1
|
Bell DSH, Jerkins T. The potential for improved outcomes in the prevention and therapy of diabetic kidney disease through 'stacking' of drugs from different classes. Diabetes Obes Metab 2024; 26:2046-2053. [PMID: 38516874 DOI: 10.1111/dom.15559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
Aggressive therapy of diabetic kidney disease (DKD) can not only slow the progression of DKD to renal failure but, if utilized at an early enough stage of DKD, can also stabilize and/or reverse the decline in renal function. The currently recognized standard of therapy for DKD is blockade of the renin-angiotensin system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs). However, unless utilized at a very early stage, monotherapy with these drugs in DKD will only prevent or slow the progression of DKD and will neither stabilize nor reverse the progression of DKD to renal decompensation. Recently, the addition of a sodium-glucose cotransporter-2 inhibitor and/or a mineralocorticoid receptor blocker to ACE inhibitors or ARBs has been clearly shown to further decelerate the decline in renal function. The use of glucagon-like peptide-1 (GLP-1) agonists shown promise in decelerating the progression of DKD. Other drugs that may aid in the deceleration the progression of DKD are dipeptidyl peptidase-4 inhibitors, pentoxifylline, statins, and vasodilating beta blockers. Therefore, aggressive therapy with combinations of these drugs (stacking) should improve the preservation of renal function in DKD.
Collapse
Affiliation(s)
- David S H Bell
- University of Alabama Medical School and Southside Endocrinology, Irondale, Alabama, USA
| | - Terri Jerkins
- Midstate Endocrine Associates, Lipscomb University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Altoukhi SM, Zamkah MM, Alharbi RA, Alghamdi SK, Aldawsari LS, Tarabulsi M, Rizk H, Sandokji Y. Understanding the effects of COVID-19 on patients with diabetic nephropathy: a systematic review. Ann Med Surg (Lond) 2024; 86:3478-3486. [PMID: 38846830 PMCID: PMC11152851 DOI: 10.1097/ms9.0000000000002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Background Diabetic nephropathy is one of the consequences of diabetes mellitus that causes a continuous decline in the eGFR. After the COVID-19 pandemic, studies have shown that patients with diabetic nephropathy who had contracted COVID-19 have higher rates of morbidity and disease progression. The aim of this study was to systematically review the literature to determine and understand the effects and complications of SARS-CoV-2 on patients with diabetic nephropathy. Materials and methods The authors' research protocol encompassed the study selection process, search strategy, inclusion/exclusion criteria, and a data extraction plan. A systematic review was conducted by a team of five reviewers, with an additional reviewer assigned to address any discrepancies. To ensure comprehensive coverage, the authors employed multiple search engines including PubMed, ResearchGate, ScienceDirect, SDL, Ovid, and Google Scholar. Results A total of 14 articles meeting the inclusion criteria revealed that COVID-19 directly affects the kidneys by utilizing ACE2 receptors for cell entry, which is significant because ACE2 receptors are widely expressed in the kidney. Conclusion COVID-19 affects kidney health, especially in individuals with diabetic nephropathy. The mechanisms include direct viral infection and immune-mediated injury. Early recognition and management are vital for improving the outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hisham Rizk
- General Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yousif Sandokji
- General Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Parwani K, Mandal P. Advanced glycation end products and insulin resistance in diabetic nephropathy. VITAMINS AND HORMONES 2024; 125:117-148. [PMID: 38997162 DOI: 10.1016/bs.vh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India.
| |
Collapse
|
4
|
Jung WK, Park SB, Yu HY, Kim J. Gemigliptin Improves Salivary Gland Dysfunction in D-Galactose-Injected Aging Rats. Pharmaceutics 2023; 16:35. [PMID: 38258046 PMCID: PMC10820573 DOI: 10.3390/pharmaceutics16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Oral dryness is among the most common conditions experienced by the elderly. As saliva plays a crucial role in maintaining oral health and overall quality of life, the condition is increasingly taking its toll on a rapidly growing aging population. D-galactose (D-gal) stimulates their formation, which in turn cause oxidative stress and accelerate age-related decline in physical function. In this study, we observed a reduction in salivary secretion and amylase levels in aged rats injected with D-gal, confirming salivary gland dysfunction. Treatment with gemigliptin increased DPP-4 inhibition and GLP-1 levels in the salivary glands of aging rats and reduced the expression of AGEs and receptors for advanced glycation end products (RAGE). This effect was caused by the presence of additional reactive oxygen species (ROS) in the salivary glands of the examined rats. Gemigliptin's cytoprotective effect reduced amylase and mucin accumulation and increased AQP5 expression, which are important indicators of salivary gland function. In sum, gemigliptin was shown to improve D-gal-induced decline in the salivary gland function of aged rats through its anti-glycation and antioxidant activities. Gemigliptin shows promise as a treatment strategy for patients experiencing decreased salivary function associated with their advancing age.
Collapse
Affiliation(s)
| | | | | | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (W.K.J.); (S.-B.P.); (H.Y.Y.)
| |
Collapse
|
5
|
Rao NL, Kotian GB, Shetty JK, Shelley BP, Dmello MK, Lobo EC, Shankar SP, Almeida SD, Shah SR. Receptor for Advanced Glycation End Product, Organ Crosstalk, and Pathomechanism Targets for Comprehensive Molecular Therapeutics in Diabetic Ischemic Stroke. Biomolecules 2022; 12:1712. [PMID: 36421725 PMCID: PMC9687999 DOI: 10.3390/biom12111712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
Diabetes mellitus, a well-established risk factor for stroke, is related to higher mortality and poorer outcomes following the stroke event. Advanced glycation end products(AGEs), their receptors RAGEs, other ligands, and several other processes contribute to the cerebrovascular pathomechanism interaction in the diabetes-ischemic stroke combination. Critical reappraisal of molecular targets and therapeutic agents to mitigate them is required to identify key elements for therapeutic interventions that may improve patient outcomes. This scoping review maps evidence on the key roles of AGEs, RAGEs, other ligands such as Leukotriene B4 (LTB4), High-mobility group box 1 (HMGB1) nuclear protein, brain-kidney-muscle crosstalk, alternate pathomechanisms in neurodegeneration, and cognitive decline related to diabetic ischemic stroke. RAGE, HMGB1, nitric oxide, and polyamine mechanisms are important therapeutic targets, inflicting common consequences of neuroinflammation and oxidative stress. Experimental findings on a number of existing-emerging therapeutic agents and natural compounds against key targets are promising. The lack of large clinical trials with adequate follow-up periods is a gap that requires addressing to validate the emerging therapeutic agents. Five therapeutic components, which include agents to mitigate the AGE-RAGE axis, improved biomarkers for risk stratification, better renal dysfunction management, adjunctive anti-inflammatory-antioxidant therapies, and innovative neuromuscular stimulation for rehabilitation, are identified. A comprehensive therapeutic strategy that features all the identified components is needed for outcome improvement in diabetic stroke patients.
