1
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
4
|
Cheng PP, Wang XT, Liu Q, Hu YR, Dai ER, Zhang MH, Yang TS, Qu HY, Zhou H. Nrf2 mediated signaling axis in heart failure: Potential pharmacological receptor. Pharmacol Res 2024; 206:107268. [PMID: 38908614 DOI: 10.1016/j.phrs.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Ting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ran Hu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - En-Rui Dai
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Hao Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Shu Yang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui-Yan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Cheng W, Zhang BF, Chen N, Liu Q, Ma X, Fu X, Xu M. Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. Cell Biochem Biophys 2024; 82:1433-1451. [PMID: 38753250 DOI: 10.1007/s12013-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 08/25/2024]
Abstract
Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2-17% of patients die at first admission, of which 17-45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Bo-Feng Zhang
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Na Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qun Liu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xin Ma
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xiao Fu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Min Xu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China.
| |
Collapse
|
6
|
Shen C, Chen Q, Chen S, Lin Y. Mechanism of Danggui Buxue decoction in the treatment of myocardial infarction based on network pharmacology and experimental identification. Heliyon 2024; 10:e29360. [PMID: 38665560 PMCID: PMC11043959 DOI: 10.1016/j.heliyon.2024.e29360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Background Myocardial infarction (MI) remains one of the major causes of high morbidity and mortality worldwide. Danggui Buxue Decoction (DBD)-an ancient Chinese herbal decoction-has been used to prevent coronary heart disease, which was called "chest palsy" in ancient clinics. However, the mechanism of DBD in the treatment of MI remains unclear. The aim of this study was to explore the effect and mechanism of DBD on MI by combining network pharmacology with in vivo experiments. Materials and methods First, public databases were used to identify the key active chemicals and possible targets of DBD. The MI targets were obtained from the Therapeutic Target Database, and the function of the target genes in relation to linked pathways was investigated. Subsequently, Cytoscape software was used to build a target-signaling pathway network. Finally, the efficacy of DBD therapy on MI was validated using in vivo investigations combined with molecular docking. Results In traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), 27 bioactive compounds were screened from DBD. A total of 213 common targets were obtained, including 507 DBD targets and 2566 MI targets. Enrichment analysis suggests that PI3K/AKT is a potential signaling pathway for DBD-based protection. Immunofluorescence and protein blotting confirmed PI3K/AKT1, ERK2, and CASPASE-9 as the target proteins. Molecular docking analysis showed that quercetin, kaempferol, isoflavanones, isorhamnetin, hederagenin, and formononetin had high binding affinity to AKT1, ERK2, and CASPASE-9. Conclusions This study demonstrated that the therapeutic benefit of DBD on MI may be mediated via target proteins in the PI3K/AKT pathway, such as AKT1, ERK2, and CASPASE-9. Our study data can help to provide ideas and identify new treatment targets for MI.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
| | - Qian Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
7
|
Chi K, Yang S, Zhang Y, Zhao Y, Zhao J, Chen Q, Ge Y, Liu J. Exploring the mechanism of Tingli Pill in the treatment of HFpEF based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37727. [PMID: 38640300 PMCID: PMC11029988 DOI: 10.1097/md.0000000000037727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/21/2024] Open
Abstract
To explore the mechanism of action of Tingli Pill (TLP) in the treatment of heart failure with preserved ejection fraction (HFpEF) by using network pharmacology and molecular docking technology. The active components and targets of TLP were screened using the TCMSP and UniProt databases. HFpEF-related targets were identified using the OMIM and GeneCards databases. Drug-disease intersection targets were obtained via Venny 2.1.0, as well as establishing the "component-target" network and screening out the core active components. Construct a protein-protein interaction network of intersecting targets using the STRING database as well as Cytoscape software and filter the core targets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of core targets were performed using the Metascape database. The core active components of TLP for HFpEF were quercetin, kaempferol, β-sitosterol, isorhamnetin and hederagenin. The core targets of TLP for HFpEF were JUN, MAPK1, TP53, AKT1, RELA, TNF, MAPK14, and IL16. Gene ontology enrichment analysis obtained 1528 biological processes, 85 cell components, and 140 molecular functions. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 1940 signaling pathways, mainly involved in lipid and atherosclerosis, regulation of apoptotic signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, oxidative stress, TNF signaling pathway, and IL-17 signaling pathway. TLP has the characteristics of multi-component, multi-target, and multi-pathway in the treatment of HFpEF. This study lays the foundation for revealing the pharmacodynamic substances and mechanism of TLP in the treatment of HFpEF.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Saisai Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongfa Zhao
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiahe Zhao
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| | - Qiuhan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuan Ge
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Wang X, Xing X, Huang P, Zhang Z, Zhou Z, Liang L, Yao R, Wu X, Yang L. A Chinese classical prescription Xuefu Zhuyu decoction in the treatment of coronary heart disease: An overview. Heliyon 2024; 10:e28919. [PMID: 38617912 PMCID: PMC11015425 DOI: 10.1016/j.heliyon.2024.e28919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Background Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide and is a hot topic in cardiovascular disease research. Western medicine treats CHD with stent implantation, anti-angina pectoris, anti-platelet aggregation and other operations or drugs. According to the whole concept and the characteristics of syndrome differentiation, traditional Chinese medicine (TCM) treats CHD according to different syndromes and points out that qi deficiency and blood stasis are the basic pathogenesis of CHD. Xuefu Zhuyu Decoction (XFZYD), as a classic prescription of TCM, has certain value in the treatment of CHD, with the effects of promoting qi, activating blood circulation, dredging collaterals and relieving pain. In addition, it also exhibits advantages in high efficiency, low toxicity, high cost performance, few side effects, and high patient acceptance. Objective The therapeutic effect and mechanism of XFZYD in the treatment of CHD were searched by literature search, and the components and targets of XFZYD in the treatment of CHD were analyzed by computer simulation technology for molecular docking, providing theoretical basis for clinical treatment of CHD. Method This study comprehensively searched CNKI, Wanfang, VIP, CBM, Pubmed, Embase, Web of science and other databases, included clinical studies with efficacy evaluation indicators in hospitals according to randomization, and excluded literatures with low quality and no efficacy evaluation indicators. Clinical cases and studies, molecular mechanisms and pharmacological effects of XFZYD in the treatment of CHD were searched, and the effective ingredients and core targets of XFZYD in the treatment of CHD were docked through molecular docking, providing theoretical support for clinical treatment of CHD. Results and Conclusion Through this study, we found that XFZYD has a significant therapeutic effect in the clinical treatment of coronary heart disease, which can play a role in the treatment of CHD by inhibiting atherosclerosis, inhibiting cardiovascular remodeling, improving oxidative stress damage, improving hemorheology, improving myocardial fibrosis and other mechanisms. Through computer simulation, it was found that the main effective components of XFZYD treatment for CHD were quercetin, kaempferol and luteolin, and the key core targets were IL6, VEGFA and P53, and each component had a high VEGFA libdock score. It is speculated that VEGFA is the key target of XFZYD in the treatment of CHD. Kaempferol and VEGFA had the highest libdock score. kaempferol and IL6 have the highest number of hydrogen bonds, kaempferol and IL6 have the highest number of hydrogen bonds, which indicates that they are most stable, indicating that kaempferol is the key component of XFZYD in the treatment of CHD, which provides a theoretical basis for follow-up experimental research.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xunyan Xing
