1
|
Rupesh R, Mohankumar R, Sabarathinam S. Isolation and in-silico approach of Modified Embelin derivative from Embelia ribes fruits as anti-Alzheimer agent. Nat Prod Res 2025; 39:208-212. [PMID: 37690004 DOI: 10.1080/14786419.2023.2255920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/20/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Embelin is one of the primary compounds present in the Embelia ribes fruit. Embelin has a broader pharmacological activity such as Anti-inflammatory, anti-bacterial, antioxidant, and many more. The ultimate aim of the study is to ensure the impact of reduced embelin in the management of Alzheimer's disease. Embelin was isolated and modified by the reduction method, and the Modified Embelin derivative (MED) 3-Undecylcyclohexa-2,5-diene-1,2,4,5-tetraol was analysed through FT-IR, NMR, and Mass Spectroscopic techniques. MED was docked against acetylcholinesterase (AChE) amyloid beta (Aβ) receptors PDB ID: 1EVE & 1B68, respectively. The docking scores remain similar to that of positive standards galantamine and Donepezil.
Collapse
Affiliation(s)
- R Rupesh
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - R Mohankumar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Drug Testing Laboratory (DTL), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Sarvesh Sabarathinam
- Drug Testing Laboratory (DTL), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Clinical Trial Unit, Metabolic Ward, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Bhushan A, Rani D, Lone BA, Tabassum M, Gupta AP, Mondhe DM, Gairola S, Gupta PN, Gupta P. Costunosides A-C: cytotoxic sesquiterpene lactones from the rhizomes of Aucklandia costus Falc. Nat Prod Res 2024; 38:4113-4124. [PMID: 37932233 DOI: 10.1080/14786419.2023.2275743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Three new eudesmane type rare sesquiterpene lactone galactosides, costunosides A-C (1-3) were isolated from the rhizomes of Aucklandia costus along with ten known compounds (4-13). Costunosides A-C (1-3) are the first example of naturally eudesmane glycosides containing a β-galactopyranoside moiety. The structure and relative configurations of these compounds were established by comprehensive analysis of MS and, in particular 1D/2D NMR spectroscopic data. The isolated compounds were tested against a panel of human cancer cell lines, where compounds 3, 6 and 7 have shown promising cytotoxic activity against PC-3, HCT-116 and A549 cell lines with IC50 values in the range of 3.4 µM to 9.3 µM, respectively. Costunosides A-C (1-3) were also screened for inhibition assay of acetyl-cholinesterase (AChE), and butyrylcholinesterase (BChE) and found inactive at a concentration of 10 µM.
Collapse
Affiliation(s)
- Anil Bhushan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dixhya Rani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Bashir A Lone
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilip M Mondhe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Department of Botany and Microbiology, HNB Garwal University, Srinagar, India
| | - Prem Narayan Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Prasoon Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
3
|
Reddy CN, Nuthakki VK, Sharma A, Malik S, Tabassum M, Kumar R, Choudhary S, Iqbal F, Tufail Z, Mondhe DM, Kumar A, Bharate SB. Synthesis and Biological Evaluation of Colchicine─Aryl/Alkyl Amine Hybrids as Potential Noncytotoxic Cholinesterase Inhibitors: Identification of SBN-284 as a Dual Inhibitor of Cholinesterases and NLRP3 Inflammasome. ACS Chem Neurosci 2024; 15:2779-2794. [PMID: 39056181 DOI: 10.1021/acschemneuro.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Colchicine, one of the oldest anti-inflammatory natural products still used clinically, inhibits NF-κB signaling and NLRP3 inflammasome activation. Despite its cytotoxicity and narrow therapeutic range, colchicine continues to intrigue medicinal chemists exploring its anti-inflammatory potential. This study aimed to investigate the colchicine scaffold for its role in Alzheimer's disease by targeting neuroinflammation and cholinesterases. Molecular docking revealed that colchicine's hydrophobic trimethoxyphenyl framework can potentially bind to the peripheral anionic site of cholinesterases. Hybrid structures combining colchicine with aryl/alkyl amines were designed to bind both peripheral and catalytic sites of cholinesterases. We describe here the design, synthesis, and in vitro cytotoxicity evaluation of these colchicine-aryl/alkyl amine hybrids, along with their in silico interactions with the cholinesterase active site gorge. Nontoxic analogs demonstrating strong cholinesterase binding affinity were further evaluated for their anticholinesterase and antineuroinflammatory activities. The colchicine-donepezil hybrid, SBN-284 (3x), inhibited both acetylcholinesterase and butyrylcholinesterase as well as the NLRP3 inflammasome complex at low micromolar concentrations. It achieved this through noncompetitive inhibition, occupying the active site gorge and interacting with both peripheral and catalytic anionic sites of cholinesterases. Analog 3x was shown to cross the blood-brain barrier and exhibited no toxicity to neuronal cells, primary macrophages, or epithelial fR2 cells. These findings highlight the potential of this lead compound for further preclinical investigation as a promising anti-Alzheimer agent.