Collapse
Affiliation(s)
- Nivedita L Rao
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Greeshma B Kotian
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Jeevan K Shetty
- Department of Biochemistry, School of Medicine, Royal College of Surgeons in Ireland Medical University of Bahrain, Muharraq 228, Bahrain
| | - Bhaskara P Shelley
- Department of Neurology, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Mackwin Kenwood Dmello
- Department of Public Health, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Eric C Lobo
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Suchetha Padar Shankar
- College of Physiotherapy, Dayananda Sagar University, Bangalore 560111, Karnataka, India
| | - Shellette D Almeida
- School of Physiotherapy, D. Y. Patil (Deemed to be University), Navi Mumbai 400706, Maharashtra, India
| | - Saiqa R Shah
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
6
|
Yang Y, Zou S, Xu G. An update on the interaction between COVID-19, vaccines, and diabetic kidney disease. Front Immunol 2022; 13:999534. [DOI: 10.3389/fimmu.2022.999534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 01/08/2023] Open
Abstract
Up to now, coronavirus disease 2019 (COVID-19) is still affecting worldwide due to its highly infectious nature anrapid spread. Diabetic kidney disease (DKD) is an independent risk factor for severe COVID-19 outcomes, and they have a certain correlation in some aspects. Particularly, the activated renin–angiotensin–aldosterone system, chronic inflammation, endothelial dysfunction, and hypercoagulation state play an important role in the underlying mechanism linking COVID-19 to DKD. The dipeptidyl peptidase-4 inhibitor is considered a potential therapy for COVID-19 and has similarly shown organ protection in DKD. In addition, neuropilin-1 as an alternative pathway for angiotensin-converting enzyme 2 also contributes to severe acute respiratory syndrome coronavirus 2 entering the host cells, and its decreased expression can affect podocyte migration and adhesion. Here, we review the pathogenesis and current evidence of the interaction of DKD and COVID-19, as well as focus on elevated blood glucose following vaccination and its possible mechanism. Grasping the pathophysiology of DKD patients with COVID-19 is of great clinical significance for the formulation of therapeutic strategies.
Collapse
|
7
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y. Effects of Toxic AGEs (TAGE) on Human Health. Cells 2022; 11:2178. [PMID: 35883620 PMCID: PMC9317028 DOI: 10.3390/cells11142178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
The habitual and excessive consumption of sugar (i.e., sucrose and high-fructose corn syrup, HFCS) is associated with the onset and progression of lifestyle-related diseases (LSRD). Advanced glycation end-products (AGEs) have recently been the focus of research on the factors contributing to LSRD. Approaches that inhibit the effects of AGEs may be used to prevent and/or treat LSRD; however, since the structures of AGEs vary depending on the type of reducing sugars or carbonyl compounds to which they respond, difficulties are associated with verifying that AGEs are an etiological factor. Cytotoxic AGEs derived from glyceraldehyde, a triose intermediate in the metabolism of glucose and fructose, have been implicated in LSRD and are called toxic AGEs (TAGE). A dietary imbalance (the habitual and excessive intake of sucrose, HFCS, or dietary AGEs) promotes the generation/accumulation of TAGE in vivo. Elevated circulating levels of TAGE have been detected in non-diabetics and diabetics, indicating a strong relationship between the generation/accumulation of TAGE in vivo and the onset and progression of LSRD. We herein outline current findings on "TAGE as a new target" for human health.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Takanobu Takata
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure 737-0112, Hiroshima, Japan;
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka 513-8670, Mie, Japan;
| |
Collapse
|
8
|
Donate-Correa J, Sanchez-Niño MD, González-Luis A, Ferri C, Martín-Olivera A, Martín-Núñez E, Fernandez-Fernandez B, Tagua VG, Mora-Fernández C, Ortiz A, Navarro-González JF. Repurposing drugs for highly prevalent diseases: pentoxifylline, an old drug and a new opportunity for diabetic kidney disease. Clin Kidney J 2022; 15:2200-2213. [PMID: 36381364 PMCID: PMC9664582 DOI: 10.1093/ckj/sfac143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease is one of the most frequent complications in patients with diabetes and constitutes a major cause of end-stage kidney disease. The prevalence of diabetic kidney disease continues to increase as a result of the growing epidemic of diabetes and obesity. Therefore, there is mounting urgency to design and optimize novel strategies and drugs that delay the progression of this pathology and contain this trend. The new approaches should go beyond the current therapy focussed on the control of traditional risk factors such as hyperglycaemia and hypertension. In this scenario, drug repurposing constitutes an economic and feasible approach based on the discovery of useful activities for old drugs. Pentoxifylline is a nonselective phosphodiesterase inhibitor currently indicated for peripheral artery disease. Clinical trials and meta-analyses have shown renoprotection secondary to anti-inflammatory and antifibrotic effects in diabetic patients treated with this old known drug, which makes pentoxifylline a candidate for repurposing in diabetic kidney disease.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de doctorado, Universidad de La Laguna
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de doctorado, Universidad de La Laguna
| | - Alberto Martín-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de doctorado, Universidad de La Laguna
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040 (RD21/0005/0001), Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor G Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Ortiz
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040 (RD21/0005/0001), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
9
|
Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. BIOLOGY 2022; 11:355. [PMID: 35336728 PMCID: PMC8945130 DOI: 10.3390/biology11030355] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. Epicardial adipose tissue (EAT) is defined as a fat depot localized between the myocardial surface and the visceral layer of the pericardium and is a type of visceral fat. EAT is one of the most important risk factors for atherosclerosis and cardiovascular events and a promising new therapeutic target in CVDs. In health conditions, EAT has a protective function, including protection against hypothermia or mechanical stress, providing myocardial energy supply from free fatty acid and release of adiponectin. In patients with obesity, metabolic syndrome, or diabetes mellitus, EAT becomes a deleterious tissue promoting the development of CVDs. Previously, we showed an adverse modulation of gene expression in pericoronary adipose tissue in patients with coronary artery disease (CAD). Here, we summarize the currently available evidence regarding the role of EAT in the development of CVDs, including CAD, heart failure, and atrial fibrillation. Due to the rapid development of the COVID-19 pandemic, we also discuss data regarding the association between EAT and the course of COVID-19. Finally, we present the potential therapeutic possibilities aiming at modifying EAT's function. The development of novel therapies specifically targeting EAT could revolutionize the prognosis in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warszawa, Poland; (M.K.); (A.G.); (G.O.); (M.G.)
| |
Collapse
|
10
|
Elsanhoury A, Nelki V, Kelle S, Van Linthout S, Tschöpe C. Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction-A Specific HFpEF Phenotype. Front Cardiovasc Med 2021; 8:720690. [PMID: 34604353 PMCID: PMC8484763 DOI: 10.3389/fcvm.2021.720690] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with diverse etiologies and pathophysiological factors. Obesity and type 2 diabetes mellitus (T2DM), conditions that coexist frequently, induce a cluster of metabolic and non-metabolic signaling derangements which are in favor to induce inflammation, fibrosis, myocyte stiffness, all hallmarks of HFpEF. In contrast to other HFpEF risk factors, obesity and T2DM are often associated with the generation of enlarged epicardial adipose tissue (EAT). EAT acts as an endocrine tissue that may exacerbate myocardial inflammation and fibrosis via various paracrine and vasocrine signals. In addition, an abnormally large EAT poses mechanical stress on the heart via pericardial restrain. HFpEF patients with enlarged EAT may belong to a unique phenotype that can benefit from specific EAT-targeted interventions, including life-style modifications and pharmacologically via statins and fat modifying anti-diabetics drugs; like metformin, sodium-glucose cotransporter 2 inhibitors, or glucagon-like peptide-1 receptor agonists, respectively.