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xuerun Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
9
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
10
|
Verma VK, Malik S, Mutneja E, Sahu AK, Prajapati V, Mishra P, Bhatia J, Arya DS. Morin ameliorates myocardial injury in diabetic rats via modulation of inflammatory pathways. Lab Anim Res 2024; 40:3. [PMID: 38331877 PMCID: PMC10854036 DOI: 10.1186/s42826-024-00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND High blood glucose levels in diabetes lead to vascular inflammation which accelerates atherosclerosis. Herein, Morin was orally administered in male Wistar rats, at the dose of 40 mg/kg for 28 days, and on the 27th and 28th day, ISO was administered to designate groups at the dose of 85 mg/kg s.c., to induce myocardial infarction. RESULTS Free radical generation, including ROS, in diabetes following ISO administration, leads to the activation of both intrinsic and extrinsic pathways of apoptosis. Morin significantly (p ≤ 0.05) reduced oxidative stress (GSH, MDA, SOD), cardiac injury markers (CK-MB, LDH), inflammation (TNF, IL-6), and apoptosis (Bax, BCl2, Caspase-3). In addition, it also reduced insulin and blood glucose levels. Akt/eNOS, Nrf2/HO-1, MAPK signaling pathways, and Insulin signal transduction pathways were positively modulated by morin pre-treatment. CONCLUSIONS Morin attenuated oxidative stress and inflammation and also modified the activity of various molecular pathways to mitigate cardiomyocyte damage during ISO-induced MI in diabetic rats.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prashant Mishra
- Department of Pharmacology, Armed Force Medical College, Pune, Maharastra, 411040, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamveer Singh Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
11
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
12
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
13
|
Han M, Lin J, Yang Y, Ding Y, Ge W, Fan H, Wang C, Xie W. Xinshuaining preparation protects H9c2 cells from H 2O 2-induced oxidative damage through the PI3K/Akt/Nrf-2 signaling pathway. Clin Exp Hypertens 2023; 45:2131806. [PMID: 36266998 DOI: 10.1080/10641963.2022.2131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death. Oxidative stress is an important pathological process of a variety of CVDs. Xinshuaining preparation has a therapeutic effect on the heart failure. However, the anti-oxidative stress role of Xinshuaining preparation in H9c2 cells is still unclear. METHODS The medicated serum of Xinshuaining preparation was acquired and utilized to hatch with H2O2-induced H9c2 cells. Main components in the Xinshuaining preparation were analyzed by liquid chromatography-mass spectrometry (LC/MS). The effect of medicated serum on the cell viability, apoptosis rate, the oxidative stress indicators (SOD, GSH-Px, and MDA), mitochondrial membrane potential (MMP), and ROS level was evaluated by CCK-8, flow cytometry, commercial biochemical detection kits, and JC-1 staining. Additionally, the associated mechanism was determined by the detection of the protein levels (PI3K, phosphorylated PI3K, Akt, phosphorylated Akt, and Nrf-2) through western blot assays, which was also further assessed with the application of LY294002. RESULTS The medicated serum of Xinshuaining preparation notably increased the H2O2-reduced, the cell viability, the concentration of SOD and GSH-Px, MMP level and the relative protein expression level of phosphorylated PI3K and Akt and Nrf-2, while dampened the H2O2-elevated the level of the cell apoptosis rate, MDA, and ROS. However, Xinshuaining preparation on the cell viability, apoptosis, and oxidative stress was notably antagonized by LY294002 pre-treatment. CONCLUSIONS The medicated serum of Xinshuaining preparation increased the cell viability and suppressed apoptosis and oxidative stress via the PI3K/Akt/Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Mingjun Han
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Jie Lin
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yumei Ding
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wenjun Ge
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Haoran Fan
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Ce Wang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wen Xie
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| |
Collapse
|
14
|
Surilige, Hu P, Bai T, Xiu Z, Hujiya, Li M, Zhang Q, Wan Q. Exploring the role of aquaporin proteins in the pre-protective action of Sanwei sandalwood decoction from adriamycin-induced chronic heart failure: A mechanistic study. Heliyon 2023; 9:e22718. [PMID: 38058452 PMCID: PMC10696208 DOI: 10.1016/j.heliyon.2023.e22718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
This study employed network pharmacology, molecular docking technology, and modern pharmacological research methods to explore the pre-protective effect and underlying mechanism, Sanwei sandalwood decoction, against Adriamycin-induced Chronic Heart Failure, with a particular focus on the involvement of aquaporins. Additionally, the study highlighted aquaporins as a significant factor, affecting processes such as cell proliferation and response to reactive oxygen species. The results of in vivo experiments demonstrated that the administration of Sanwei sandalwood decoction in rats with chronic heart failure led to an enhancement in the ejection fraction and improved heart ejection function. Additionally, the decoction significantly reduced the serum levels of Creatine Kinase, Creatine Kinase-MB, and N-terminal pro-B-type natriuretic peptide. Furthermore, the relative expression of Aquarporin-1, 4, and 7mRNAs and proteins in the hearts of rats with chronic heart failure was down-regulated upon treatment. Overall, Sanwei sandalwood decoction can have an effective cardioprotective effect in preventing Adriamycin-induced Chronic Heart Failure in rats.
Collapse
Affiliation(s)
- Surilige
- Affiliated Hospital of Inner Mongolia University for Nationalities Inner Mongolia, China
| | - Pengfei Hu
- Affiliated Hospital of Inner Mongolia University for Nationalities Inner Mongolia, China
| | - Tingting Bai
- Key Laboratory of Mongolian Medicine Pharmacology for Cardio Inner Mongolia, China
| | - Zhi Xiu
- Clinical Medical College of Inner Mongolia University for Nationalities Inner Mongolia, China
| | - Hujiya
- Clinical Medical College of Inner Mongolia University for Nationalities Inner Mongolia, China
| | - Ming Li
- Clinical Medical College of Inner Mongolia University for Nationalities Inner Mongolia, China
| | - Qingshan Zhang
- Affiliated Hospital of Inner Mongolia University for Nationalities Inner Mongolia, China
| | - Quan Wan
- Affiliated Hospital of Inner Mongolia University for Nationalities Inner Mongolia, China
| |
Collapse
|
15
|
Wang YJ, Wang YL, Jiang XF, Li JE. Molecular targets and mechanisms of Jiawei Jiaotai Pill on diabetic cardiomyopathy based on network pharmacology. World J Diabetes 2023; 14:1659-1671. [DOI: 10.4239/wjd.v14.i11.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Jiawei Jiaotai Pill is commonly used in clinical practice to reduce apoptosis, increase insulin secretion, and improve blood glucose tolerance. However, its mechanism of action in the treatment of diabetic cardiomyopathy (DCM) remains unclear, hindering research efforts aimed at developing drugs specifically for the treatment of DCM.
AIM To explore the pharmacodynamic basis and molecular mechanism of Jiawei Jiaotai Pill in DCM treatment.
METHODS We explored various databases and software, including the Traditional Chinese Medicine Systems Pharmacology Database, Uniport, PubChem, GenCards, String, and Cytoscape, to identify the active components and targets of Jiawei Jiaotai Pill, and the disease targets in DCM. Protein-protein interaction network, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were used to determine the mechanism of action of Jiawei Jiaotai Pill in treating DCM. Molecular docking of key active components and core targets was verified using AutoDock software.
RESULTS Total 42 active ingredients and 142 potential targets of Jiawei Jiaotai Pill were identified. There were 100 common targets between the DCM and Jiawei Jiaotai Pills. Through this screening process, TNF, IL6, TP53, EGFR, INS, and other important targets were identified. These targets are mainly involved in the positive regulation of the mitogen-activated protein kinase (MAPK) MAPK cascade, response to xenobiotic stimuli, response to hypoxia, positive regulation of gene expression, positive regulation of cell proliferation, negative regulation of the apoptotic process, and other biological processes. It was mainly enriched in the AGE-RAGE signaling pathway in diabetic complications, DCM, PI3K-Akt, interleukin-17, and MAPK signaling pathways. Molecular docking results showed that Jiawei Jiaotai Pill's active ingredients had good docking activity with DCM's core target.