Collapse
Affiliation(s)
- Chilakala Nagarjuna Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumera Malik
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Misbah Tabassum
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rajesh Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sushil Choudhary
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Fiza Iqbal
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ziya Tufail
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Dilip M Mondhe
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ajay Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
4
|
Xu Y, Sun YQ, Yu M, Song DX, Liu B, Chen N, Yu L, Liu YJ, Wang HF. A novel Vestitain A from the ripe fruits of Embelia vestita Roxb. Nat Prod Res 2024; 38:2808-2817. [PMID: 37516922 DOI: 10.1080/14786419.2023.2239990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
A new compound, vestitain A (1), together with 11 known compounds were isolated from the ripe fruits of Embelia vestita Roxb., among them compounds 5,10-12 were isolated from this plant for the first time. Their structures were elucidated and characterized by detailed spectroscopic analysis. Further, the isolated new compound 1 was evaluated for its hypoglycemic effects in vivo. Our research showed that compound 1 could decrease the fasting blood glucose (FBG) by approximately 36.31% in diabetic rats at the high dose (800 mg/kg). By the Morris Water Maze experiments, we found that compound 1 had the effect of intervention on social behavior in diabetic rats, which might provide a reference basis for its development and utilization as a potential hypoglycemic drug.
Collapse
Affiliation(s)
- Ying Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yu-Qi Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Miao Yu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Dong-Xue Song
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Bing Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Ning Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Lei Yu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, China
| | - Ying-Jie Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Hai-Feng Wang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Kaur B, Kaur R, Vivesh, Rani S, Bhatti R, Singh P. Small Peptides Targeting BACE-1, AChE, and A-β Reversing Scopolamine-Induced Memory Impairment: A Multitarget Approach against Alzheimer's Disease. ACS OMEGA 2024; 9:12896-12913. [PMID: 38524457 PMCID: PMC10955571 DOI: 10.1021/acsomega.3c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 03/26/2024]
Abstract
Based on the biochemical understanding of Alzheimer's disease, here, we report the design, synthesis, and biological screening of a series of compounds against this neuro-disorder. Adopting the multitarget approach, the catalytic processes of BACE-1 and AChE were targeted, and thereby, compounds 15, 22, 25, 26, 27, and 30 were identified with IC50 in the submicromolar range against these two enzymes. Further, compounds 15 and 25 displayed more than 50% inhibition of β-amyloid aggregation. Implying their physiological use, the compounds exhibited appreciable biological membrane permeability as observed through the parallel artificial membrane permeability experiment. Supporting these results, treatment of the mice with the test compounds reversed their scopolamine-affected memory impairment, where the highest healing effect was seen in the case of compound 25. Overall, the combination of molecular modeling and experimental studies provided highly effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Baljit Kaur
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Rajbir Kaur
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Vivesh
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Sudesh Rani
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Rajbir Bhatti
- Department
of Pharmaceutical Sciences, Guru Nanak Dev
University, Amritsar 143005, India
| | - Palwinder Singh
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
6
|
Banoo R, Nuthakki VK, Wadje BN, Sharma A, Bharate SB. Design, synthesis, and pharmacological evaluation of indole-piperidine amides as Blood-brain barrier permeable dual cholinesterase and β-secretase inhibitors. Eur J Med Chem 2024; 266:116131. [PMID: 38215587 DOI: 10.1016/j.ejmech.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Heterocyclic compounds play a crucial role in the discovery of therapeutics. Alzheimer's disease (AD) is an unfathomable sporadic neurodegenerative disorder that involves multiple pathological pathways. The failure of current single-target small molecules to address AD's underlying causes has prompted interest in discovering multi-target directed ligands (MTDLs) to slow down the disease's progression. Herein we report the synthesis and biological evaluation of indole-piperidine amides as MTDLs for AD. The 5,6-dimethoxy-indole N-(2-(1-benzylpiperidine) carboxamide (23a) inhibits hAChE and hBACE-1 with IC50 values of 0.32 and 0.39 μM, respectively. The MTDL 23a is a mixed-type inhibitor of both hAChE and hBACE-1 with Ki values of 0.26 μM and 0.46 μM, respectively. The MD simulation studies revealed that both AChE and BACE-1 experience minor conformational changes on binding with 23a. In the PAMPA-BBB assay, analog 23a demonstrated CNS permeability, indicating the possibility for future investigation in preclinical models of AD.