Collapse
Affiliation(s)
- Ahmed Elsanhoury
- Berlin Institute of Health at Charite (BIH), Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Vivian Nelki
- Department of Cardiology, Campus Virchow Klinikum (CVK), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health at Charite (BIH), Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health at Charite (BIH), Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum (CVK), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
12
|
Shitole P, Choubey A, Mondal P, Ghosh R. Influence of low dose naltrexone on Raman assisted bone quality, skeletal advanced glycation end-products and nano-mechanical properties in type 2 diabetic mice bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112011. [PMID: 33812630 DOI: 10.1016/j.msec.2021.112011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) commonly affects the bone mineral phase and advanced glycation end-products (AGEs) which eventually led to changes in bone material properties on the nano and macro-scale. Several anti-diabetic compounds are widely used to control high blood sugar or glucose caused by T2DM. Low Dose Naltrexone (LDN), an opiate receptor antagonist, and a known TLR4 antagonist, treatment can improve glucose tolerance and insulin sensitivity in high-fat-diet (HFD) induced T2DM mice. However, the influences of LDN on the local bone quality, mineralization of the bone, and the skeletal AGEs levels have not been fully elucidated. The objective of this study is to understand the effect of LDN on Raman assisted bone quality, skeletal AGEs (determined by Raman spectroscopy), and nano-mechanical properties in HFD induced T2DM mice bone. In order to investigate these, mice and corresponding bones were divided into four groups (divided based on diet and treatment), (a) normal control diet treated with saline water, (b) normal control diet treated with LDN, (c) HFD treated with saline water, and (d) HFD treated with LDN. In T2DM condition (HFD treated with saline water), alteration of Raman-based compositional measures in bone quality including mineral-to-matrix ratios, carbonate substitution, mineral crystallinity, and collagen quality was observed. Our data also indicated that T2DM enhances the skeletal AGEs, and impairs the nano-mechanical properties. Interestingly, present results indicated that LDN controls the Raman-based compositional measures in bone quality in HFD induced T2DM mice bone. Additionally, LDN also protects the alteration of the skeletal AGEs levels and nano-mechanical properties in T2DM mice bone. This study concluded that LDN can control the HFD induced T2DM affected bone abnormalities at multiple hierarchical levels.
Collapse
Affiliation(s)
- Pankaj Shitole
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Abhinav Choubey
- School of Basic Science, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Prosenjit Mondal
- School of Basic Science, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
| |
Collapse
|
13
|
Kawanami D, Takashi Y, Takahashi H, Motonaga R, Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel) 2021; 10:antiox10020246. [PMID: 33562528 PMCID: PMC7915260 DOI: 10.3390/antiox10020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Dipeptidyl peptidase (DPP)-4 inhibitors are widely used in the treatment of patients with type 2 diabetes (T2D). DPP-4 inhibitors reduce glucose levels by inhibiting degradation of incretins. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. It has been shown that an increased renal DPP-4 activity is associated with the development of DKD. A series of clinical and experimental studies showed that DPP-4 inhibitors have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying renoprotection by DPP-4 inhibitors under diabetic conditions.
Collapse
|
14
|
Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-Núñez E, Mora-Fernández C, Navarro-González JF. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front Med (Lausanne) 2021; 7:628289. [PMID: 33553221 PMCID: PMC7862763 DOI: 10.3389/fmed.2020.628289] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and a main contributing factor for cardiovascular morbidity and mortality in patients with diabetes mellitus. Strategies employed to delay the progression of this pathology focus on the control of traditional risk factors, such as hyperglycemia, and elevated blood pressure. Although the intimate mechanisms involved in the onset and progression of DKD remain incompletely understood, inflammation is currently recognized as one of the main underlying processes. Untangling the mechanisms involved in the appearing of a harmful inflammatory response in the diabetic patient is crucial for the development of new therapeutic strategies. In this review, we focus on the inflammation-related pathogenic mechanisms involved in DKD and in the therapeutic utility of new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Fátima Sánchez-Quintana
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.,Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.,REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Takeuchi M. Toxic AGEs (TAGE) theory: a new concept for preventing the development of diseases related to lifestyle. Diabetol Metab Syndr 2020; 12:105. [PMID: 33292465 PMCID: PMC7708159 DOI: 10.1186/s13098-020-00614-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The habitual excessive intake of sugar (i.e., sucrose and high-fructose corn syrup), which has been implicated in the onset of diabetes mellitus, induces excessive production of glyceraldehyde, a metabolite produced during glucose and fructose metabolism, in hepatocytes, neuronal cells, and cardiomyocytes. MAIN TEXT Toxic advanced glycation end-products (toxic AGEs, TAGE) are formed from reactions between glyceraldehyde and intracellular proteins, and their accumulation contributes to various cellular disorders. TAGE leakage from cells affects the surrounding cells and increases serum TAGE levels, promoting the onset and/or development of lifestyle-related diseases (LSRD). Therefore, serum TAGE levels have potential as a novel biomarker for predicting the onset and/or progression of LSRD, and minimizing the effects of TAGE might help to prevent the onset and/or progression of LSRD. Serum TAGE levels are closely related to LSRD associated with the excessive ingestion of sugar and/or dietary AGEs. CONCLUSIONS The TAGE theory is also expected to open new perspectives for research into numerous other diseases.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293, Japan.
| |
Collapse
|
16
|
Steenbeke M, De Bruyne S, De Buyzere M, Lapauw B, Speeckaert R, Petrovic M, Delanghe JR, Speeckaert MM. The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome. Crit Rev Clin Lab Sci 2020; 58:113-130. [PMID: 32669010 DOI: 10.1080/10408363.2020.1791045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isoforms of the receptor for advanced glycation end-product (RAGE) protein, which lack the transmembrane and the signaling (soluble RAGE or sRAGE) domains are hypothesized to counteract the detrimental action of the full-length receptor by acting as a decoy, and they provide a potential tool to treat RAGE-associated diseases. Multiple studies have explored the relationship between sRAGE and endogenous secretory RAGE and its polymorphism and obesity, metabolic syndrome, atherosclerosis, kidney function, and increased mortality in the general population. In addition, sRAGE may be a key player in the pathogenesis of diabetes mellitus and its microvascular (e.g. kidney disease) as well as macrovascular (e.g. cardiovascular disease) complications. In this review, we focus on the role of sRAGE as a biomarker in these specific areas. As there is a lack of an underlying unifying hypothesis about how sRAGE changes according to the disease condition or risk factor, there is a call to incorporate all three players of the AGE-RAGE axis into a new universal biomarker/risk marker: (AGE + RAGE)/sRAGE. However, the measurement of RAGE in humans is not practical as it is a cell-bound receptor for which tissue is required for analysis. A high AGE/sRAGE ratio may be a valuable alternative and practical universal biomarker/risk marker for diseases associated with the AGE-RAGE axis, irrespective of low or high serum sRAGE concentrations.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sander De Bruyne
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| | - Marc De Buyzere
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | | | - Mirko Petrovic
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium.,Research Foundation Flanders, Brussels, Belgium
| |
Collapse
|
17
|
Terasaki M, Yashima H, Mori Y, Saito T, Matsui T, Hiromura M, Kushima H, Osaka N, Ohara M, Fukui T, Hirano T, Yamagishi SI. A Dipeptidyl Peptidase-4 Inhibitor Inhibits Foam Cell Formation of Macrophages in Type 1 Diabetes via Suppression of CD36 and ACAT-1 Expression. Int J Mol Sci 2020; 21:ijms21134811. [PMID: 32646003 PMCID: PMC7369823 DOI: 10.3390/ijms21134811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors have been reported to play a protective role against atherosclerosis in both animal models and patients with type 2 diabetes (T2D). However, since T2D is associated with dyslipidemia, hypertension and insulin resistance, part of which are ameliorated by DPP-4 inhibitors, it remains unclear whether DPP-4 inhibitors could have anti-atherosclerotic properties directly by attenuating the harmful effects of hyperglycemia. Therefore, we examined whether a DPP-4 inhibitor, teneligliptin, could suppress oxidized low-density lipoprotein (ox-LDL) uptake, foam cell formation, CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression of macrophages isolated from streptozotocin-induced type 1 diabetes (T1D) mice and T1D patients as well as advanced glycation end product (AGE)-exposed mouse peritoneal macrophages and THP-1 cells. Foam cell formation, CD36 and ACAT-1 gene expression of macrophages derived from T1D mice or patients increased compared with those from non-diabetic controls, all of which were inhibited by 10 nmol/L teneligliptin. AGEs mimicked the effects of T1D; teneligliptin attenuated all the deleterious effects of AGEs in mouse macrophages and THP-1 cells. Our present findings suggest that teneligliptin may inhibit foam cell formation of macrophages in T1D via suppression of CD36 and ACAT-1 gene expression partly by attenuating the harmful effects of AGEs.