CONCLUSION The active components of Jiawei Jiaotai Pill may play a role in the treatment of DCM by reducing oxidative stress, cardiomyocyte apoptosis and fibrosis, and maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Yu-Juan Wang
- Department of Otolaryngology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaaxi Province, China
| | - Yan-Li Wang
- Department of Pediatrics, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Fan Jiang
- Department of Chinese Medicine, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaaxi Province, China
| | - Juan-E Li
- Department of Chinese Medicine, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaaxi Province, China
| |
Collapse
|
16
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023; 42:12935-12953. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Li X, Wang Y, Liu C, Fu G, Li J, Zhang J. Beraprost sodium attenuates the development of myocardial fibrosis after myocardial infarction by regulating GSK-3β expression in rats. Immun Inflamm Dis 2023; 11:e1050. [PMID: 38018586 PMCID: PMC10633815 DOI: 10.1002/iid3.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to elucidate the mechanism of beraprost sodium (BPS) in the intervention of myocardial fibrosis after myocardial infarction (MI) through glycogen synthase kinase-3β (GSK-3β) and to provide new ideas for intervention in myocardial fibrosis. MATERIALS AND METHODS MI model rats given BPS and cardiac fibroblasts (CFs) treated with BPS and TGF-β. HE staining and Masson staining were used to detect the pathological changes of myocardial tissue. Fibrotic markers were detected by immunohistochemical staining. The expressions of GSK-3β, cAMP response element binding protein (CREB), and p-CREB were analyzed by qPCR and western blot analysis. EDU staining was used to detect the proliferation of CFs. The promoter activity of GSK-3β was detected by luciferase assay. Chromatin immunoprecipitation assay was used to detect the binding levels of GSK-3β promoter and Y-box binding protein 1 (YBX1). The levels of intracellular cyclic adenosine monophosphate (cAMP) were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS After operation, BPS improved myocardial fibrosis and upregulated GSK-3β protein expression in male SD rats. BPS can down-regulate α-smooth muscle actin (α-SMA) level and up-regulate GSK-3β protein expression in CFs after TGF-β stimulation. Furthermore, GSK-3β knockdown can reverse the effect of BPS on TGF-β-activated CFs, enhance α-SMA expression, and promote the proliferation of CFs. BPS could regulate GSK-3β expression by promoting the binding of GSK-3β promoter to YBX1. BPS induced upregulation of p-CREB and cAMP, resulting in reduced fibrosis, which was reversed by the knockdown of GSK-3β or prostaglandin receptor (IPR) antagonists. CONCLUSION BPS treatment increased the binding of YBX1 to the GSK-3β promoter, and GSK-3β protein expression was upregulated, which further caused the upregulation of p-CREB and cAMP, and finally inhibited myocardial fibrosis.
Collapse
Affiliation(s)
- Xing‐Xing Li
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yun‐Zhe Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuang Liu
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guo‐Wei Fu
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jun Li
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jin‐Ying Zhang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Province′s Key Laboratory of Cardiac Injury and RepairZhengzhouChina
- Henan Province Clinical Research Center for Cardiovascular DiseasesZhengzhouChina
| |
Collapse
|
18
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1879-1909. [PMID: 37067583 DOI: 10.1007/s00210-023-02487-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Mamdouh Hashiesh H, Sheikh A, Meeran MFN, Saraswathiamma D, Jha NK, Sadek B, Adeghate E, Tariq S, Al Marzooqi S, Ojha S. β-Caryophyllene, a Dietary Phytocannabinoid, Alleviates Diabetic Cardiomyopathy in Mice by Inhibiting Oxidative Stress and Inflammation Activating Cannabinoid Type-2 Receptors. ACS Pharmacol Transl Sci 2023; 6:1129-1142. [PMID: 37588762 PMCID: PMC10425997 DOI: 10.1021/acsptsci.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 08/18/2023]
Abstract
Diabetes mellitus (DM) and its associated complications are considered one of the major health risks globally. Among numerous complications, diabetic cardiomyopathy (DCM) is characterized by increased accumulation of lipids and reduced glucose utilization following abnormal lipid metabolism in the myocardium along with oxidative stress, myocardial fibrosis, and inflammation that eventually result in cardiac dysfunction. The abnormal metabolism of lipids plays a fundamental role in cardiac lipotoxicity following the occurrence and development of DCM. Recently, it has been revealed that cannabinoid type-2 (CB2) receptors, an essential component of the endocannabinoid system, play a crucial role in the pathogenesis of obesity, hyperlipidemia, and DM. Provided the role of CB2R in regulating the glucolipid metabolic dysfunction and its antioxidant as well as anti-inflammatory activities, we carried out the current study to investigate the protective effects of a selective CB2R agonist, β-caryophyllene (BCP), a natural dietary cannabinoid in the murine model of DCM and elucidated the underlying pharmacological and molecular mechanisms. Mice were fed a high-fat diet for 4 weeks followed by a single intraperitoneal injection of streptozotocin (100 mg/kg) to induce the model of DCM. BCP (50 mg/kg body weight) was given orally for 12 weeks. AM630, a CB2R antagonist, was given 30 min before BCP treatment to demonstrate the CB2R-dependent mechanism of BCP. DCM mice exhibited hyperglycemia, increased serum lactate dehydrogenase, impaired cardiac function, and hypertrophy. In addition, DCM mice showed alternations in serum lipids and increased oxidative stress concomitant to reduced antioxidant defenses and enhanced cardiac lipid accumulation in the diabetic heart. DCM mice also exhibited activation of TLR4/NF-κB/MAPK signaling and triggered the production of inflammatory cytokines and inflammatory enzyme mediators. However, treatment with BCP exerted remarkable protective effects by favorable modulation of the biochemical and molecular parameters, which were altered in DCM mice. Interestingly, pretreatment with AM630 abrogated the protective effects of BCP in DCM mice. Taken together, the findings of the present study demonstrate that BCP possesses the capability to mitigate the progression of DCM by inhibition of lipotoxicity-mediated cardiac oxidative stress and inflammation and favorable modulation of TLR4/NF-κB/MAPK signaling pathways mediating the CB2R-dependent mechanism.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Azimullah Sheikh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Dhanya Saraswathiamma
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Niraj Kumar Jha
- Department
of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Bassem Sadek
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeed Tariq
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeeda Al Marzooqi
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Shreesh Ojha
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Zayed Bin
Sultan Center for Health Sciences, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kamisah Y, Jalil J, Yunos NM, Zainalabidin S. Cardioprotective Properties of Kaempferol: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112096. [PMID: 37299076 DOI: 10.3390/plants12112096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Cardiac diseases, such as myocardial infarction and heart failure, have become a major clinical problem globally. The accumulating data demonstrate that bioactive compounds with antioxidant and anti-inflammatory properties have favorable effects on clinical problems. Kaempferol is a flavonoid found in various plants; it has demonstrated cardioprotective properties in numerous cardiac injury models. This review aims to collate updated information regarding the effects of kaempferol on cardiac injury. Kaempferol improves cardiac function by alleviating myocardial apoptosis, fibrosis, oxidative stress, and inflammation while preserving mitochondrial function and calcium homeostasis. However, the mechanisms of action of its cardioprotective properties remain unclear; therefore, elucidating its action could provide insight into directions for future studies.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nurhanan Murni Yunos
- Natural Products Division, Forest Research Institute of Malaysia, Selangor 52109, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
22
|
Lee C, Yoon S, Moon JO. Kaempferol Suppresses Carbon Tetrachloride-Induced Liver Damage in Rats via the MAPKs/NF-κB and AMPK/Nrf2 Signaling Pathways. Int J Mol Sci 2023; 24:ijms24086900. [PMID: 37108064 PMCID: PMC10138912 DOI: 10.3390/ijms24086900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress plays a critical role in the development of liver disease, making antioxidants a promising therapeutic approach for the prevention and management of liver injuries. The aim of this study was to investigate the hepatoprotective effects of kaempferol, an antioxidant flavonoid found in various edible vegetables, and its underlying mechanism in male Sprague-Dawley rats with carbon tetrachloride (CCl4)-induced acute liver damage. Oral administration of kaempferol at doses of 5 and 10 mg/kg body weight resulted in the amelioration of CCl4-induced abnormalities in hepatic histology and serum parameters. Additionally, kaempferol decreased the levels of pro-inflammatory mediators, TNF-α and IL-1β, as well as COX-2 and iNOS. Furthermore, kaempferol suppressed nuclear factor-kappa B (NF-κB) p65 activation, as well as the phosphorylation of Akt and mitogen-activated protein kinase members (MAPKs), including extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 in CCl4-intoxicated rats. In addition, kaempferol improved the imbalanced oxidative status, as evidenced by the reduction in reactive oxygen species levels and lipid peroxidation, along with increased glutathione content in the CCl4-treated rat liver. Administering kaempferol also enhanced the activation of nuclear factor-E2-related factor (Nrf2) and heme oxygenase-1 protein, as well as the phosphorylation of AMP-activated protein kinase (AMPK). Overall, these findings suggest that kaempferol exhibits antioxidative, anti-inflammatory, and hepatoprotective effects through inhibiting the MAPK/NF-κB signaling pathway and activating the AMPK/Nrf2 signaling pathway in CCl4-intoxicated rats.
