.); (H.M.)
| | - Nouha Sari-Chmayssem
- AZM Center for Research in Biotechnology and Its Applications, Laboratory of Applied Biotechnology (LBA3B), Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (Z.D.); (N.S.-C.); (H.M.)
| | - Hiba Mawlawi
- AZM Center for Research in Biotechnology and Its Applications, Laboratory of Applied Biotechnology (LBA3B), Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon; (R.A.M.); (Z.D.); (N.S.-C.); (H.M.)
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon
- Center for Drug Discovery, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
14
|
Thépot V, Campbell AH, Paul NA, Rimmer MA. Seaweed dietary supplements enhance the innate immune response of the mottled rabbitfish, Siganus fuscescens. FISH & SHELLFISH IMMUNOLOGY 2021; 113:176-184. [PMID: 33823246 DOI: 10.1016/j.fsi.2021.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Disease is one of the major bottlenecks for aquaculture development, costing the industry in excess of US $6 billion each year. The increase in pressure to phase out some traditional approaches to disease control (e.g. antibiotics) is pushing farmers to search for alternatives to treat and prevent disease outbreaks, which do not have detrimental consequences (e.g. antibiotic resistance). We tested the effects of eleven seaweed species and four established fish immunostimulants on the innate immune response (cellular and humoral immunity) of the rabbitfish Siganus fuscescens. All supplements including different seaweeds from the three groups (Chlorophyta, Phaeophyta and Rhodophyta) were included in the fish pellet at 3% (by weight) and had variably positive effects across the four innate immune parameters we measured compared to control fish. Diets supplemented with the red seaweed Asparagopsis taxiformis and the brown seaweed Dictyota intermedia led to the largest boosts in humoral and cellular innate immune defences, including particularly significant increases in haemolytic activity. Diets supplemented with Ulva fasciata also led to promising positive effects on the fish innate immune responses. We conclude that dietary seaweed supplements can boost the immune response of S. fuscescens and thus the top three species highlighted in this study should be further investigated for this emerging aquaculture species and other fish species.
Collapse
Affiliation(s)
- Valentin Thépot
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| | - Alexandra H Campbell
- School of Health and Behavioural Sciences, The University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Nicholas A Paul
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Michael A Rimmer
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| |
Collapse
|
15
|
Jin JO, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D. The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar Drugs 2021; 19:265. [PMID: 34068561 PMCID: PMC8151601 DOI: 10.3390/md19050265] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Several types of cancers share cellular and molecular behaviors. Although many chemotherapy drugs have been designed to weaken the defenses of cancer cells, these drugs may also have cytotoxic effects on healthy tissues. Fucoidan, a sulfated fucose-based polysaccharide from brown algae, has gained much attention as an antitumor drug owing to its anticancer effects against multiple cancer types. Among the anticancer mechanisms of fucoidan are cell cycle arrest, apoptosis evocation, and stimulation of cytotoxic natural killer cells and macrophages. Fucoidan also protects against toxicity associated with chemotherapeutic drugs and radiation-induced damage. The synergistic effect of fucoidan with existing anticancer drugs has prompted researchers to explore its therapeutic potential. This review compiles the mechanisms through which fucoidan slows tumor growth, kills cancer cells, and interacts with cancer chemotherapy drugs. The obstacles involved in developing fucoidan as an anticancer agent are also discussed in this review.