Collapse
Affiliation(s)
- Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
- Correspondence: ; Tel.: +81-3-3784-8947; Fax: +81-3-3784-8948
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Tsutomu Hirano
- Diabetes Center, Ebina General Hospital, Ebina 243-0433, Japan;
| | - Sho-ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| |
Collapse
|
18
|
Bekki M, Tahara N, Tahara A, Igata S, Honda A, Sugiyama Y, Nakamura T, Sun J, Kumashiro Y, Matsui T, Fukumoto Y, Yamagishi SI. Switching Dipeptidyl Peptidase-4 Inhibitors to Tofogliflozin, a Selective Inhibitor of Sodium-Glucose Cotransporter 2 Improve Arterial Stiffness Evaluated by Cardio-Ankle Vascular Index in Patients with Type 2 Diabetes: A Pilot Study. Curr Vasc Pharmacol 2020; 17:411-420. [PMID: 29766812 DOI: 10.2174/1570161116666180515154555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/19/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND We have found that anagliptin, a dipeptidyl peptidase-4 inhibitor (DPP-4) significantly ameliorates arterial stiffness in Type 2 Diabetes Mellitus (T2DM) patients compared with an equivalent hypoglycaemic agent, glimepiride. However, it remains unclear whether switching DPP-4 inhibitors to tofogliflozin, a selective inhibitor of Sodium-Glucose Cotransporter 2 (SGLT2) improves arterial stiffness in T2DM patients. METHODS Nineteen T2DM patients who had received DPP-4 inhibitors for at least 1 year were enrolled in this study. Clinical parameters and arterial stiffness evaluated by cardio-ankle vascular index (CAVI) were measured at baseline and after 6-months treatment with tofogliflozin. RESULTS At 6 months after switching to tofogliflozin, CAVI, waist circumference, body weight, body mass index, subcutaneous and visceral fat volume, white blood cell number, fasting plasma insulin, uric acid, aspartate transaminase (AST), γ-glutamyl transferase (GTP), and advanced glycation end products (AGEs) were significantly reduced, while red blood cell number, haemoglobin, and HbA1c values were increased. When stratified by median values of change in CAVI after switching to tofogliflozin (ΔCAVI), baseline serum levels of AGEs were significantly higher in the low ΔCAVI group (high responder) than in the high one (low responder). ΔAST and ΔGTP were positively correlated with ΔCAVI. CONCLUSION The present study suggests that switching DPP-4 inhibitors to tofogliflozin ameliorates arterial stiffness in T2DM patients partly via improvement of liver function. Baseline serum levels of AGEs may identify patients who improve arterial stiffness more after treatment with tofogliflozin.
Collapse
Affiliation(s)
- Munehisa Bekki
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Nobuhiro Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Atsuko Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Sachiyo Igata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Akihiro Honda
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Yoichi Sugiyama
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Tomohisa Nakamura
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Jiahui Sun
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | | | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, 67 Asahi-machi, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
19
|
Effect of Dipeptidyl-Peptidase 4 Inhibitors on Circulating Oxidative Stress Biomarkers in Patients with Type 2 Diabetes Mellitus. Antioxidants (Basel) 2020; 9:antiox9030233. [PMID: 32168854 PMCID: PMC7139569 DOI: 10.3390/antiox9030233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Pre-clinical studies suggested potential cardiovascular benefits of dipeptidyl peptidase-4 inhibitors (DPP4i), however, clinical trials showed neither beneficial nor detrimental effects in patients with type 2 diabetes mellitus (T2DM). We examined the effects of DPP4i on several circulating oxidative stress markers in a cohort of 32 T2DM patients (21 males and 11 post-menopausal females), who were already on routine antidiabetic treatment. Propensity score matching was used to adjust demographic and clinical characteristics between patients who received and who did not receive DPP4i. Whole-blood reactive oxygen species (ROS), plasma advanced glycation end products (AGEs), advanced oxidation protein products (AOPP), carbonyl residues, as well as ferric reducing ability of plasma (FRAP) and leukocyte DNA oxidative damage (Fpg sites), were evaluated. With the exception of Fpg sites, that showed a borderline increase in DPP4i users compared to non-users (p = 0.0507), none of the biomarkers measured was affected by DPP4i treatment. An inverse correlation between estimated glomerular filtration rate and AGEs (p < 0.0001) and Fpg sites (p < 0.05) was also observed. This study does not show any major effect of DPP4i on oxidative stress, assessed by several circulating biomarkers of oxidative damage, in propensity score-matched cohorts of T2DM patients.
Collapse
|
20
|
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF. Inflammatory Targets in Diabetic Nephropathy. J Clin Med 2020; 9:jcm9020458. [PMID: 32046074 PMCID: PMC7074396 DOI: 10.3390/jcm9020458] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most frequent complications in patients with diabetes mellitus is diabetic nephropathy (DN). At present, it constitutes the first cause of end stage renal disease, and the main cause of cardiovascular morbidity and mortality in these patients. Therefore, it is clear that new strategies are required to delay the development and the progression of this pathology. This new approach should look beyond the control of traditional risk factors such as hyperglycemia and hypertension. Currently, inflammation has been recognized as one of the underlying processes involved in the development and progression of kidney disease in the diabetic population. Understanding the cascade of signals and mechanisms that trigger this maladaptive immune response, which eventually leads to the development of DN, is crucial. This knowledge will allow the identification of new targets and facilitate the design of innovative therapeutic strategies. In this review, we focus on the pathogenesis of proinflammatory molecules and mechanisms related to the development and progression of DN, and discuss the potential utility of new strategies based on agents that target inflammation.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
| | | | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-922-602-389
| |
Collapse
|
21
|
Yamagishi SI, Sotokawauchi A, Matsui T. Pathological Role of Advanced Glycation End Products (AGEs) and their Receptor Axis in Atrial Fibrillation. Mini Rev Med Chem 2019; 19:1040-1048. [PMID: 30854960 DOI: 10.2174/1389557519666190311140737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has shown that the incidence of atrial fibrillation (AF) is higher in patients with diabetes, especially those with poor glycemic control or long disease duration. Nonenzymatic glycation of amino acids of proteins, lipids, and nucleic acids has progressed under normal aging process and/or diabetic condition, which could lead to the formation and accumulation of advanced glycation end products (AGEs). AGEs not only alter the tertiary structure and physiological function of macromolecules, but also evoke inflammatory and fibrotic reactions through the interaction of cell surface receptor for AGEs (RAGE), thereby being involved in aging-related disorders. In this paper, we briefly review the association of chronic hyperglycemia and type 1 diabetes with the risk of AF and then discuss the pathological role of AGE-RAGE axis in AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
22
|
Kim KJ, Choi J, Lee J, Bae JH, An JH, Kim HY, Yoo HJ, Seo JA, Kim NH, Choi KM, Baik SH, Kim SG, Kim NH. Dipeptidyl peptidase-4 inhibitor compared with sulfonylurea in combination with metformin: cardiovascular and renal outcomes in a propensity-matched cohort study. Cardiovasc Diabetol 2019; 18:28. [PMID: 30857540 PMCID: PMC6410523 DOI: 10.1186/s12933-019-0835-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background To determine the impact of dipeptidyl peptidase-4 inhibitor (DPP4i) on the risk of major cardiocerebrovascular and renal outcomes compared with sulfonylurea (SU) combined with metformin in patients with type 2 diabetes from a population-based cohort. Methods From a nationwide cohort in Korea (2008–2013), 23,674 patients with type 2 diabetes treated with DPP4i plus metformin or SU plus metformin were selected and matched by propensity score. Composite cardiocerebrovascular events including incident ischemic heart disease (IHD), ischemic stroke (IS), hospitalization for heart failure (HHF), and cardiocerebrovascular death, as well as renal events including incident end-stage renal disease or initiation of renal-replacement therapy were assessed by Cox proportional-hazards models. Results During a median follow-up of 19.6 months (interquartile range 7.2–36.4), 762 composite cardiocerebrovascular events and 17 end-stage renal events occurred. There was no significant difference in the risk of IHD (hazard ratio [HR], 1.00; 95% CI 0.81–1.23), IS (HR, 0.95; 95% CI 0.74–1.23), or cardiocerebrovascular death (HR, 0.74; 95% CI 0.46–1.18) in the DPP4i group compared to that in the SU group. Likewise, DPP4i therapy was not associated with the risk of end-stage renal outcomes (HR, 1.23; 95% CI 0.41–3.62). However, the risk of HHF was significantly higher in the DPP4i group than in the SU group (HR, 1.47; 95% CI 1.07–2.04). Conclusions This real-world database analysis showed that DPP4i therapy did not increase the overall risk of major cardiovascular and renal outcomes compared to SU therapy. However, the DPP4i-associated risk of HHF remained significant. Electronic supplementary material The online version of this article (10.1186/s12933-019-0835-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jimi Choi