Collapse
Affiliation(s)
- Changyong Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, College of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeon-Ok Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
23
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Wang Q, Botchway BOA, Zhang Y, Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson's disease: A review. Biomed Pharmacother 2022; 156:113848. [PMID: 36242848 DOI: 10.1016/j.biopha.2022.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a familiar neurodegenerative disease, accompanied by motor retardation, static tremor, memory decline and dementia. Heredity, environment, age and oxidative stress have been suggested as key factors in the instigation of PD. The Keap1-Nrf2-ARE signaling is one of the most significant anti- oxidative stress (OS) pathways. The Keap1 is a negative regulator of the Nrf2. The Keap1-Nrf2-ARE pathway can induce cell oxidation resistance and reduce nerve injury to treat neurodegenerative diseases. Ellagic acid (EA) can inhibit the Keap1 to accumulate the Nrf2 in the nucleus, and act on the ARE to produce target proteins, which in turn may alleviate the impact of OS on neuronal cells of PD. This review analyzes the structure and physiological role of EA, along with the structure, composition and functions of the Keap1-Nrf2-ARE signaling pathway. We further expound on the mechanism of ellagic acid in its activation of the Keap1-Nrf2-ARE signaling pathway, as well as the relationship between EA in impairing the TLR4/Myd88/NF-κB and Nrf2 pathways. Ellagic acid has the potentiality of improving PD by activating the Keap1-Nrf2-ARE signaling pathway and scavenging free radicals.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
26
|
Obeidat HM, Althunibat OY, Alfwuaires MA, Aladaileh SH, Algefare AI, Almuqati AF, Alasmari F, Aldal’in HK, Alanezi AA, Alsuwayt B, Abukhalil MH. Cardioprotective Effect of Taxifolin against Isoproterenol-Induced Cardiac Injury through Decreasing Oxidative Stress, Inflammation, and Cell Death, and Activating Nrf2/HO-1 in Mice. Biomolecules 2022; 12:1546. [PMID: 36358896 PMCID: PMC9687704 DOI: 10.3390/biom12111546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/02/2023] Open
Abstract
Oxidative stress and inflammation are key components in cardiovascular diseases and heart dysfunction. Herein, we evaluated the protective effects of (+)-taxifolin (TAX), a potent flavonoid with significant antioxidant and anti-inflammatory actions, on myocardial oxidative tissue injury, inflammation, and cell death, using a mouse model of isoproterenol (ISO)-induced acute myocardial injury. Mice were given TAX (25 and 50 mg/kg, orally) for 14 days before receiving two subsequent injections of ISO (100 mg/kg, s.c.) at an interval of 24 h on the 15th and 16th days. The ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), along with several histopathological changes. The ISO also induced increased malondialdehyde (MDA) with concomitant declined myocardial glutathione level and antioxidant enzymes activities. Moreover, ISO-induced heart injury was accompained with elevated cardiac NF-κB p65, TNF-α, IL-1β, Bax, and caspase-3, as well as decreased Bcl-2, Nrf2, and HO-1. Remarkably, TAX reduced the severity of cardiac injury, oxidative stress, inflammation, and cell death, while enhancing antioxidants, Bcl-2, and Nrf2/HO-1 signaling in ISO-injected mice. In conclusion, TAX protects against ISO-induced acute myocardial injury via activating the Nrf2/HO-1 signaling pathway and attenuating the oxidative tissue injury and key regulators of inflammatory response and apoptosis. Thus, our findings imply that TAX may constitute a new cardioprotective therapy against acute MI, which undoubtedly deserves further exploration in upcoming human trials.
Collapse
Affiliation(s)
- Heba M. Obeidat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Saleem H. Aladaileh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Abdulmohsen I. Algefare
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hammad Khalifeh Aldal’in
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Al-Karak 19117, Jordan
| | - Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| |
Collapse
|
27
|
Wang X, He K, Ma L, Wu L, Yang Y, Li Y. Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 2022; 26:306. [PMID: 35946454 PMCID: PMC9437969 DOI: 10.3892/mmr.2022.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myocardial hypertrophy (MH) is an independent risk factor for cardiovascular disease, which in turn lead to arrhythmia or heart failure. Therefore, attention must be paid to formulation of therapeutic strategies for MH. Puerarin is a key bioactive ingredient isolated from Pueraria genera of plants that is beneficial for the treatment of MH. However, its molecular mechanism of action has not been fully determined. In the present study, 40 µM puerarin was demonstrated to be a safe dose for human AC16 cells using Cell Counting Kit‑8 assay. The protective effects of puerarin against MH were demonstrated in AC16 cells stimulated with isoproterenol (ISO). These effects were characterized by a significant decrease in surface area of cells (assessed using fluorescence staining) and mRNA and protein expression levels of MH‑associated biomarkers, including atrial and brain natriuretic peptide, assessed using reverse transcription‑quantitative PCR and western blotting, as well as β‑myosin heavy chain mRNA expression levels. Mechanistically, western blotting demonstrated that puerarin inhibited activation of the Wnt signaling pathway. Puerarin also significantly decreased phosphorylation of p65; this was mediated via crosstalk between the Wnt and NF‑κB signaling pathways. An inhibitor (Dickkopf‑1) and activator (IM‑12) of the Wnt signaling pathway were used to demonstrate that puerarin‑mediated effects alleviated ISO‑induced MH via the Wnt signaling pathway. The results of the present study demonstrated that puerarin pre‑treatment may be a potential therapeutic strategy for preventing ISO‑induced MH and managing MH in the future.
Collapse
Affiliation(s)
- Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Linlin Ma
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lan Wu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
28
|
LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis. Aging (Albany NY) 2022; 14:6809-6828. [PMID: 36044268 PMCID: PMC9467416 DOI: 10.18632/aging.204256] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
Objective: Extensive studies have shown that ERS may be implicated in the pathogenesis of DCM. We explored the therapeutic effects of lncRNAH19 on DCM and its effect on ERS-associated cardiomyocyte apoptosis. Methods: C57/BL-6j mice were randomly divided into 3 groups: non-DM group (controls), DM group (DCM), and lncRNAH19 overexpression group (DCM+H19 group). The effect of H19 on cardiac function was detected. The effect of H19 on cardiomyocyte apoptosis and cardiac fibrosis in DM was examined. Differentially expressed genes (DEGs) and activated pathways were examined by bioinformatics analysis. STRING database was applied to construct a PPI network using Cytoscape software. The expression of p-PERK, p-IRE1, ATF6, CHOP, cleaved caspase-3, -9, -12 and BAX proteins in cardiac tissue was used to determine the ERS-associated apoptotic indicators. We established the HG-stimulated inflammatory cell model. The expression of p-PERK and CHOP in HL-1 cells following HG was determined by immunofluorescence labeling. The effects of H19 on ERS and PI3K/AKT/mTOR pathway were also detected. Results: H19 improved left ventricular dysfunction in DM. H19 could reduce cardiomyocytes apoptosis and improve fibrosis in vivo. H19 could reduce the expression of p-PERK, p-IRE1α, ATF6, CHOP, cleaved caspase-3, cleaved caspase-9, cleaved caspase-12, and BAX proteins in cardiac tissues. Furthermore, H19 repressed oxidative stress, ERS and apoptosis in vitro. Moreover, the effect of H19 on ERS-associated apoptosis might be rescued by LY294002 (the specific inhibitor for PI3K and AKT). Conclusion: H19 attenuates DCM in DM and ROS, ERS-induced cardiomyocyte apoptosis, which is associated with the activation of PI3K/AKT/mTOR signaling pathway.