Collapse
Affiliation(s)
- Razia Banoo
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri N Wadje
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
7
|
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. PLANTS (BASEL, SWITZERLAND) 2024; 13:168. [PMID: 38256722 PMCID: PMC10821412 DOI: 10.3390/plants13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotechnology, together with mechanisms such as quorum sensing (QS), which relies on communication between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 °C using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06-32.15 nm. Fruit AgNPs showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial strains. In the QS assays, fruit 80 °C AgNPs demonstrated the most significant violacein inhibition in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this study lay the groundwork for future innovative research into antibacterial and anti-QS strategies using E. ruminata.
Collapse
Affiliation(s)
- Neervana Rambaran
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Yougasphree Naidoo
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Farzana Mohamed
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Hafizah Y. Chenia
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Himansu Baijnath
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| |
Collapse
|
8
|
Anika, Arora R, Virendra SA, Chawla PA. Mechanistic Study on the Possible Role of Embelin in Treating Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:55-66. [PMID: 36655531 DOI: 10.2174/1871527322666230119100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023]
Abstract
Embelin (EMB) (2,5-Dihydroxy-3-undecyl-1,4-benzoquinone) is a natural benzoquinone extracted mainly from Embelia ribes (ER) and appear as vivid orange dots beneath the fruit's pericarp. It is being used to treat various diseases since ancient times in India. It has been ascribed as one of the 32 ayurvedic drugs of national importance in the National Medicinal Plant Board set up by the Government of India under the Ministry of Indian System of Medicine and Homeopathy. Embelin prevents neuronal oxidative damage by decreasing the peroxidation of lipids. Along with having antioxidant properties, it also prevents the production of amyloid-protein-related fibrils and blocks the progression of inflammatory cascades. Due to embelin's ability to cross the blood-brain barrier, its neuroprotective effects have been studied in the past using in vitro models of neuronal disorders such as convulsion and epilepsy, Alzheimer's disease, anxiety and depression, traumatic brain injury, cerebral ischemia, Huntington's disease, and multiple sclerosis. In addition to its neuroprotective effects, its role as an antitubercular, anti-cancer, antioxidant, astringent, anti-inflammatory, anti-bacterial, contraceptive, carminative, diuretic, and anthelmintic agent has also been studied. With docking studies and recent advancements in formulations of embelin including polyethylene and embelin micelles and embelin noisome preparations, embelin can prove to be a promising compound for its therapeutic actions in a wide range of diseases and disorders. The findings of docking studies suggest the binding ability of embelin to be similar to the standard drug in their respective disorders. In this review and docking analysis, we bring an outline of scientific evidence concerning the neuroprotective actions of embelin, still, further research is required for its prospective as a chief compound in clinical approaches.
Collapse
Affiliation(s)
- Anika
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rimpi Arora
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sharma A Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
9
|
Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. Biomed Pharmacother 2023; 168:115704. [PMID: 37862968 DOI: 10.1016/j.biopha.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In the last years, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding permanently. Isoquinoline alkaloids have always attracted scientific interest due to either their positive or negative effects on human organism. The present review describes research on isoquinoline alkaloids isolated from different plant species. Alkaloids are one of the most important classes of plant derived compounds among these isoquinoline alkaloids possess varied biological activities such as anticancer, antineurodegenerative diseases, antidiabetic, antiinflammatory, antimicrobial, and many others. The use of plants against different disorders is entrenched in traditional medicine around the globe. Recent progress in modern therapeutics has stimulated the use of natural products worldwide for various ailments and diseases. The review provides a collection of information on the capabilities of some isoquinoline alkaloids, its potential for the treatment of various diseases and is designed to be a guide for future research on different biologically active isoquinoline alkaloids and plant species containing them. The authors are aware that they were not able to cover the whole area of the topic related to biological activity of isoquinoline alkaloids. This review is intended to suggest directions for further research and can also help other researchers in future studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
10
|
Barbosa DB, do Bomfim MR, de Oliveira TA, da Silva AM, Taranto AG, Cruz JN, de Carvalho PB, Campos JM, Santos CBR, Leite FHA. Development of Potential Multi-Target Inhibitors for Human Cholinesterases and Beta-Secretase 1: A Computational Approach. Pharmaceuticals (Basel) 2023; 16:1657. [PMID: 38139784 PMCID: PMC10748024 DOI: 10.3390/ph16121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease causes chronic neurodegeneration and is the leading cause of dementia in the world. The causes of this disease are not fully understood but seem to involve two essential cerebral pathways: cholinergic and amyloid. The simultaneous inhibition of AChE, BuChE, and BACE-1, essential enzymes involved in those pathways, is a promising therapeutic approach to treat the symptoms and, hopefully, also halt the disease progression. This study sought to identify triple enzymatic inhibitors based on stereo-electronic requirements deduced from molecular modeling of AChE, BuChE, and BACE-1 active sites. A pharmacophore model was built, displaying four hydrophobic centers, three hydrogen bond acceptors, and one positively charged nitrogen, and used to prioritize molecules found in virtual libraries. Compounds showing adequate overlapping rates with the pharmacophore were subjected to molecular docking against the three enzymes and those with an adequate docking score (n = 12) were evaluated for physicochemical and toxicological parameters and commercial availability. The structure exhibiting the greatest inhibitory potential against all three enzymes was subjected to molecular dynamics simulations (100 ns) to assess the stability of the inhibitor-enzyme systems. The results of this in silico approach indicate ZINC1733 can be a potential multi-target inhibitor of AChE, BuChE, and BACE-1, and future enzymatic assays are planned to validate those results.