- Department of Biostatistics, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Juneyoung Lee
- Department of Biostatistics, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae Hyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jee Hyun An
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hee Young Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
23
|
Hasan AA, von Websky K, Reichetzeder C, Tsuprykov O, Gaballa MMS, Guo J, Zeng S, Delić D, Tammen H, Klein T, Kleuser B, Hocher B. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int 2019; 95:1373-1388. [PMID: 30979564 DOI: 10.1016/j.kint.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham+wild type+placebo; 5/6Nx+ wild type+placebo; 5/6Nx+wild type+linagliptin; sham+knock out+placebo; 5/6Nx+knock out+ placebo; 5/6Nx+knock out+linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin β4 and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-β1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and Glp1r-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1, YB-1, thymosin β4 and TGF-β1) influenced by DPP-4 inhibition.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; UP Transfer GmbH, University of Potsdam, Potsdam, Germany
| | - Karoline von Websky
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Christoph Reichetzeder
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; UP Transfer GmbH, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Oleg Tsuprykov
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; Center for Cardiovascular Research, Charité, Berlin, Germany; IFLB GmbH, Institute for Laboratory Medicine, Berlin, Germany
| | - Mohamed M S Gaballa
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Jingli Guo
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Shufei Zeng
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Denis Delić
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; LADR GmbH Neuruppin MVZ, Neuruppin, Germany; Department of Basic Medicine, Medical college of Hunan Normal University, Changsha, China.
| |
Collapse
|
24
|
Yaribeygi H, Atkin SL, Katsiki N, Sahebkar A. Narrative review of the effects of antidiabetic drugs on albuminuria. J Cell Physiol 2018; 234:5786-5797. [PMID: 30367464 DOI: 10.1002/jcp.27503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most prevalent metabolic disorder worldwide. Glycemic control is the main focus of antidiabetic therapy. However, there are data suggesting that some antidiabetic drugs may have intrinsic beneficial renal effects and protect against the development and progression of albuminuria, thus minimizing the risk of diabetic nephropathy. These pharmacological agents can suppress upstream molecular pathways involved in the pathophysiology of diabetes-induced renal dysfunction such as oxidative stress, inflammatory responses, and apoptosis. In this narrative review, the pathophysiology of albuminuria in patients with diabetic nephropathy is discussed. Furthermore, the renoprotective effects of antidiabetic drugs, focusing on albuminuria, are reviewed.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease globally. Given the increasing incidence of diabetes, many experts hold the view that DN will eventually progress toward pandemic proportions. Whilst hyperglycaemia-induced vascular dysfunction is the primary initiating mechanism in DN, its progression is also driven by a heterogeneous set of pathological mechanisms, including oxidative stress, inflammation and fibrosis. Current treatment strategies for DN are targeted against the fundamental dysregulation of glycaemia and hypertension. Unfortunately, these standards of care can delay but do not prevent disease progression or the significant emotional, physical and financial costs associated with this disease. As such, there is a pressing need to develop novel therapeutics that are both effective and safe. Set against the genomic era, numerous potential target pathways in DN have been identified. However, the clinical translation of basic DN research has been met with a number of challenges. Moreover, the notion of DN as a purely vascular disease is outdated and it has become clear that DN is a multi-dimensional, multi-cellular condition. The review will highlight the current therapeutic approaches for DN and provide an insight into how the inherent complexity of DN is shaping the research pathways toward the development and clinical translation of novel therapeutic strategies.
Collapse
|
26
|
Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev 2018; 39:404-422. [DOI: 10.1002/med.21513] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Jelena Lazarevic
- Department of Chemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Marina Deljanin-Ilic
- Institute for Cardiovascular Rehabilitation, Faculty of Medicine; University of Nis; 18205 Niska Banja Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; University of Ljubljana; Askerceva 7 SI-1000 Ljubljana Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| |
Collapse
|
27
|
Han SY, Yoon SA, Han BG, Kim SG, Jo YI, Jeong KH, Oh KH, Park HC, Park SH, Kang SW, Na KR, Kang SW, Kim NH, Jang Y, Kim B, Shin S, Cha DR. Comparative efficacy and safety of gemigliptin versus linagliptin in type 2 diabetes patients with renal impairment: A 40-week extension of the GUARD randomized study. Diabetes Obes Metab 2018; 20:292-300. [PMID: 28719008 DOI: 10.1111/dom.13059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
AIMS The long-term safety and efficacy of gemigliptin was evaluated in the present extension study after a 12-week study during a 40-week follow-up period. METHODS The main study was a randomized, placebo-controlled, double-blinded, phase IIIb study in which 50 mg of gemigliptin (N = 66) or placebo (N = 66) was administered to patients with type 2 diabetes mellitus (T2DM) and moderate or severe renal impairment over a 12-week period. Patients with a glycated haemoglobin (HbA1c) level of 7% to 11% and an estimated glomerular filtration rate (eGFR) of 15 to 59 mL/min/1.73 m2 were enrolled in the main study. After 12 weeks, patients in the gemigliptin group continued to receive gemigliptin (N = 50), whereas patients in the placebo group were transitioned from placebo to linagliptin (N = 52). Each group received the indicated treatment over the subsequent 40-week period. A total of 102 patients consented to participate in the extension study, and 79 patients ultimately completed the study. RESULTS The HbA1c levels of both groups were significantly reduced at week 52 compared with baseline. Specifically, the adjusted mean change ± standard error in HbA1c level in the gemigliptin and placebo/linagliptin groups was 1.00% ± 0.21% and 0.65% ± 0.22% lower at week 52 than at baseline (P < .001 and P = .003), respectively. No significant difference in the change in HbA1c level was found between the 2 groups (P = .148). Trends in fasting plasma glucose, fructosamine and glycated albumin levels in the 2 groups were similar to trends in HbA1c levels. The eGFR of both groups was also significantly lower at week 52 than at baseline, and no significant difference in change in eGFR was found between the 2 groups. In contrast, both drugs had little effect on urinary albumin excretion, although both drugs significantly reduced the urinary type IV collagen level. The overall rates of adverse events were similar between the 2 groups. CONCLUSIONS Gemigliptin and linagliptin did not differ with respect to safety and efficacy in patients with T2DM and renal impairment. The 2 drugs had similar glucose-lowering effects, and the changes in eGFR and albuminuria were also similar. Additionally, the risk of side effects, including hypoglycaemia, was similar between the 2 groups.