Collapse
|
29
|
Mechanism of Danhong Injection in the Treatment of Arrhythmia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4336870. [PMID: 35915792 PMCID: PMC9338864 DOI: 10.1155/2022/4336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Background. Danhong injection (DHI) is widely used in the treatment of cardiovascular and cerebrovascular diseases, and its safety and effectiveness have been widely recognized and applied in China. However, the potential molecular mechanism of action for the treatment of arrhythmia is not fully understood. Aim. In this study, through network pharmacology and in vitro cell experiments, we explored the active compounds of DHI for the treatment of arrhythmia and predicted the potential targets of the drug to investigate its mechanism of action. Materials and Methods. First, the potential therapeutic effect of DHI on arrhythmia was investigated in an in vitro arrhythmia model using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), in which calcium transients were recorded to evaluate the status of arrhythmia. Next, the active compounds and key targets in the treatment of arrhythmia were identified through network pharmacology and molecular docking, and the key signaling pathways related to the treatment of arrhythmia were analyzed. Furthermore, we used real-time quantitative reverse transcription PCR (qRT–PCR) to verify the expression levels of key genes. Results. Early afterdepolarizations (EADs) were observed during aconitine treatment in hiPSC-CMs, and the proarrhythmic effect of aconitine was partially rescued by DHI, indicating that the antiarrhythmic role of DHI was verified in an in vitro human cardiomyocyte model. To further dissect the underlying molecular basis of this observation, network pharmacology analysis was performed, and the results showed that there were 108 crosstargets between DHI and arrhythmia. Moreover, 30 of these targets, such as AKT1 and HMOX1, were key genes. In addition, the mRNA expression of AKT1 and HMOX1 could be regulated by DHI. Conclusion. DHI can alleviate aconitine-induced arrhythmia in an in vitro model, presumably because of its multitarget regulatory mechanism. Key genes, such as AKT1 and HMOX1, may contribute to the antiarrhythmic role of DHI in the heart.
Collapse
|
30
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
31
|
Saqib F, Wahid M, Al-Huqail AA, Ahmedah HT, Bigiu N, Irimie M, Moga M, Marc Vlaic RA, Pop OL, Chicea LM. Metabolomics based mechanistic insights to vasorelaxant and cardioprotective effect of ethanolic extract of Citrullus lanatus (Thunb.) Matsum. & Nakai. seeds in isoproterenol induced myocardial infraction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154069. [PMID: 35364560 DOI: 10.1016/j.phymed.2022.154069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a significant cause of morbidity and death in the current world, posing a challenge to both developing and industrialized nation's health systems. Citrullus lanatus (Thunb.) Matsum. & Nakai. seeds have long been utilized to supplement and enhance health and treat cardiovascular illnesses. However, its treatments for CVDs are still unknown. More research is required to fully comprehend the impact of C. lanatus seeds on vasorelaxation and myocardial infractions. PURPOSE Therefore, an integrated metabolomics profiling technique was used to investigate possible pathways of C. lanatus in isoproterenol (ISO)-induced myocardial infarction (MI). Isoproterenol causes long-term cardiac hypertrophy by causing cardiomyocyte compensatory loss, eventually leading to heart failure. METHODS In vitro models of vasoconstriction, atrium, and in vivo models of invasive blood pressure measurement and isoproterenol (ISO) induced cardiac hypertrophy in rats were used to understand underlying mechanistic by LC-MS/MS based dynamic metabolomics analysis of the serum and heart samples to be investigated the effect of ethanolic extract of C. lanatus (Cl.EtOH). RESULTS Cl.EtOH exhibited vasorelaxant, negative chronotropic, and inotropic effects in in-vitro models whereas, a potent hypotensive effect was observed in normotensive rats. The Cl.EtOH protected the animals from ISO-induced myocardial infarction (MI) with therapeutic interventions in left ventricular thickness, cardiomyocyte hypertrophy, mRNA gene expression, biochemical assays, and metabolomic profiling of serum and heart tissues. CONCLUSIONS For the first time, our study confirmed that C. lanatus seeds (Cl.EtOH) possess significant antihypertensive and prevent ISO-induced myocardial infarction. These findings comprehensively demonstrated mechanistic insights of Cl.EtOH in vasorelaxation and myocardial infarction. The current study provides evidence for further mechanistic studies and the development of C. lanatus seeds as a potential therapeutic intervention for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Nicusor Bigiu
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov.
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov
| | - Marius Moga
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov
| | - Romina Alina Marc Vlaic
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | | |
Collapse
|
32
|
Investigation of the Potential Key Genes and the Multitarget Mechanisms of Polygonum cuspidatum against Heart Failure Based on Network Pharmacology and Experimental Validation. DISEASE MARKERS 2022; 2022:7784021. [PMID: 35669500 PMCID: PMC9167087 DOI: 10.1155/2022/7784021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
In this study, systematic pharmacology and bioinformatic approaches were employed to identify the potential targets of Polygonum cuspidatum (PC) for treating heart failure (HF). The active ingredients of PC were screened by using the TCMSP database, and HF-related genes were identified in the GEO database. Then, the herb-HF targeted-gene networks were constructed using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses were performed to obtain the enriched molecular pathways associated with the pathogenesis of HF. Finally, in vitro experiment was performed to evidence network pharmacology analysis. 170 intersection genes were obtained, and key genes (FOXO3, NFKB1, and TNF) were identified. Besides, GO and KEGG findings indicated that PC treatment of HF was achieved via regulating apoptosis, IL-17 signaling pathway, TNF signaling pathway, response to oxidative stress, and response to reactive oxygen species. And cell experiment revealed that PC could decrease the expression of NFKB1 and TNF and increase the expression of FOXO3, SOD1, and GPX1 in H9C2 cells. These findings showed that the therapeutic mechanism of PC in the treatment of HF may be associated with the regulation of inflammation-related and oxidative stress-related genes.
Collapse
|
33
|
Abstract
The PI3K/AKT signaling has crucial role in the regulation of numerous physiological functions through activation of downstream effectors and modulation of cell cycle transition, growth and proliferation. This pathway participates in the pathogenesis of several human disorders such as heart diseases through regulation of size and survival of cardiomyocytes, angiogenic processes as well as inflammatory responses. Moreover, PI3K/AKT pathway participates in the process of myocardial injury induced by a number of substances such as H2O2, Mercury, lipopolysaccharides, adriamycin, doxorubicin and epirubicin. In this review, we describe the contribution of this pathway in the pathoetiology of myocardial ischemia/reperfusion injury and myocardial infarction, heart failure, cardiac hypertrophy, cardiomyopathy and toxins-induced cardiac injury.
Collapse
|
34
|
Qi Y, Fu S, Pei D, Fang Q, Xin W, Yuan X, Cao Y, Shu Q, Mi X, Luo F. Luteolin attenuated cisplatin-induced cardiac dysfunction and oxidative stress via modulation of Keap1/Nrf2 signaling pathway. Free Radic Res 2022; 56:209-221. [PMID: 35468014 DOI: 10.1080/10715762.2022.2067042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cardiovascular complications are a well-documented limitation of cancer chemotherapy. Cisplatin-induced cardiotoxicity threatens the health and life of patients, and limits the application of cisplatin. Oxidative stress is the main mechanism underlying cisplatin-induced cardiac toxicity. Luteolin (Lut) has been reported to possess cardioprotective properties by activating nuclear factor-E2-related factor 2 (Nrf2) -mediated antioxidant response. However, the effect of Lut on cisplatin-induced cardiac damage remains unclear. In this study, we revealed that Lut exerted a protective effect against cisplatin-induced cardiac dysfunction and injury in vivo. In HL-1 cells, Lut was observed to dramatically reduce cisplatin-induced apoptosis and oxidative stress by modulating the Kelch-like epichlorohydrin-associated protein 1 (Keap1)/Nrf2 pathway. Altogether, these findings suggested that Lut showed promise in attenuating cisplatin-induced cardiac injury and might be considered a protective drug candidate for chemotherapy-associated cardiovascular complications.