Collapse
Affiliation(s)
- Jun-O. Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior 474005, India;
| | - Ananta Prasad Arukha
- Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Vishal Chavda
- Division of Anaesthesia, Sardar Women’s Hospital, Ahmedabad 380004, Gujarat, India;
| | - Anuj Dubey
- Department of Chemistry, ITM Group of Institutions, Gwalior 475005, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
16
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
17
|
Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Present Status, Limitations and Future Directions of Treatment Strategies Using Fucoidan-Based Therapies in Bladder Cancer. Cancers (Basel) 2020; 12:cancers12123776. [PMID: 33333858 PMCID: PMC7765304 DOI: 10.3390/cancers12123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a common urological cancer, with poor prognosis for advanced/metastatic stages. Various intensive treatments, including radical cystectomy, chemotherapy, immune therapy, and radiotherapy are commonly used for these patients. However, these treatments often cause complications and adverse events. Therefore, researchers are exploring the efficacy of natural product-based treatment strategies in BC patients. Fucoidan, derived from marine brown algae, is recognized as a multi-functional and safe substrate, and has been reported to have anti-cancer effects in various types of malignancies. Additionally, in vivo and in vitro studies have reported the protective effects of fucoidan against cancer-related cachexia and chemotherapeutic agent-induced adverse events. In this review, we have introduced the anti-cancer effects of fucoidan extracts in BC and highlighted its molecular mechanisms. We have also shown the anti-cancer effects of fucoidan therapy with conventional chemotherapeutic agents and new treatment strategies using fucoidan-based nanoparticles in various malignancies. Moreover, apart from the improvement of anti-cancer effects by fucoidan, its protective effects against cancer-related disorders and cisplatin-induced toxicities have been introduced. However, the available information is insufficient to conclude the clinical usefulness of fucoidan-based treatments in BC patients. Therefore, we have indicated the aspects that need to be considered regarding fucoidan-based treatments and future directions for the treatment of BC.
Collapse
|
19
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
20
|
Motta F, Gershwin ME, Selmi C. Mushrooms and immunity. J Autoimmun 2020; 117:102576. [PMID: 33276307 DOI: 10.1016/j.jaut.2020.102576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
In the wide field of nutraceuticals, the effects of mushrooms on immunity, cancer and including autoimmunity have been proposed for centuries but in recent years a growing interest has led scientists to elucidate which specific compounds have bioactive properties and through which mechanisms. Glucans and specific proteins are responsible for most of the biological effects of mushrooms, particularly in terms of immunomodulatory and anti-tumor results. Proteins with bioactive effects include lectins, fungal immunomodulatory proteins (FIPs), ribosome inactivating proteins (RIPs), ribonucleases, laccases, among others. At the present status of knowledge, numerous studies have been performed on cell lines and murine models while only a few clinical trials have been conducted. As in most cases of dietary components, the multitude of variables implicated in the final effect and an inadequate standardization are expected to affect the observed differences, thus making the available evidence insufficient to justify the treatment of human diseases with mushrooms extracts. We will herein provide a comprehensive review and critically discussion the biochemical changes induced by different mushroom compounds as observed in in vitro studies, particularly on macrophages, dendritic cells, T cells, and NK cells, compared to in vivo and human studies. Additional effects are represented by lipids which constitute a minor part of mushrooms but may have a role in reducing serum cholesterol levels or phenols acting as antioxidant and reducing agents. Human studies provide a minority of available data, as well illustrated by a placebo-controlled study of athletes treated with β-glucan from Pleurotus ostreatus. Variables influencing study outcomes include different mushrooms strains, growing conditions, developmental stage, part of mushroom used, extraction method, and storage conditions. We foresee that future rigorous research will be needed to determine the potential of mushroom compounds for human health to reproduce the effects of some compounds such as lentinan which a metaanalysis demonstrated to increase the efficacy of chemotherapy in the treatment of lung cancer and in the improvement of the patients quality of life.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
21
|