Collapse
Affiliation(s)
- Deyse B. Barbosa
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (D.B.B.); (M.R.d.B.); (F.H.A.L.)
| | - Mayra R. do Bomfim
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (D.B.B.); (M.R.d.B.); (F.H.A.L.)
| | - Tiago A. de Oliveira
- Departamento de Informática, Gestão e Desenho, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis 30575-180, MG, Brazil;
| | - Alisson M. da Silva
- Laboratório de Bioinformática e Desenho de Fármacos, Universidade Federal de São João del-Rei, São João del-Rei 36307-352, MG, Brazil; (A.M.d.S.); (A.G.T.)
| | - Alex G. Taranto
- Laboratório de Bioinformática e Desenho de Fármacos, Universidade Federal de São João del-Rei, São João del-Rei 36307-352, MG, Brazil; (A.M.d.S.); (A.G.T.)
| | - Jorddy N. Cruz
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e de Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil;
| | - Paulo B. de Carvalho
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA;
| | - Joaquín M. Campos
- Departamento de Química Orgánica Farmacéutica, Facultad de Farmacia, Campus de la Cartuja, Universidad de Granada, 18012 Granada, Spain;
| | - Cleydson B. R. Santos
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e de Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil;
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede BIONORTE, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil
| | - Franco H. A. Leite
- Laboratório de Modelagem Molecular, Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil; (D.B.B.); (M.R.d.B.); (F.H.A.L.)
| |
Collapse
|
11
|
Ma W, Su Y, Zhang P, Wan G, Cheng X, Lu C, Gu X. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease. Front Mol Neurosci 2023; 16:1205541. [PMID: 37470054 PMCID: PMC10352499 DOI: 10.3389/fnmol.2023.1205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder prevalent among older adults. Although AD symptoms can be managed through certain treatments, advancing the understanding of underlying disease mechanisms and developing effective therapies is critical. Methods In this study, we systematically analyzed transcriptome data from temporal lobes of healthy individuals and patients with AD to investigate the relationship between AD and mitochondrial autophagy. Machine learning algorithms were used to identify six genes-FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5-for the construction of an AD prediction model. Furthermore, AD was categorized into three subtypes through consensus clustering analysis. Results The identified genes are closely linked to the onset and progression of AD and can serve as reliable biomarkers. The differences in gene expression, clinical features, immune infiltration, and pathway enrichment were examined among the three AD subtypes. Potential drugs for the treatment of each subtype were also identified. Discussion The findings observed in the present study can help to deepen the understanding of the underlying disease mechanisms of AD and enable the development of precision medicine and personalized treatment approaches.
Collapse
Affiliation(s)
- Wenhao Ma
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuelin Su
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Abdullaha M, Banoo R, Nuthakki VK, Sharma M, Kaur S, Thakur S, Kumar A, Jadhav HR, Bharate SB. Methoxy-naphthyl-Linked N-Benzyl Pyridinium Styryls as Dual Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, and Structure-Activity Relationship. ACS OMEGA 2023; 8:17591-17608. [PMID: 37251153 PMCID: PMC10210183 DOI: 10.1021/acsomega.2c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
The multifaceted nature of Alzheimer's disease (AD) indicates the need for multitargeted agents as potential therapeutics. Both cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play a vital role in disease progression. Thus, inhibiting both ChEs is more beneficial than only one for effectively managing AD. The present study provides a detailed lead optimization of the e-pharmacophore-generated pyridinium styryl scaffold to discover a dual ChE inhibitor. A structure-activity relationship analysis indicated the importance of three structural fragments, methoxy-naphthyl, vinyl-pyridinium, and substituted-benzyl, in a dual ChE inhibitor pharmacophore. The optimized 6-methoxy-naphthyl derivative, 7av (SB-1436), inhibits EeAChE and eqBChE with IC50 values of 176 and 370 nM, respectively. The kinetic study has shown that 7av inhibits AChE and BChE in a non-competitive manner with ki values of 46 and 115 nM, respectively. The docking and molecular dynamics simulation demonstrated that 7av binds with the catalytic and peripheral anionic sites of AChE and BChE. Compound 7av also significantly stops the self-aggregation of Aβ. The data presented herein indicate the potential of 7av for further investigation in preclinical models of AD.