Collapse
Affiliation(s)
- Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Sun Ae Yoon
- Department of Internal Medicine, Catholic University Uijeongbu St. Mary's Hospital, Uijeongbu, Republic of Korea
| | - Byoung Geun Han
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Young-Il Jo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Jeong
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Cheon Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Sun-Hee Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki-Ryang Na
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun Woo Kang
- Department of Nephrology, Busan Paik Hospital Inje University, Busan, Republic of Korea
| | - Nam-Ho Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Republic of Korea
| | | | | | | | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
28
|
Deacon CF. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials. Diabetes Obes Metab 2018; 20 Suppl 1:34-46. [PMID: 29364584 DOI: 10.1111/dom.13135] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
The first clinical study to investigate effects of dipeptidyl peptidase-4 (DPP-4) inhibition was published in 2002, and since then, numerous randomized controlled trials (RCTs) have shown that DPP-4 inhibitors are efficacious, safe and well-tolerated. This review will focus upon RCTs which have investigated DPP-4 inhibitors in patient groups which are often under-represented or excluded from typical phase 3 clinical trials. Large cardiovascular (CV) safety outcome trials in patients with established CV disease have confirmed that DPP-4 inhibitors are not associated with any additional CV risk in these already-at-high-risk individuals, while raising awareness of any uncommon adverse events, such as heart failure hospitalization seen in one of the trials. Studies in patients with kidney disease have shown DPP-4 inhibitors to be efficacious without increasing the risk of hypoglycaemia, irrespective of the degree of renal impairment, while data from the large CV trials as well as smaller RCTs have even pointed towards potential renoprotective effects such individuals. The use of DPP-4 inhibitors with insulin when therapy requires intensification may be beneficial without affecting the incidence or severity of hypoglycaemia, with these effects also being replicated in patients with chronic kidney disease, for whom other agents may not be suitable. Attention is now turning towards exploring the potential utility of DPP-4 inhibitors in other circumstances, including for in-hospital management of hyperglycaemia and in other metabolic disorders. Together, these RCTs raise the possibility that in the future, DPP-4 inhibitors may have a broader use which may extend beyond glycaemic control in the typical type 2 diabetes mellitus (T2DM) patient seen in general practice and may encompass conditions other than T2DM.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Effects of incretin-based therapies on renal function. Eur J Pharmacol 2018; 818:103-109. [DOI: 10.1016/j.ejphar.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
|
30
|
Renal outcomes with dipeptidyl peptidase-4 inhibitors. DIABETES & METABOLISM 2017; 44:101-111. [PMID: 29146035 DOI: 10.1016/j.diabet.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4is) are increasingly being used in the management of type 2 diabetes (T2D). The present review summarizes the current knowledge of the effects of DPP-4is on renal outcomes by analyzing the experimental preclinical data, the effects of DPP-4is on urinary albumin-creatinine ratios (UACRs) and estimated glomerular filtration rates (eGFRs) from observational studies and clinical trials, and renal events (including kidney failure requiring renal replacement therapy) in recent large prospective cardiovascular outcome trials. Renal protection has been demonstrated in various animal models that have implicated different underlying mechanisms independent of glucose control, whereas prevention of new onset microalbuminuria and/or progression of albuminuria has been reported in some clinical studies, but with no significant effects on eGFR in most of them. The long-term clinical effects of DPP-4is on renal outcomes and the development of end-stage renal disease remain largely unknown and, thus, demand further investigations in prospective trials and long-term observational studies. In conclusion, despite promising results in animal models, data on surrogate biological markers of renal function and clinical renal outcomes remain rather scanty in patients with T2D, and mostly demonstrate the safety rather than true efficacy of DPP-4is.
Collapse
|
31
|
Chang YP, Sun B, Han Z, Han F, Hu SL, Li XY, Xue M, Yang Y, Chen L, Li CJ, Chen LM. Saxagliptin Attenuates Albuminuria by Inhibiting Podocyte Epithelial- to-Mesenchymal Transition via SDF-1α in Diabetic Nephropathy. Front Pharmacol 2017; 8:780. [PMID: 29163166 PMCID: PMC5672017 DOI: 10.3389/fphar.2017.00780] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
The dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin has been found to reduce progressive albuminuria, but the exact mechanism of inhibition is unclear. Podocyte epithelial-to-mesenchymal transition (EMT) has emerged as a potential pathway leading to proteinuria in diabetic nephropathy (DN). Stromal cell–derived factor-1α (SDF-1α), one of the substrates of DPP-4, can activate the protein kinase A pathway and subsequently inhibit its downstream effector, transforming growth factor-β1 (TGF-β1), which induces podocyte EMT. Thus, this study was designed to test the hypothesis that saxagliptin reduces progressive albuminuria by preventing podocyte EMT through inhibition of SDF-1α cleavage in DN. The results of a series of assays, including ELISA, western blotting, and immunochemistry/immunofluorescence, showed that saxagliptin treatment obviously ameliorated urinary microalbumin excretion and renal histological changes in high-fat diet/streptozotocin-induced diabetic rats. Furthermore, saxagliptin-treated diabetic rats presented with suppression of DPP-4 activity/protein expression accompanied by restoration of SDF-1α levels, which subsequently hindered NOX2 expression and podocyte EMT. In vitro, we consistently observed that saxagliptin significantly inhibited increased DPP-4 activity/expression, oxidative stress and podocyte EMT. Application of an SDF-1α receptor inhibitor (AMD3100) to cultured podocytes further confirmed the essential role of SDF-1α in podocyte EMT inhibition. In sum, we demonstrated for the first time that saxagliptin treatment plays an essential role in ameliorating progressive DN by preventing podocyte EMT through a SDF-1α-related pathway, suggesting that saxagliptin could offer renoprotection and that SDF-1α might be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yun-Peng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhe Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shao-Lan Hu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiao-Yu Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mei Xue
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Li Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chun-Jun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
33
|
Neumiller JJ, Alicic RZ, Tuttle KR. Therapeutic Considerations for Antihyperglycemic Agents in Diabetic Kidney Disease. J Am Soc Nephrol 2017; 28:2263-2274. [PMID: 28465376 PMCID: PMC5533243 DOI: 10.1681/asn.2016121372] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease is among the most frequent complications of diabetes, with approximately 50% of patients with ESRD attributed to diabetes in developed countries. Although intensive glycemic management has been shown to delay the onset and progression of increased urinary albumin excretion and reduced GFR in patients with diabetes, conservative dose selection and adjustment of antihyperglycemic medications are necessary to balance glycemic control with safety. A growing body of literature is providing valuable insight into the cardiovascular and renal safety and efficacy of newer antihyperglycemic medications in the dipeptidyl peptidase-4 inhibitor, glucagon-like peptide-1 receptor agonist, and sodium-glucose cotransporter 2 inhibitor classes of medications. Ongoing studies will continue to inform future use of these agents in patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Joshua J Neumiller
- Department of Pharmacotherapy, Washington State University College of Pharmacy, Spokane, Washington;
| | - Radica Z Alicic
- Providence Medical Research Center, Providence Health Care, Spokane, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and
- Nephrology Division, Kidney Research Institute and
- Institute of Translational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Yoon SA, Han BG, Kim SG, Han SY, Jo YI, Jeong KH, Oh KH, Park HC, Park SH, Kang SW, Na KR, Kang SW, Kim NH, Jang YH, Shin SH, Cha DR. Efficacy, safety and albuminuria-reducing effect of gemigliptin in Korean type 2 diabetes patients with moderate to severe renal impairment: A 12-week, double-blind randomized study (the GUARD Study). Diabetes Obes Metab 2017; 19:590-598. [PMID: 28019072 DOI: 10.1111/dom.12863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/12/2023]
Abstract
AIMS This multicentre, randomized, double-blind study investigated the efficacy and safety of gemigliptin in Korean type 2 diabetes mellitus (T2DM) patients with moderate to severe renal impairment (RI). METHODS The study comprised a 12-week main part and a 40-week extension. We report here the results from the main part. In total, 132 patients were randomized to receive gemigliptin (n = 66) or placebo (n = 66). Changes in glycated haemoglobin (HbA1c; primary endpoint), other glycaemic control parameters (fasting plasma glucose, glycated albumin and fructosamine), lipid profiles, renal function parameters and safety profiles were evaluated. RESULTS Baseline characteristics were comparable between the groups (mean HbA1c, 8.4% [68 mmol/mol]; age, 62.0 years; duration of type 2 diabetes, 16.3 years; estimated glomerular filtration rate, 33.3 mL/min/1.73 m2 ). At Week 12, the adjusted mean change ± standard error in HbA1c with gemigliptin was -0.82% ± 0.14% (-8.9 ± 1.5 mmol/mol), whereas it was 0.38% ± 0.14% (4.2 ± 1.5 mmol/mol) with placebo (significant between-group difference, P < .001). Other glycaemic control parameters showed beneficial changes as well. Body weight change (gemigliptin, -0.3 kg; placebo, -0.2 kg) was not significant. In the gemigliptin group, the mean decrease in urinary albumin creatinine ratio (UACR) was significant, both in patients with microalbuminuria (-41.9 mg/g creatinine, P = .03) and macroalbuminuria (-528.9 mg/g creatinine, P < .001). Drug-related adverse events were similar with gemigliptin and placebo (15% and 12%, respectively). CONCLUSIONS A 12-week treatment with gemigliptin improved glycaemic control and provided UACR reduction in T2DM patients with moderate to severe RI. Gemigliptin was well tolerated, with no additional risk of hypoglycaemia and change in body weight.