Pradhan B, Patra S, Nayak R, Behera C, Dash SR, Nayak S, Sahu BB, Bhutia SK, Jena M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int J Biol Macromol 2020; 164:4263-4278. [PMID: 32916197 DOI: 10.1016/j.ijbiomac.2020.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Fucoidan is a complex polysaccharide (molecular weight 10,000-100,000 Da) derived from brown algae which comprises of L-fucose and sulfate groups have potential as therapeutic diligences against several human diseases. The fucoidan has expanded a widespread range of pharmacological properties as an anti-inflammatory, anticoagulant, antiangiogenic, immunomodulatory, anti-adhesive, anticancer, antidiabetic, antiviral and anti-neurodegenerative agents owing to their diverse chemical conformation and potent antioxidant activity. The antioxidant and immunomodulatory activities of the fucoidan contribute towards their disease preventive potency through dynamic modulation of key intracellular signalling pathways, regulation of ROS accumulation, and maintenance of principal cell survival and death pathways. Additionally, it also reduces cancer-associated cachexia. Despite the wide range of therapeutic potency, the fucoidan is heavily regarded as an unexplored plethora of druggable entities in the current situation. The isolation, screening, biological application, pre-clinical, and clinical assessment along with large scale cost-effective production remain a foremost task to be assessed. Moreover, the chemical synthesis of the present bioactive drug with confirmational rearrangement for enhanced availability and bioactivity also need tenacious investigation. Hence, in the present review, we give attention to the source of isolation of fucoidan, their principle strategic deployment in disease prevention, and the mechanistic investigation of how it works to combat different diseases that can be used for future therapeutic intervention.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Soumya Ranjan Dash
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Sneha Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India.
| |
Collapse
|
22
|
Liu S, Yang J, Peng X, Li J, Zhu C. The Natural Product Fucoidan Inhibits Proliferation and Induces Apoptosis of Human Ovarian Cancer Cells: Focus on the PI3K/Akt Signaling Pathway. Cancer Manag Res 2020; 12:6195-6207. [PMID: 32884336 PMCID: PMC7434378 DOI: 10.2147/cmar.s254784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is the leading cause of death among gynecological tumors; however, no effective treatment is currently available. Fucoidan, which is extracted from marine algae, has significant anti-cancer effects. The aim of this study was to determine the effects of fucoidan on the proliferation and apoptosis of OC cells through inhibition of the PI3K/Akt signaling pathway. METHODS Human ovarian normal epithelial cells (IOSE80) and human OC cells (SKOV-3, A2780, OVCAR-3, TOV-112D, and Caov-3) were selected to verify the safety of fucoidan at various doses in SKOV-3 and Caov-3 cells as well as a xenograft mouse model using various molecular biology techniques. RESULTS Fucoidan had no significant effect on normal ovarian epithelial cells, but had significantly inhibited the proliferation of OC cells, induced cell cycle arrest at the G0/G1 phase, increased the proportion of apoptotic cells and expression of pro-apoptotic proteins, and inhibited the expression of PI3K and phosphorylation of Akt, which could be partly rescued by IGF-1. CONCLUSION Fucoidan had anti-tumor effects both in vivo and in vitro via a mechanism that is related to the inhibition of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shuhan Liu
- Department of Reproductive Medicine, Jining First People’s Hospital, Jining272000, People’s Republic of China
| | - Jing Yang
- Department of Gynecology, Jining First People’s Hospital, Jining272000, People’s Republic of China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266000, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao266000, People’s Republic of China
| | - Cunjing Zhu
- Department of Gynecology, Jining First People’s Hospital, Jining272000, People’s Republic of China
| |
Collapse
|
23
|
Putting the Brakes on Tumorigenesis with Natural Products of Plant Origin: Insights into the Molecular Mechanisms of Actions and Immune Targets for Bladder Cancer Treatment. Cells 2020; 9:cells9051213. [PMID: 32414171 PMCID: PMC7290334 DOI: 10.3390/cells9051213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer worldwide. Although the incidence in men is 4 times higher than that in women, the diagnoses are worse for women. Over the past 30 years, the treatment for bladder cancer has not achieved a significant positive effect, and the outlook for mortality rates due to muscle-invasive bladder cancer and metastatic disease is not optimistic. Phytochemicals found in plants and their derivatives present promising possibilities for cancer therapy with improved treatment effects and reduced toxicity. In this study, we summarize the promising natural products of plant origin with anti-bladder cancer potential, and their anticancer mechanisms—especially apoptotic induction—are discussed. With the developments in immunotherapy, small-molecule targeted immunotherapy has been promoted as a satisfactory approach, and the discovery of novel small molecules against immune targets for bladder cancer treatment from products of plant origin represents a promising avenue of research. It is our hope that this could pave the way for new ideas in the fields of oncology, immunology, phytochemistry, and cell biology, utilizing natural products of plant origin as promising drugs for bladder cancer treatment.