Collapse
Affiliation(s)
- Yajun Qi
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shuang Fu
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Anesthesiology, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Donggen Pei
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qilu Fang
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxiu Xin
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaohong Yuan
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Anesthesiology, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yingying Cao
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qi Shu
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiufang Mi
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Fang Luo
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.,Department of Pharmacy, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Mechanism of Zhen Wu Decoction in the Treatment of Heart Failure Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4877920. [PMID: 35341142 PMCID: PMC8941561 DOI: 10.1155/2022/4877920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Heart failure (HF) is a serious manifestation or advanced stage of various cardiovascular diseases, and its mortality and rehospitalization rate are still on the rise in China. Based on the network pharmacology method, 59 components of Zhen Wu decoction (ZWD) and 83 target genes related to HF were obtained. Through the PPI network, four potential therapeutic targets were identified: AKT1, IL6, JUN, and MAPK8. The beneficial components of ZWD might intervene HF through the AGE-RAGE signalling pathway in the diabetes component, fluid shear stress and atherosclerosis, the TNF signalling pathway, TB, and Kaposi sarcoma related herpesvirus infection, according to a KEGG enrichment study. The protein interaction network of candidate targets was constructed by the STRING database, and the protein interaction network was clustered by MEODE software. GO and KEGG enrichment analyses were performed on the core modules obtained by clustering. Finally, AutoDock Vina software was used for molecular docking verification of key targets and active ingredients. The result was that 75 active ingredients and 109 genes were screened as potential active ingredients and potential targets of Shengjie Tongyu decoction for CHF treatment. The main active components were quercetin, luteolin, kaempferol, dehydrated icariin, isorhamnetin, formononetin, and other flavonoids. Il-6, MAPK1, MAPK8, AKT1, VEGFA, and JUN were selected as the core targets. Molecular docking showed that the key components were well connected with the target. GO enrichment analysis showed that Shengjie Tongyu decoction could play a role through multiple biological pathways including angiogenesis, regulation of endothelial cell proliferation, binding of cytokine receptors, negative regulation of apoptotic signalling pathways, regulation of nitric oxide synthase activity, and reactive oxygen metabolism. Key pathways mainly focus on the toll-like receptor signalling pathway, nod-like receptor signalling pathway, MAPK signalling pathway, mTOR signalling pathway, JAK-STAT signalling pathway, VEGF signalling pathway, and other pathways. Through molecular docking technology, it was found that a variety of effective components in ZWD, such as kaempferol. Molecular docking technology has preliminatively verified the network pharmacology and laid a foundation for the follow-up pharmacological research.
Collapse
|
36
|
Amin F, Tabassum S, Sarwar S, Qureshi R, Sohaib Khalid M, Riaz N, Al-Qahtani WH, Murtaza I. Neuroprotective Effect of Otostegia limbata Against PTZ-Induced Mice Model of Epilepsy by Attenuated Expression of p-NFκB and TNF-α. Front Neurosci 2022; 16:779681. [PMID: 35392411 PMCID: PMC8982360 DOI: 10.3389/fnins.2022.779681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Currently available antiepileptic drugs have severe side effects and do not offer complete cure. Herbal remedies have been used for centuries to treat many neurodegenerative disorders. Otostegia limbata L. belongs to the largest and medicinally important family Lamiaceae and is distributed in hilly areas of Pakistan. This study was designed to assess the antioxidant, anti-inflammatory, and anticonvulsant potential of O. limbata. The methanolic extract showed significant antioxidant activity assessed by (1,1-diphenyl 2-picrylhydrazyl) free-radical scavenging assay, nitric oxide scavenging, and iron chelation antioxidant assays. The methanolic extract was evaluated for its anticonvulsant effect, employing the pentylenetetrazole (PTZ)-induced mice model of epilepsy. Three different doses of O. limbata (100, 200, and 300 mg/kg) were administered orally 30 min before PTZ [50 mg/kg, intraperitoneal (i.p.)] injection, while diazepam was used as a positive control. The extract at 300 mg/kg significantly decreased the duration and increased the latency of the PTZ-induced seizures. The expression of inflammatory cytokines tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB), in the cortex and hippocampus of the brains of treated mice were analyzed through enzyme-linked immunosorbent assay and western blot analysis. The morphological changes and number of surviving neurons were recorded through hematoxylin and eosin staining. The seizure score and survival rate of the treated group showed considerable differences as compared to the PTZ group. TNF-α and p-NF-K b expression were downregulated as compared to the PTZ group. The anticonvulsant effect may be the outcome of the antioxidant potential and high levels of phenols and flavonoids detected in the methanolic plant extract through Fourier transform infrared spectrophotometer and gas chromatography–mass spectrometry analysis.
Collapse
Affiliation(s)
- Farhana Amin
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- *Correspondence: Sobia Tabassum,
| | - Sadia Sarwar
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Sohaib Khalid
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Naveeda Riaz
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Iram Murtaza
- Department of Biochemistry and Molecular Biology, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
37
|
Alshehri AS, El-Kott AF, El-Gerbed MSA, El-Kenawy AE, Albadrani GM, Khalifa HS. Kaempferol prevents cadmium chloride-induced liver damage by upregulating Nrf2 and suppressing NF-κB and keap1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13917-13929. [PMID: 34599712 DOI: 10.1007/s11356-021-16711-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the protective effect of kaempferol, a natural flavonoid, against cadmium chloride (CdCl2)-induced liver damage and examined the possible anti-inflammatory and antioxidant mechanisms of protection. Adult male rats were divided into 4 groups (each of 8 rats) as control, kaempferol (50 mg/kg/day orally), CdCl2 (15 ppm/day), and CdCl2 (15 ppm/day) + kaempferol (50 mg/kg/day). All treatments were given for 30 days. With no effect on attenuating the reduced food intake, kaempferol significantly increased body weight and lowered serum levels of liver injury markers including bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase 1 (γ-GTT1) in the CdCl2-treated rats. It also restored normal liver architectures, prevented hepatocyte, loss, and swelling and reduced inflammatory cell infiltration. These effects were associated with a reduction in mitochondrial permeability transition pore, as well as in the expression of cytochrome-c and cleaved caspase-3, markers of mitochondrial damage, and intrinsic cell death. In both the control positive and CdCl2-treated rats, kaempferol significantly lowered the hepatic levels of reactive oxygen species, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), Interleukine-6 (IL-6), and the nuclear activity and localization of NF-κB p65. Besides, kaempferol significantly increased the hepatic total and nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1, as well as levels of superoxide dismutase (SOD) and reduced glutathione (GSH) but reduced the cytoplasmic protein levels of keap1. In conclusion, the protective effect of kaempferol against CdCl2-induced hepatic damage is mediated by antioxidant and anti-inflammatory effects driven by upregulating Nrf2/HO-1 axis and suppressing the NF-κB p65 and keap1.
Collapse
Affiliation(s)
- Ali S Alshehri
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia.