Collapse
Affiliation(s)
- Sun A Yoon
- Department of Internal Medicine, Catholic University Uijeongbu St. Mary's Hospital, Uijeongbu, Republic of Korea
| | - Byoung G Han
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung G Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sang Y Han
- Department of Internal Medicine, Inje University, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Young I Jo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung H Jeong
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kook H Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong C Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Sun H Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | - Ki R Na
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun W Kang
- Department of Internal Medicine, Busan Paik Hospital, Busan, Republic of Korea
| | - Nam H Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Republic of Korea
| | | | | | - Dae R Cha
- Korea University Ansan-Hospital, Ansan, Republic of Korea
| |
Collapse
|
36
|
Abstract
Studies investigating diabetic nephropathy (DN) have mostly focused on interpreting the pathologic molecular mechanisms of DN, which may provide valuable tools for early diagnosis and prevention of disease onset and progression. Currently, there are few therapeutic drugs for DN, which mainly consist of antihypertensive and antiproteinuric measures that arise from strict renin-angiotensin-aldosterone system inactivation. However, these traditional therapies are suboptimal and there is a clear, unmet need for treatments that offer effective schemes beyond glucose control. The complexity and heterogeneity of the DN entity, along with ambiguous renal endpoints that may deter accurate appraisal of new drug potency, contribute to a worsening of the situation. To address these issues, current research into original therapies to treat DN is focusing on the intrinsic renal pathways that intervene with intracellular signaling of anti-inflammatory, antifibrotic, and metabolic pathways. Mounting evidence in support of the favorable metabolic effects of these novel agents with respect to the renal aspects of DN supports the likelihood of systemic beneficial effects as well. Thus, when translated into clinical use, these novel agents would also address the comorbid factors associated with diabetes, such as obesity and risk of cardiovascular disease. This review will provide a discussion of the promising and effective therapeutic agents for the management of DN.
Collapse
Affiliation(s)
- Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Cheol Whee Park, M.D. Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6038 Fax: +82-2-599-3589 E-mail:
| |
Collapse
|
37
|
Tonneijck L, Smits MM, Muskiet MHA, Hoekstra T, Kramer MHH, Danser AHJ, Ter Wee PM, Diamant M, Joles JA, van Raalte DH. Renal Effects of DPP-4 Inhibitor Sitagliptin or GLP-1 Receptor Agonist Liraglutide in Overweight Patients With Type 2 Diabetes: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Care 2016; 39:2042-2050. [PMID: 27585605 DOI: 10.2337/dc16-1371] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/10/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate effects of dipeptidyl peptidase-4 inhibitor (DPP-4I) sitagliptin or glucagon-like peptide 1 (GLP-1) receptor agonist liraglutide treatment on renal hemodynamics, tubular functions, and markers of renal damage in overweight patients with type 2 diabetes without chronic kidney disease (CKD). RESEARCH DESIGN AND METHODS In this 12-week, randomized, double-blind trial, 55 insulin-naïve patients with type 2 diabetes (mean ± SEM: age 63 ± 7 years, BMI 31.8 ± 4.1 kg/m2, glomerular filtration rate [GFR] 83 ± 16 mL/min/1.73 m2; median [interquartile range]: albumin-to-creatinine ratio (ACR) 1.09 mg/mmol [0.47-3.31]) received sitagliptin (100 mg/day), liraglutide (1.8 mg/day), or matching placebos. GFR (primary end point) and effective renal plasma flow (ERPF) were determined by inulin and para-aminohippuric acid clearance, respectively. Intrarenal hemodynamic variables were estimated. Absolute and fractional excretions of sodium (FENa), potassium, and urea (FEU) and renal damage markers (ACR, neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [KIM-1]) were measured. Plasma renin concentration (PRC) and glycated hemoglobin (HbA1c) were assessed. At weeks 2 and 6, estimated GFR and fractional electrolyte excretions were determined. RESULTS At week 12, GFR was not affected by sitagliptin (-6 mL/min/1.73 m2 [95% CI -14 to 3], P = 0.17) or liraglutide (+3 mL/min/1.73 m2 [-5 to 11], P = 0.46), compared with placebo. Sitagliptin modestly reduced estimated glomerular hydraulic pressure (PGLO; P = 0.043). ERPF, other intrarenal hemodynamic variables, renal damage markers, and PRC did not change for both treatments. Both agents reduced HbA1c. Only at week 2, sitagliptin increased FENa and FEU (P = 0.005). CONCLUSIONS Twelve-week treatment with sitagliptin or liraglutide does not affect measured renal hemodynamics. No sustained changes in tubular functions or alteration in renal damage markers were observed. The validity and clinical relevance of the slight sitagliptin-induced PGLO reduction remains speculative.
Collapse
Affiliation(s)
- Lennart Tonneijck
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Mark M Smits
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Marcel H A Muskiet
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Trynke Hoekstra
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, the Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Mark H H Kramer
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Piet M Ter Wee
- Department of Nephrology, VU University Medical Center, Amsterdam, the Netherlands
| | - Michaela Diamant
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Davies M, Chatterjee S, Khunti K. The treatment of type 2 diabetes in the presence of renal impairment: what we should know about newer therapies. Clin Pharmacol 2016; 8:61-81. [PMID: 27382338 PMCID: PMC4922775 DOI: 10.2147/cpaa.s82008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Worldwide, an estimated 200 million people have chronic kidney disease (CKD), the most common causes of which include hypertension, arteriosclerosis, and diabetes. Importantly, ~40% of patients with diabetes develop CKD, yet evidence from major multicenter randomized controlled trials shows that intensive blood glucose control through pharmacological intervention can reduce the incidence and progression of CKD. Standard therapies for the treatment of type 2 diabetes include metformin, sulfonylureas, meglitinides, thiazolidinediones, and insulin. While these drugs have an important role in the management of type 2 diabetes, only the thiazolidinedione pioglitazone can be used across the spectrum of CKD (stages 2–5) and without dose adjustment; there are contraindications and dose adjustments required for the remaining standard therapies. Newer therapies, particularly dipeptidyl peptidase-IV inhibitors, glucagon-like peptide-1 receptor agonists, and sodium-glucose cotransporter-2 inhibitors, are increasingly being used in the treatment of type 2 diabetes; however, a major consideration is whether these newer therapies can also be used safely and effectively across the spectrum of renal impairment. Notably, reductions in albuminuria, a marker of CKD, are observed with many of the drug classes. Dipeptidyl peptidase-IV inhibitors can be used in all stages of renal impairment, with appropriate dose reduction, with the exception of linagliptin, which can be used without dose adjustment. No dose adjustment is required for liraglutide, albiglutide, and dulaglutide in CKD stages 2 and 3, although all glucagon-like peptide-1 receptor agonists are currently contraindicated in stages 4 and 5 CKD. At stage 3 CKD or greater, the sodium-glucose cotransporter-2 inhibitors (dapagliflozin, canagliflozin, and empagliflozin) either require dose adjustment or are contraindicated. Ongoing trials, such as CARMELINA, MARLINA, CREDENCE, and CANVAS-R, will help determine the position of these new therapy classes and if they have renoprotective effects in patients with CKD.