Collapse
|
24
|
do-Amaral C, Pacheco B, Seixas F, Pereira C, Collares T. Antitumoral effects of fucoidan on bladder cancer. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Zhang P, Zhao S, Lu X, Shi Z, Liu H, Zhu B. Metformin enhances the sensitivity of colorectal cancer cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway. Gene 2020; 745:144623. [PMID: 32222530 DOI: 10.1016/j.gene.2020.144623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Metformin and cisplatin have been widely studied as antitumor agents. However, the effect of metformin combined with cisplatin has not been investigated in colorectal cancer (CRC) cells. This study was aimed to explore the effect of metformin or/and cisplatin on cell viability, apoptosis, and the related signaling pathways in CRC SW480 and SW620 cells. We found that metformin or cisplatin inhibited cell viability of SW480 and SW620 cells in a concentration- and time-dependent manner. Furthermore, metformin combined with cisplatin obviously inhibited cell viability, decreased colony formation, induced apoptosis, mediated cleavage of caspase-9, caspase-3 and PARP, activated mitochondrial membrane potential, downregulated Mcl-1 and Bcl-2 expression, upregulated Bak and Bax expression, and increased reactive oxygen species (ROS) production, compared to the individual agent in SW480 and SW620 cells, which were attenuated by N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, NAC could recover the downregulation of p-PI3K and p-Akt treated with combination of metformin and cisplatin, which subsequently activated the PI3K/Akt signaling pathway. Taken together, our results demonstrated that metformin enhanced the sensitivity of CRC cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Surong Zhao
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Xingyue Lu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Zongfen Shi
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, China.
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.
| |
Collapse
|
26
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
27
|
Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr Polym 2020; 229:115487. [DOI: 10.1016/j.carbpol.2019.115487] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
|
28
|
Bae H, Lee JY, Yang C, Song G, Lim W. Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis. Mar Drugs 2020; 18:E45. [PMID: 31936539 PMCID: PMC7024155 DOI: 10.3390/md18010045] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Marine organisms are sources of several natural compounds with potential clinical use. However, only a few marine-based pharmaceuticals have been approved for use due to limited knowledge on their biological activities. Here, we identified the functional role of fucoidan extracted from Fucus vesiculosus on ovarian cancer. Fucoidan increased the death of ES-2 and OV-90 cells, through a reduction in proliferation, cell cycle arrest, releases of cytochrome c, reactive oxygen species (ROS) generation, and endoplasmic reticulum (ER) stress. Additionally, fucoidan increased the concentration of cytosolic and mitochondrial calcium in both cells. The decrease of cell proliferation was controlled by the inactivation of PI3K and MAPK signaling cascades in ES-2 and OV-90 cells. In a toxicity assay with normal zebrafish larvae, fucoidan did not induce toxicity, cardiotoxicity, development, kinesis, and apoptosis at different concentrations. However, it disrupted tumor formation and vascular development in a zebrafish xenograft model and angiogenesis transgenic (Tg, fli1-eGFP) model, respectively. Collectively, the results indicate that fucoidan may be a novel pharmaceutical for the management of human ovarian cancer.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Changwon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (C.Y.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
29
|