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Mohamed S A El-Gerbed
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, 21944, Saudi Arabia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
38
|
Qi M, Wang N, Xiao Y, Deng Y, Zha A, Tan B, Wang J, Yin Y, Liao P. Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118572. [PMID: 34838710 DOI: 10.1016/j.envpol.2021.118572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Collapse
Affiliation(s)
- Ming Qi
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Andong Zha
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Peng Liao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| |
Collapse
|
39
|
Safarpour S, Pirzadeh M, Ebrahimpour A, Shirafkan F, Madani F, Hosseini M, Moghadamnia AA, Kazemi S. Protective Effect of Kaempferol and Its Nanoparticles on 5-Fluorouracil-Induced Cardiotoxicity in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2273000. [PMID: 35198633 PMCID: PMC8858719 DOI: 10.1155/2022/2273000] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fluorouracil (5-FU) is the third most common chemotherapeutic agent used in the treatment of solid tumors. 5-FU-associated cardiotoxicity ranks the second causes of cardiotoxicity induced by chemotherapeutic drugs after anthracyclines. Kaempferol (KPF), a common flavonoid, possessing anti-inflammatory, antiapoptotic, antioxidative properties, and its protective effects on cardiovascular disease has been reported in various studies. The current study is aimed at appraising the effect of KPF and KPF nanoparticles (NPs) on 5-FU-induced cardiotoxicity in rats. METHODS Thirty Male Wistar rats were divided into five groups as follows: control, 5-FU, 5-FU+10 mg/kg vitamin C, 5-FU+ 1 mg/kg KPF, and 5-FU+ 1 mg/kg KPF-NPs. Cardiotoxicity was induced with an intraperitoneal injection of a single dose of 5-FU (100 mg/kg). The control group received normal saline, and the treatment groups received KPF and KPF-NPs with an intraperitoneal injection for 14 days. Each heart histopathological lesions were given a score of 0 to 3 in compliance with the articles for statistical analysis. RESULTS 5-FU resulted in a significant cardiotoxicity represented by an increase in cardiac enzymes, MDA (malondialdehyde) levels, COX-2 (cyclooxygenase-2) expression, and histopathological degenerations. 5-FU treatment also decreased body weight, TAC (total antioxidant capacity) values, VEGF (vascular endothelial growth factor) expression, blood cells, and hemoglobin (Hb) levels. Treatment with KPF and KPF-NPs reduced oxidative stress, cardiac enzymes, COX-2 expression, and VEGF expression. The number of blood cells, Hb levels, and histopathological degenerations, in cardiac tissue also body weight of animals, increased, followed by treatment with KPF and KPF-NPs. CONCLUSION Our results demonstrated that treatment with KPF and KPF-NPs significantly improved cardiotoxicity induced by 5-FU in rats.
Collapse
Affiliation(s)
- Soheila Safarpour
- 1Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- 2Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Marzieh Pirzadeh
- 1Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Anahita Ebrahimpour
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shirafkan
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fateme Madani
- 1Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hosseini
- 4Department of Veterinary Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ali Akbar Moghadamnia
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
40
|
BinMowyna MN, AlFaris NA. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. PHARMACEUTICAL BIOLOGY 2021; 59:146-156. [PMID: 33556299 PMCID: PMC8871688 DOI: 10.1080/13880209.2021.1877734] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Kaempferol, a flavonoid glycoside, has many hepatoprotective effects in several animals due to its antioxidant potential. OBJECTIVE This study evaluated the hepatoprotective effect of kaempferol against acetaminophen (APAP)-induced liver damage and examined whether the protection involved modulation of silent information regulator 1 (SIRT1) signalling. MATERIALS AND METHODS Adult male Wistar rats were classified into four groups (n = 8) and treated as follows: control + normal saline (vehicle), control + kaempferol (250 mg/kg), APAP (800 mg/kg, a single dose) and APAP + kaempferol. Kaempferol was administered for the first seven days followed by administration of APAP. The study was ended 24 h after APAP administration. RESULTS At the histological level, kaempferol reduced liver damage in APAP-treated rats. It also reduced the hepatic levels of TNF-α (66.3%), IL-6 (38.6%) and protein levels of caspase-3 (88.2%), and attenuated the increase in circulatory serum levels of ALT (47.6%), AST (55.8%) and γ-GT (35.2%) in APAP-treated rats. In both the controls and APAP-treated rats, kaempferol significantly increased the hepatic levels of glutathione (GSH) and superoxide dismutase, suppressed MDA and reactive oxygen species (ROS) levels, increased protein levels of Bcl-2 and downregulated protein levels of Bax and cleaved Bax. Concomitantly, it reduced the expression of CYP2E1, and the activity and protein levels of SIRT1. Consequently, it decreased the acetylation of all SIRT1 targets including PARP1, p53, NF-κB, FOXO-1 and p53 that mediate antioxidant, anti-inflammatory and anti-apoptotic effects. DISCUSSION AND CONCLUSIONS This study encourages the use of kaempferol in further clinical trials to treat APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Nora Abdullah AlFaris
- Department of Physical Sport Science, Nutrition and Food Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- CONTACT Nora Abdullah AlFaris P.O. Box 84428, Riyadh11671, Saudi Arabia
| |
Collapse
|
41
|
Liu Y, Fan S, Niu F, Liu Y, Liu X, Ren X, Yang Y, Fan G, Dong H, Shen M, Sui H, Fang F, She G. Polyphenol-rich fraction from Thymus quinquecostatus Celak attenuates the myocardial ischemia injury in mice induced by isoproterenol through inhibiting apoptosis, antioxidation and activating PI3K/AKT pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
Alotaibi BS, Ijaz M, Buabeid M, Kharaba ZJ, Yaseen HS, Murtaza G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des Devel Ther 2021; 15:4713-4732. [PMID: 34848944 PMCID: PMC8619826 DOI: 10.2147/dddt.s327238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022] Open
Abstract
Polyphenols have long been recognized as health-promoting entities, including beneficial effects on cardiovascular disease, but their reputation has been boosted recently following a number of encouraging clinical studies in multiple chronic pathologies, that seem to validate efficacy. Health benefits of polyphenols have been linked to their well-established powerful antioxidant activity. This review aims to provide comprehensive and up-to-date knowledge on the current therapeutic status of polyphenols having sufficient heed towards the treatment of cardiovascular diseases. Furthermore, data about the safety profile of highly efficacious polyphenols has also been investigated to further enhance their role in cardiac abnormalities. Evidence is presented to support the action of phenolic derivatives against cardiovascular pathologies by following receptors and signaling pathways which ultimately cause changes in endogenous antioxidant, antiplatelet, vasodilatory, and anti-inflammatory activities. In addition, in vitro antioxidant and pre-clinical and clinical experiments on anti-inflammatory as well as immunomodulatory attributes of polyphenols have revealed their role as cardioprotective agents. However, an obvious shortage of in vivo studies related to dose selection and toxicity of polyphenols makes these compounds a suitable target for clinical investigations. Further studies are needed for the development of safe and potent herbal products against cardiovascular diseases. The novelty of this review is to provide comprehensive knowledge on polyphenols safety and their health claims. It will help researchers to identify those moieties which likely exert protective and therapeutic effects towards cardiovascular diseases.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Manal Buabeid
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hafiza Sidra Yaseen
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
43
|
Meng X, Zhang L, Han B, Zhang Z. PHLDA3 inhibition protects against myocardial ischemia/reperfusion injury by alleviating oxidative stress and inflammatory response via the Akt/Nrf2 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2266-2277. [PMID: 34351043 DOI: 10.1002/tox.23340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Pleckstrin homology-like domain family A, member 3 (PHLDA3) has a particularly critical role in regulating cell survival under stress conditions. However, whether PHLDA3 plays a role in myocardial ischemia/reperfusion injury has not been studied. We aimed to assess the possible role of PHLDA3 in myocardial ischemia/reperfusion (I/R) injury. PHLDA3 expression was increased in myocardial tissue from rats with myocardial I/R injury and rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury. PHLDA3 knockdown protected against myocardial I/R injury in vivo and H/R injury in vitro. Inhibition of PHLDA3 increased the activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) associated with regulation of the Akt/glycogen synthase kinase-3β (GSK-3β) axis. Repression of Nrf2 reversed PHLDA3-inhibition-mediated cardioprotective effects. Taken together, our work demonstrates that PHLDA3 inhibition exerts a protective role in myocardial I/R injury via regulation of the Akt/GSK-3β/Nrf2 axis. We suggest PHLDA3 as an attractive target for developing treatments against myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoxue Meng
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lu Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bing Han
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, Jubaidi FF, Budin SB. Therapeutic Approach of Flavonoid in Ameliorating Diabetic Cardiomyopathy by Targeting Mitochondrial-Induced Oxidative Stress. Int J Mol Sci 2021; 22:11616. [PMID: 34769045 PMCID: PMC8583796 DOI: 10.3390/ijms222111616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 46300, Malaysia;
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| |
Collapse
|
45
|
Huo Y, Mijiti A, Cai R, Gao Z, Aini M, Mijiti A, Wang Z, Qie R. Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice. Hum Exp Toxicol 2021; 40:S460-S474. [PMID: 34610774 DOI: 10.1177/09603271211045948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes is a serious global health concern which severely affected public health as well as socio-economic growth worldwide. Scutellarin (SCU), a bioactive flavonoid, is known for its efficacious action against a range of ailments including cardiovascular problems. The present study was conducted to find out possible protective effect and its associated mechanisms of SCU on experimental type 2 diabetes-induced cardiac injury. METHODS Type 2 diabetes was induced by treating animals with high fat diet for 4 weeks and a single intraperitoneal dose (35 mg/kg body weight) of streptozotocin and diabetic animals received SCU (10 or 20 mg/kg/day) for 6 weeks. RESULTS Scutellarin attenuated type 2 diabetes-induced hyperglycemia, bodyweight loss, hyperlipidaemia, cardiac functional damage with histopathological alterations and fibrosis. Scutellarin treatment to type 2 diabetic mice ameliorated oxidative stress, inflammatory status and apoptosis in heart. Furthermore, the underlying mechanisms for such mitigation of oxidative stress, inflammation and apoptosis in heart involved modulation of Nrf2/Keap1 pathway, TLR4/MyD88/NF-κB mediated inflammatory pathway and intrinsic (mitochondrial) apoptosis pathway, respectively. CONCLUSIONS The current findings suggest that SCU is effective in protecting type 2 diabetes-induced cardiac injury by attenuating oxidative stress and inflammatory responses and apoptosis, and it is also worth considering the efficacious potential of SCU to treat diabetic cardiomyopathy patients.