Collapse
Affiliation(s)
- Mohd Abdullaha
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Razia Banoo
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K. Nuthakki
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Sharma
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhleen Kaur
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Shikha Thakur
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Ajay Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Hemant R. Jadhav
- Department
of Pharmacy, Birla Institute of Technology
and Sciences Pilani, Pilani 333031, Rajasthan, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Nuthakki VK, Choudhary S, Reddy CN, Bhatt S, Jamwal A, Jotshi A, Raghuvanshi R, Sharma A, Thakur S, Jadhav HR, Bharate SS, Nandi U, Kumar A, Bharate SB. Design, Synthesis, and Pharmacological Evaluation of Embelin-Aryl/alkyl Amine Hybrids as Orally Bioavailable Blood-Brain Barrier Permeable Multitargeted Agents with Therapeutic Potential in Alzheimer's Disease: Discovery of SB-1448. ACS Chem Neurosci 2023; 14:1193-1219. [PMID: 36812360 DOI: 10.1021/acschemneuro.3c00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 μM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 μM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aβ self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil Choudhary
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chilakala N Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshika Jotshi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Raghuvanshi R, Jamwal A, Nandi U, Bharate SB. Multitargeted C9-substituted ester and ether derivatives of berberrubine for Alzheimer's disease: Design, synthesis, biological evaluation, metabolic stability, and pharmacokinetics. Drug Dev Res 2023; 84:121-140. [PMID: 36461610 DOI: 10.1002/ddr.22017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics. Herein, we prepared a series of C9-substituted berberrubine derivatives intending to discover dual cholinesterase and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Most synthesized derivatives possessed balanced dual inhibition (AChE and BChE) activity in the submicromolar range and a moderate inhibition against BACE-1. Two most active ester derivatives, 12a and 11d, display inhibition of AChE, BChE, and BACE-1. The 3-methoxybenzoyl ester derivative, 12a, inhibits electric eel acetylcholinesterase (EeAChE), equine serum butyrylcholinesterase (eqBChE), and human hBACE-1 with IC50 values of 0.5, 4.3, and 11.9 μM, respectively and excellent BBB permeability (Pe = 8 × 10-6 cm/s). The ester derivative 12a is metabolically unstable; however, its ether analog 13 is stable in HLM and exhibits inhibition of AChE, BChE, and BACE-1 with IC50 values of 0.44, 3.8, and 17.9 μM, respectively. The ether analog also inhibits self-aggregation of Aβ and crosses BBB (Pe = 7.3 × 10-6 cm/s). Administration of 13 at 5 mg/kg (iv) in Wistar rats showed excellent plasma exposure with AUC0-∞ of 28,834 ng min/ml. In conclusion, the multitargeted berberrubine ether derivative 13 is CNS permeable and has good ADME properties.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Ashiya Jamwal
- Academy of Scientific & Innovative Research, Ghaziabad, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| |
Collapse
|
15
|
Banoo R, Nuthakki VK, Abdullaha M, Sharma M, Bharate SB. Blood–brain barrier permeable benzylpiperidin‐4‐yl‐linked benzylamino benzamides as dual cholinesterase inhibitors. Drug Dev Res 2022; 83:1791-1802. [DOI: 10.1002/ddr.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Razia Banoo
- Natural Products and Medicinal Chemistry Division CSIR‐Indian Institute of Integrative Medicine Jammu India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Vijay K. Nuthakki
- Natural Products and Medicinal Chemistry Division CSIR‐Indian Institute of Integrative Medicine Jammu India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Mohd Abdullaha
- Natural Products and Medicinal Chemistry Division CSIR‐Indian Institute of Integrative Medicine Jammu India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Mohit Sharma
- Natural Products and Medicinal Chemistry Division CSIR‐Indian Institute of Integrative Medicine Jammu India
- Academy of Scientific and Innovative Research Ghaziabad India
| | - Sandip B. Bharate
- Natural Products and Medicinal Chemistry Division CSIR‐Indian Institute of Integrative Medicine Jammu India
- Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
16
|
Sharma A, Nuthakki VK, Gairola S, Singh B, Bharate SB. A Coumarin-donepezil Hybrid as a Blood-brain Barrier Permeable Dual Cholinesterase Inhibitor: Isolation, Synthetic Modifications and Biological Evaluation of Natural Coumarins. ChemMedChem 2022; 17:e202200300. [PMID: 35892288 DOI: 10.1002/cmdc.202200300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Plants have immensely contributed to the drug discovery for neurodegenerative diseases. Herein, we undertook the phytochemical investigation of Nardostachys jatamansi (D.Don) DC. rhizomes followed by semisynthetic modifications to discover cholinesterase (ChE) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. The 8-acetyl-7-hydroxycoumarin isolated from the bioactive extract moderately inhibits acetylcholinesterase (AChE) and BACE-1 with IC50 values of 22.1 and 17.7 μM, respectively. The semisynthetic trifluoromethyl substituted coumarin chalcone display a 5-fold improvement in BACE-1 inhibition (IC50 3.3 μM). Another semisynthetic derivative, a coumarin-donepezil hybrid, exhibits dual inhibition of both ChEs with IC50 values of 1.22 and 3.09 μM, respectively. Molecular modeling and enzyme kinetics revealed that the coumarin-donepezil hybrid is a non-competitive inhibitor of AChE. It crosses the blood-brain barrier and also inhibits Aβ self-aggregation. The results presented herein warrant a detailed investigation of the coumarin-donepezil hybrid in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Ankita Sharma