Juárez-Portilla C, Olivares-Bañuelos T, Molina-Jiménez T, Sánchez-Salcedo JA, Moral DID, Meza-Menchaca T, Flores-Muñoz M, López-Franco Ó, Roldán-Roldán G, Ortega A, Zepeda RC. Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153016. [PMID: 31325683 DOI: 10.1016/j.phymed.2019.153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recently, the study of marine natural products has gained interest due to their relevant biological activities. Specially, seaweeds produce bioactive compounds that could act as modulators of cell signaling pathways involved in a plethora of diseases. Thereby, the description of the molecular mechanisms by which seaweeds elicit its biological functions will certainly pave the way to the pharmacological development of drugs. AIM This review describes the molecular mechanisms by which seaweeds act and its possible utilization in the design of new drugs. METHODS This review was conducted according to the PRISMA-P guidelines for systematic reviews. Two independent authors searched into four different databases using combinations of keywords. Two more authors selected the articles following the eligibility criteria. Information extraction was conducted by two separated authors and entered into spreadsheets. Methodological quality and risk of bias were determined applying a 12-question Risk of Bias criteria tool. RESULTS AND DISCUSSION We found 2360 articles (SCOPUS: 998; PubMed: 678; Wiley: 645 and EBSCO: 39) using the established keywords, of which 113 articles fit the inclusion criteria and were included in the review. This work comprises studies in cell lines, and animal models, any clinical trial was excluded. The articles were published from 2005 up to March 31st 2018. The biggest amount of articles was published in 2017. Furthermore, the seaweeds tested in the studies were collected in 15 countries, mainly in Eastern countries. We found that the main modulated signaling pathways by seaweeds-derivate extracts and compounds were: L-Arginine/NO, TNF-α, MAPKs, PI3K/AKT/GSK, mTOR, NF-κB, extrinsic and intrinsic apoptosis, cell cycle, MMPs and Nrf2. Finally, the articles we analyzed showed moderate risk of bias in almost all the parameters evaluated. However, the studies fail to describe the place and characteristics of sample collection, the sample size, and the blindness of the experimental design. CONCLUSION In this review we identified and summarized relevant information related to seaweed-isolated compounds and extracts having biological activity; their role in different signal pathways to better understand their potential to further development of cures for cancer, diabetes, and inflammation-related diseases.
Collapse
Affiliation(s)
- Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Km 103 autopista Tijuana-Ensenada, A.P. 453. Ensenada, Baja California, México
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México
| | - José Armando Sánchez-Salcedo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Iztapalapa, Ciudad de México
| | - Diana I Del Moral
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana. Médicos y Odontólogos s/n. Col. Unidad del Bosque, C.P. 91010, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Óscar López-Franco
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, 07300, Ciudad de México, México
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
30
|
Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019; 17:E31. [PMID: 30621025 PMCID: PMC6356258 DOI: 10.3390/md17010031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
31
|
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019; 17:E32. [PMID: 30621045 PMCID: PMC6356449 DOI: 10.3390/md17010032] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure⁻activity relationship of fucoidan from the most promising seaweed species.
Collapse
Affiliation(s)
- Geert van Weelden
- Faculty of Science, (Medical) Biology, Radboud University, 6525 XZ Nijmegen, The Netherlands.