Collapse
Affiliation(s)
- Yan Huo
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Abudureheman Mijiti
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Ruonan Cai
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Zhaohua Gao
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Maierpu Aini
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Abudukadier Mijiti
- Department of Emergency Medicine, The First People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Zhaoling Wang
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Rui Qie
- Department of Emergency, 118437First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, China
| |
Collapse
|
46
|
Li T, Chen Z, Zhou Y, Li H, Xie J, Li L. Resveratrol Pretreatment Inhibits Myocardial Apoptosis in Rats Following Coronary Microembolization via Inducing the PI3K/Akt/GSK-3β Signaling Cascade. Drug Des Devel Ther 2021; 15:3821-3834. [PMID: 34522086 PMCID: PMC8434837 DOI: 10.2147/dddt.s323555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose Coronary microembolization (CME) is associated with progressive cardiac dysfunction, myocardial inflammation, and apoptosis. Resveratrol (RES) has a considerable role in cardioprotection. However, the contribution and possible mechanisms of RES in CME have not been clearly understood. Methods In the current study, 40 SD rats were randomly selected and categorized into various groups including CME, CME + resveratrol (CME + RES), CME + resveratrol+ LY294002 (CME + RES + LY), and sham groups (10 animals in each group). The inert plastic microspheres (42 μm) were injected into the rats’ left ventricle for developing the CME model. Then resveratrol (25 mg/kg/d) was given to the rats in the CME + RES and CME + RES + LY groups for one week before CME induction. Furthermore, LY294002 (10 mg/kg) was intraperitoneally injected into the rats of the CME + RES + LY group 0.5 hours before CME modeling. The cardiac functions, serum levels of myocardial injury biomarkers, myocardial histopathology, and mRNA and proteins associated with myocardial apoptosis were all assessed 12 hours after surgery. Results The results revealed that resveratrol pretreatment alleviated the CME-induced myocardial damage by improving cardiac dysfunction, and lowering the serum level of myocardial injury biomarkers, myocardial microinfarct size, and cardiomyocyte apoptotic index. Pretreatment with resveratrol reduced the level of proteins and mRNAs associated with the pro-apoptosis in myocardial tissues and increased the levels of proteins and mRNAs associated with the anti-apoptosis. Moreover, the combined treatment of resveratrol and LY294002 reversed the observed protective effects. Conclusion Resveratrol can inhibit cardiomyocyte apoptosis, thus attenuating the CME-induced myocardial injury by triggering the PI3K/Akt/GSK-3β cascade.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Zhiqing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Haoliang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
47
|
Exploring the Pharmacological Mechanisms of Tripterygium wilfordii Hook F against Cardiovascular Disease Using Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575621. [PMID: 34435046 PMCID: PMC8382521 DOI: 10.1155/2021/5575621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Background Tripterygium wilfordii Hook F (TwHF) has been used in traditional Chinese medicine (TCM) for treating cardiovascular disease (CVD). However, the underlying pharmacological mechanisms of the effects of TwHF on CVD remain elusive. This study revealed the pharmacological mechanisms of TwHF acting on CVD based on a pharmacology approach. Materials and Methods The active compounds were selected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database according to the absorption, distribution, metabolism, and excretion (ADME). The potential targets of TwHF were obtained from the SwissTargetPrediction database. The CVD-related therapeutic targets were collected from the DrugBank, the GeneCards database, and the OMIM database. Protein–protein interaction (PPI) network was generated by the STITCH database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by R package. The network of drug-targets-diseases-pathways was constructed by the Cytoscape software. Results The 41 effective ingredients of TwHF and the 178 common targets of TwHF and CVD-related were collected. Furthermore, AKT1, amyloid precursor protein (APP), mitogen-activated protein kinase 1 (MAPK), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA), and cellular tumor antigen p53 (TP53) were identified as the core targets involved in the mechanism of TwHF on CVD. Top ten GO (biological processes, cellular components, and molecular functions) and KEGG pathways were screened with a P value ≤0.01. Finally, we constructed the network of TwHF-targets-CVD-GO-KEGG. Conclusions These findings demonstrate that the main active compound of TwHF, the core targets, and pathways maybe provide new insights into the development of a natural therapy for the prevention and treatment of CVD.
Collapse
|
48
|
Tang Y, Xu Z, Chen X, Wang N, Deng X, Peng L, Chen Q, Cai H. Effects of Enalapril on TLR2/NF- κB Signaling Pathway and Inflammatory Factors in Rabbits with Chronic Heart Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9594607. [PMID: 34335842 PMCID: PMC8294953 DOI: 10.1155/2021/9594607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
Chronic heart failure (CHF) refers to the state of persistent heart failure, which is a complex clinical syndrome of various advanced heart diseases. The toll-like receptor 2 (TLR2)/nuclear transcription factor-κB (NF-κB) signal transduction pathway is one of the pathological mechanisms of CHF. Adriamycin can significantly induce the upregulation of TLR2 expression. Angiotensin-converting enzyme inhibitors (ACEI) are commonly used drugs for the treatment of CHF. In our study, the CHF model was established by injection of doxorubicin into the rabbit ear vein. The effect of enalapril on the TLR2/NF-κB signaling pathway in CHF rabbits has been analyzed and determined. Our research results showed that enalapril reduced the inflammatory response by inhibiting the activation of the TLR2/NF-κB signaling pathway, thereby improving cardiac structure, myocardial remodeling, and cardiac function.
Collapse
Affiliation(s)
- Yanping Tang
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zelin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Xinyu Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Nan Wang
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xu Deng
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liqi Peng
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qingyang Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Huzhi Cai
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| |
Collapse
|
49
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
50
|
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int J Mol Sci 2021; 22:ijms22105094. [PMID: 34065781 PMCID: PMC8151300 DOI: 10.3390/ijms22105094] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Zariyantey Abd Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|