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Vijay K Nuthakki
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products & Medicinal Chemistry Division, Canal Road, 180001, Jammu, INDIA
| | - Sumeet Gairola
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Plant Sciences & Agrotechnology Division, Canal Road, 180001, Jammu, INDIA
| | - Bikarma Singh
- CSIR-National Botanical Research Institute, Botanical Garden Division, Canal Road, Lucknow, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
17
|
Sharma V, Gautam DNS, Radu AF, Behl T, Bungau SG, Vesa CM. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia ribes Burm. Antioxidants (Basel) 2022; 11:1359. [PMID: 35883850 PMCID: PMC9311956 DOI: 10.3390/antiox11071359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES Embelia ribes Burm. (E. ribes, Myrsinaceae), also known as Vidanga in Ayurveda, has been shown to have significant therapeutic benefits on several disorders, and its main chemical bioactive constituent, embelin, has the therapeutic potential to be converted into innovative drugs, which is why it has recently received considerable interest. In the present work, we provide a higher level of comprehension, awareness, and extensive knowledge of the traditional uses, phytochemistry, and pharmacological characteristics of E. ribes throughout the last several decades (February 1965 to June 2021), emphasizing the importance of the study of essential oils extracted from E. ribes, which show a major potential for exerting antioxidant and anti-inflammatory activity. MATERIALS AND METHODS Google Scholar, MEDLINE, EMBASE, Scifinder, Scopus, and ScienceDirect were used to conduct a thorough literature search. RESULTS E. ribes is high in essential oils, alkaloids, flavonoids, steroids, and phenolics, all of which have medicinal benefits. The essential oils/extracts and isolated chemical constituents exhibited antioxidant activity, wound healing, antidiabetic, central nervous system (CNS)-related disease, antiviral, antiobesity, cardioprotective, antifungal, antibacterial, and antifertility activity, among other promising pharmacological effects. CONCLUSION The translation between traditional applications and modern medicine may make E. ribes a promising target for the implementation of innovative medication. To investigate the efficacy and safety profile of E. ribes, further high-quality preclinical studies using advanced methodologies are required.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
18
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Devi Daimary U, Girisa S, Parama D, Verma E, Kumar A, Kunnumakkara AB. Embelin: A novel XIAP inhibitor for the prevention and treatment of chronic diseases. J Biochem Mol Toxicol 2021; 36:e22950. [PMID: 34842329 DOI: 10.1002/jbt.22950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Chronic diseases are a serious health concern worldwide, especially in the elderly population. Most chronic diseases like cancer, cardiovascular ailments, neurodegenerative disorders, and autoimmune diseases are caused due to the abnormal functioning of multiple signaling pathways that give rise to critical anomalies in the body. Although a lot of advanced therapies are available, these have failed to entirely cure the disease due to their less efficacy. Apart from this, they have been shown to manifest disturbing side effects which hamper the patient's quality of life to the extreme. Since the last few decades, extensive studies have been done on natural herbs due to their excellent medicinal benefits. Components present in natural herbs target multiple signaling pathways involved in diseases and therefore hold high potential in the prevention and treatment of various chronic diseases. Embelin, a benzoquinone, is one such agent isolated from Embelia ribes, which has shown excellent biological activities toward several chronic ailments by upregulating a number of antioxidant enzymes (e.g., SOD, CAT, GSH, etc.), inhibiting anti-apoptotic genes (e.g., TRAIL, XIAP, survivin, etc.), modulating transcription factors (e.g., NF-κB, STAT3, etc.) blocking inflammatory biomarkers (e.g., NO, IL-1β, IL-6, TNF-α, etc.), monitoring cell cycle synchronizing genes (e.g., p53, cyclins, CDKs, etc.), and so forth. Several preclinical studies have confirmed its excellent therapeutic activities against malicious diseases like cancer, obesity, heart diseases, Alzheimer's, and so forth. This review presents an overview of embelin, its therapeutic prospective, and the molecular targets in different chronic diseases.