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | - Johanna M A Pijnenborg
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Fucoidan Exerts Anticancer Effects Against Head and Neck Squamous Cell Carcinoma In Vitro. Molecules 2018; 23:molecules23123302. [PMID: 30545161 PMCID: PMC6321539 DOI: 10.3390/molecules23123302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Fucoidans have been reported to exert anticancer effects with simultaneous low toxicity against healthy tissue. That correlation was observed in several cancer models, however, it has never been investigated in head and neck cancer before. To magnify the efficacy of conventional therapy, the administration of agents like fucoidan could be beneficial. The aim of this study was to evaluate the anticancer effect of Fucus vesiculosus (FV) extract alone and with co-administration of cisplatin in head and neck squamous cell carcinoma (HNSCC) in vitro. MTT assay results revealed an FV-induced inhibition of proliferation in all tested cell lines (H103, FaDu, KB). Flow cytometric cell cycle analysis showed an FV-induced, dose-dependent arrest in either S/G2 phase (H103, FaDu) or G1 arrest (KB). Furthermore, a dose-dependent gain in apoptotic fraction was observed. Western blot analysis confirmed the induction of apoptosis. A significant dose-dependent increase in reactive oxygen species (ROS) production was revealed in the H103 cell line, while FaDu cells remained unresponsive. On the contrary, an HPV-positive cell line, KB, demonstrated a dose-dependent decrease in ROS synthesis. Moreover, fucoidan enhanced the response to cisplatin (synergistic effect) in all cell lines with the HPV-positive one (KB) being the most sensitive. These results have been confirmed by flow-cytometric apoptosis analysis. In conclusion, we confirmed that fucoidan exhibits anticancer properties against HNSCC, which are manifested by the induction of apoptosis, regulation of ROS production, cell cycle arrest, and inhibition of proliferation.
Collapse
|
33
|
Yang X, Wang S, Trangle SS, Li Y, White WL, Li J, Ying T, Kong Q, Zhao Y, Lu J. Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida in Combination with GroA Therapy in Prostate Cancer Cell Lines. Mar Drugs 2018; 16:E454. [PMID: 30453677 PMCID: PMC6266598 DOI: 10.3390/md16110454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (<10 kDa) and compared it with laboratory grade Fucoidan purchased from Sigma (FS), all extracted from the same seaweed species U. pinnatifida. We found that LMWF significantly improved the anti-proliferative effect of GroA, as it decreased cancer cell growth and viability and increased cell death. This research may provide the foundation for LMWF to be used against prostate cancers as a supplement therapy in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Sheng Wang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | | | - Yan Li
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
34
|
Li Z, Zhao F, Cao Y, Zhang J, Shi P, Sun X, Zhang F, Tong L. DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway. Eur J Pharmacol 2018; 835:1-10. [PMID: 30075219 DOI: 10.1016/j.ejphar.2018.07.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 01/27/2023]
Abstract
Hepatic ischemia reperfusion (I/R) injury is very common in liver transplantation and major liver surgeries and may cause liver failure or even death. Docosahexaenoic acid (DHA) has displayed activities in reducing oxidative stress and inflammatory reaction in many disorders. In the present study, we investigated the protective effects of DHA against I/R-induced injury and the underlying mechanisms. Here, we show that DHA protected hepatic I/R injury by reducing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and decreasing the oxidative stress in liver tissues. The viability of Buffalo rat liver (BRL) cells was reduced by hypoxia/restoration (H/R) but restored by DHA. DHA significantly downregulated the expression of pyroptosis-related proteins including NLR pyrin domain containing 3 (NLRP3), apoptotic speck-like protein containing CARD (ASC) and cleaved caspase-1 and reduced the secretion of pro-inflammatory cytokines. The above results were supported by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. However, incubation with LY294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), abolished the effects of DHA, since it increased the expression of cleaved caspase-1 and the production of inflammatory cytokines. The present results have demonstrated that DHA ameliorated I/R-induced injury by inhibiting pyroptosis of hepatocytes induced in liver I/R injury in vivo and in vitro through the PI3K/Akt pathway, providing a potential therapeutic option to prevent liver injury by I/R.
Collapse
Affiliation(s)
- Ziyi Li
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Fazhang Zhao
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163391, Heilongjiang Province, China
| | - Jingyan Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163391, Heilongjiang Province, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Feng Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China.
| | - Liquan Tong
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China.
| |
Collapse
|
35
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
36
|
Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym 2017; 177:451-459. [PMID: 28962791 DOI: 10.1016/j.carbpol.2017.09.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022]
Abstract
In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016.
Collapse
Affiliation(s)
- K K Asanka Sanjeewa
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Suck Lee
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Republic of Korea.
| | - Won-Suck Kim
- College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|