Collapse
Affiliation(s)
- Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
20
|
Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases. Foods 2020; 10:foods10010029. [PMID: 33374186 PMCID: PMC7824130 DOI: 10.3390/foods10010029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.
Collapse
|
21
|
Synthesis, In Silico and In Vitro Evaluation of Some Flavone Derivatives for Acetylcholinesterase and BACE-1 Inhibitory Activity. Molecules 2020; 25:molecules25184064. [PMID: 32899576 PMCID: PMC7570966 DOI: 10.3390/molecules25184064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Acetylcholinesterase (AChE) and β-secretase (BACE-1) have become attractive therapeutic targets for Alzheimer’s disease (AD). Flavones are flavonoid derivatives with various bioactive effects, including AChE and BACE-1 inhibition. In the present work, a series of 14 flavone derivatives was synthesized in relatively high yields (35–85%). Six of the synthetic flavones (B4, B5, B6, B8, D6 and D7) had completely new structures. The AChE and BACE-1 inhibitory activities were tested, giving pIC50 3.47–4.59 (AChE) and 4.15–5.80 (BACE-1). Three compounds (B3, D5 and D6) exhibited the highest biological effects on both AChE and BACE-1. A molecular docking investigation was conducted to explain the experimental results. These molecules could be employed for further studies to discover new structures with dual action on both AChE and BACE-1 that could serve as novel therapies for AD.
Collapse
|
22
|
Synthesis, In Silico and In Vitro Evaluation for Acetylcholinesterase and BACE-1 Inhibitory Activity of Some N-Substituted-4-Phenothiazine-Chalcones. Molecules 2020; 25:molecules25173916. [PMID: 32867308 PMCID: PMC7504348 DOI: 10.3390/molecules25173916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer’s disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure–activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39–81%). The bioactivities of these substances were examined with pIC50 3.73–5.96 (AChE) and 5.20–6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.
Collapse
|
23
|
Tran TS, Le MT, Tran TD, Tran TH, Thai KM. Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches. Molecules 2020; 25:molecules25163644. [PMID: 32785161 PMCID: PMC7464027 DOI: 10.3390/molecules25163644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer's disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer's patients. In this study, in silico models were developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity relationship), and molecular docking, to screen virtually a database of compounds for AChE and BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47 substances (two curcumins and 45 flavonoids), with remarkable predicted pIC50 values against AChE and BACE-1 ranging from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1), were designed. The in vitro assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated that, by using in silico methods, a series of curcumin and flavonoid structures were generated with promising predicted bioactivities. This would be a helpful foundation for the experimental investigations in the future. Designed compounds which were the most feasible for chemical synthesis could be potential candidates for further research and lead optimization.
Collapse
Affiliation(s)
- Thai-Son Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam;
| | - Minh-Tri Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Correspondence: or (M.-T.L.); or (K.-M.T.); Tel.: +84-903-718-190 (M-T.L.); +84-28-3855-2225 or +84-909-680-385 (K-M.T.); Fax: +84-28-3822-5435 (K-M.T.)
| | - Thanh-Dao Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
| | - The-Huan Tran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam;
| | - Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
- Correspondence: or (M.-T.L.); or (K.-M.T.); Tel.: +84-903-718-190 (M-T.L.); +84-28-3855-2225 or +84-909-680-385 (K-M.T.); Fax: +84-28-3822-5435 (K-M.T.)
| |
Collapse
|
24
|
Sheng Z, Ge S, Gao M, Jian R, Chen X, Xu X, Li D, Zhang K, Chen WH. Synthesis and Biological Activity of Embelin and its Derivatives: An Overview. Mini Rev Med Chem 2020; 20:396-407. [DOI: 10.2174/1389557519666191015202723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/04/2023]
Abstract
Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.)
of the Myrsinaceae family, and contains two carbonyl groups, a methine group and two hydroxyl
groups. With embelin as the lead compound, more than one hundred derivatives have been reported.
Embelin is well known for its ability to antagonize the X-linked inhibitor of apoptosis protein (XIAP)
with an IC50 value of 4.1 μM. The potential of embelin and its derivatives in the treatment of various
cancers has been extensively studied. In addition, these compounds display a variety of other biological
effects: antimicrobial, antioxidant, analgesic, anti-inflammatory, anxiolytic and antifertility activity.
This paper reviews the recent progress in the synthesis and biological activity of embelin and its derivatives.
Their cellular mechanisms of action and prospects in the research and development of new
drugs are also discussed.
Collapse
Affiliation(s)
- Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Siyuan Ge
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Min Gao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Rongchao Jian
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xiaole Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
25
|
Mahajan S, Slathia N, Nuthakki VK, Bharate SB, Kapoor KK. Malononitrile-activated synthesis and anti-cholinesterase activity of styrylquinoxalin-2(1 H)-ones. RSC Adv 2020; 10:15966-15975. [PMID: 35493659 PMCID: PMC9052867 DOI: 10.1039/d0ra02816a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, we report a base-free malononitrile activated condensation of 3-methylquinoxaline-2(1H)-one (3MQ) 1 with aryl aldehydes 3a–3ad for synthesis of styrylquinoxalin-2(1H)-ones (SQs) 4a–4ad with excellent yields. In this reaction, malononitrile activates the aldehyde via Knoevenagel condensation towards reaction with 3MQ 1 and gets liberated during the course of reaction to yield the desired SQs 4a–4ad. The SQs were evaluated for in vitro cholinesterase inhibition and 4n was found to display a mixed type of inhibition of AChE, which was supported by molecular modelling studies. This study has led to the discovery of a new chemotype for cholinesterase inhibition which might be useful in finding a remedy for Alzheimer's disease. SQs displaying anti-Alzheimer activity is serendipitous. Malononitrile as a handle to facilitate nucleophilic attack has been applied for the first time for the easy access of SQs.![]()
Collapse
Affiliation(s)
- Sheena Mahajan
- Department of Chemistry, University of Jammu Jammu-180006 India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu Jammu-180006 India
| | - Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu Jammu-180006 India
| |
Collapse
|
26
|
Augustin N, Nuthakki VK, Abdullaha M, Hassan QP, Gandhi SG, Bharate SB. Discovery of Helminthosporin, an Anthraquinone Isolated from Rumex abyssinicus Jacq as a Dual Cholinesterase Inhibitor. ACS OMEGA 2020; 5:1616-1624. [PMID: 32010836 PMCID: PMC6990627 DOI: 10.1021/acsomega.9b03693] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/31/2019] [Indexed: 05/08/2023]
Abstract
Natural products have extensively contributed toward the discovery of new leads for Alzheimer's disease. During our search for new inhibitors of cholinesterase enzymes from natural sources, the ethyl acetate (EtOAc) extract of Rumex abyssinicus Jacq was identified as a dual cholinesterase inhibitor with IC50 values of 2.7 and 11.4 μg/mL against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively. The phytochemical investigation of the EtOAc extract has resulted in isolation of four anthraquinones, namely, helminthosporin, emodin, chrysophanol, and physcion, amongst which the helminthosporin has been isolated for the first time from Rumex sp. All isolated secondary metabolites have displayed significant inhibition of EeAChE with IC50 values of 2.63, 15.21, 33.7, and 12.16 μM, respectively. In addition, the helminthosporin was also found to inhibit BChE with an IC50 value of 2.99 μM. The enzyme kinetic study has indicated that helminthosporin inhibits AChE and BChE in a noncompetitive manner with k i values of 10.3 and 12.3 μM, respectively. The results of molecular modeling and propidium iodide displacement assay have revealed that helminthosporin occupies the peripheral anionic site of the active site gorge of AChE. In the PAMPA-BBB permeability assay, helminthosporin was found to possess high BBB permeability (P e = 6.16 × 10-6 cm/s). In a nutshell, helminthosporin has been identified as a brain permeable dual cholinesterase inhibitor, and thus its further synthetic exploration is warranted for optimization of its potency.
Collapse
Affiliation(s)
- Ntemafack Augustin
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K. Nuthakki
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd. Abdullaha
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Qazi Parvaiz Hassan
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant
Biotechnology Division, CSIR-Indian Institute
of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sumit G. Gandhi
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B. Bharate
- Plant
Biotechnology Division and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- E-mail: , . Phone: +91-191-2586333, +91-191-2585006 ext.
345
| |
Collapse
|
27
|
Synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine and its bromo-derivative as dual cholinesterase inhibitors. Bioorg Chem 2019; 90:103062. [DOI: 10.1016/j.bioorg.2019.103062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
|