Collapse
Affiliation(s)
- Melanie Davies
- Diabetes Research Centre, University of Leicester; Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Sudesna Chatterjee
- Diabetes Research Centre, University of Leicester; Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester; Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
39
|
Takeuchi M. Serum Levels of Toxic AGEs (TAGE) May Be a Promising Novel Biomarker for the Onset/Progression of Lifestyle-Related Diseases. Diagnostics (Basel) 2016; 6:E23. [PMID: 27338481 PMCID: PMC4931418 DOI: 10.3390/diagnostics6020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
Advanced glycation end-products (AGEs) generated with aging or in the presence of diabetes mellitus, particularly AGEs derived from the glucose/fructose metabolism intermediate glyceraldehyde (Glycer-AGEs; termed toxic AGEs (TAGE)), were recently shown to be closely involved in the onset/progression of diabetic vascular complications via the receptor for AGEs (RAGE). TAGE also contribute to various diseases, such as cardiovascular disease; nonalcoholic steatohepatitis; cancer; Alzheimer's disease, and; infertility. This suggests the necessity of minimizing the influence of the TAGE-RAGE axis in order to prevent the onset/progression of lifestyle-related diseases (LSRD) and establish therapeutic strategies. Changes in serum TAGE levels are closely associated with LSRD related to overeating, a lack of exercise, or excessive ingestion of sugars/dietary AGEs. We also showed that serum TAGE levels, but not those of hemoglobin A1c, glucose-derived AGEs, or Nε-(carboxymethyl)lysine, have potential as a biomarker for predicting the progression of atherosclerosis and future cardiovascular events. We herein introduce the usefulness of serum TAGE levels as a biomarker for the prevention/early diagnosis of LSRD and the evaluation of the efficacy of treatments; we discuss whether dietary AGE/sugar intake restrictions reduce the generation/accumulation of TAGE, thereby preventing the onset/progression of LSRD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
40
|
Abstract
Diabetic nephropathy is the commonest cause of end-stage renal disease in most developed economies. Current standard of care for diabetic nephropathy embraces stringent blood pressure control via blockade of the renin-angiotensin-aldosterone system and glycemia control. Recent understanding of the pathophysiology of diabetic nephropathy has led to the development of novel therapeutic options. This review article focuses on available data from landmark studies on the main therapeutic approaches and highlights some novel management strategies.
Collapse
Affiliation(s)
- Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gary C W Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong; Nephrology Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| |
Collapse
|
41
|
Penno G, Garofolo M, Del Prato S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr Metab Cardiovasc Dis 2016; 26:361-373. [PMID: 27105869 DOI: 10.1016/j.numecd.2016.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is associated with a high risk of chronic kidney disease (CKD). About 20% of patients with T2DM have CKD of stage ≥ 3; up to 40% have some degree of CKD. Beyond targeting all renal risk factors together, renin-angiotensin-aldosterone system blockers are to date the only effective mainstay for the treatment of diabetic kidney disease (DKD). Indeed, several potentially nephroprotective agents have been in use, which have been unsuccessful. Some glucose-lowering agents, including dipeptidyl peptidase-4 inhibitors (DPP-4i), have shown promising results. Here, we discuss the evidence that glucose lowering with DPP-4i may be an option for protecting against diabetes-related renal injury. DATA SYNTHESIS A comprehensive search was performed of the literature using the terms "alogliptin," "linagliptin," "saxagliptin," "sitagliptin," and "vildagliptin" for original articles and reviews addressing this topic. DPP-4i are an effective, well-tolerated treatment option for T2DM with any degree of renal impairment. Preclinical observations and clinical studies suggest that DPP-4i might also be a promising strategy for the treatment of DKD. The available data are in favor of saxagliptin and linagliptin, but the consistency of results points to the possible nephroprotective effect of DPP-4i. This property appears to be independent of glucose lowering and can potentially complement other therapies that preserve renal function. Larger prospective clinical trials are ongoing, which might strengthen these hypothesis-generating findings. CONCLUSIONS The improvement in albuminuria associated with DPP-4i suggests that these agents may provide renal benefits beyond their glucose-lowering effects, thus offering direct protection from DKD. These promising results must be interpreted with caution and need to be confirmed in forthcoming studies.
Collapse
Affiliation(s)
- G Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.
| | - M Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - S Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
42
|
Chan GC, Tang SC. Diabetic nephropathy: landmark clinical trials and tribulations. Nephrol Dial Transplant 2016; 31:359-368. [DOI: 10.1093/ndt/gfu411] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
43
|
Groop PH, Cooper ME, Perkovic V, Sharma K, Schernthaner G, Haneda M, Hocher B, Gordat M, Cescutti J, Woerle HJ, von Eynatten M. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA-T2D™ trial. Diab Vasc Dis Res 2015. [PMID: 26224765 DOI: 10.1177/1479164115579002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Efficacy, Safety & Modification of Albuminuria in Type 2 Diabetes Subjects with Renal Disease with LINAgliptin (MARLINA-T2D™), a multicentre, multinational, randomized, double-blind, placebo-controlled, parallel-group, phase 3b clinical trial, aims to further define the potential renal effects of dipeptidyl peptidase-4 inhibition beyond glycaemic control. A total of 350 eligible individuals with inadequately controlled type 2 diabetes and evidence of renal disease are planned to be randomized in a 1:1 ratio to receive either linagliptin 5 mg or placebo in addition to their stable glucose-lowering background therapy for 24 weeks. Two predefined main endpoints will be tested in a hierarchical manner: (1) change from baseline in glycated haemoglobin and (2) time-weighted average of percentage change from baseline in urinary albumin-to-creatinine ratio. Both endpoints are sufficiently powered to test for superiority versus placebo after 24 weeks with α = 0.05. MARLINA-T2D™ is the first of its class to prospectively explore both the glucose- and albuminuria-lowering potential of a dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes and evidence of renal disease.
Collapse
Affiliation(s)
- Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Mark E Cooper
- Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Vlado Perkovic
- The George Institute for Global Health, University of Sydney, Sydney, NSW, Australia
| | - Kumar Sharma
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA, USA Center for Renal Translational Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | | | | | | | | |
Collapse
|
44
|
Yamagishi SI, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes. Mol Med 2015; 21 Suppl 1:S32-40. [PMID: 26605646 DOI: 10.2119/molmed.2015.00067] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022] Open
Abstract
A nonenzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules and subsequently alters their structural integrity and function. This process has been known to progress at an accelerated rate under hyperglycemic and/or oxidative stress conditions. Over a course of days to weeks, early glycation products undergo further reactions such as rearrangements and dehydration to become irreversibly cross-linked, fluorescent and senescent macroprotein derivatives termed advanced glycation end products (AGEs). There is a growing body of evidence indicating that interaction of AGEs with their receptor (RAGE) elicits oxidative stress generation and as a result evokes proliferative, inflammatory, thrombotic and fibrotic reactions in a variety of cells. This evidence supports AGEs' involvement in diabetes- and aging-associated disorders such as diabetic vascular complications, cancer, Alzheimer's disease and osteoporosis. Therefore, inhibition of AGE formation could be a novel molecular target for organ protection in diabetes. This report summarizes the pathophysiological role of AGEs in vascular complications in diabetes and discusses the potential clinical utility of measurement of serum levels of AGEs for evaluating organ damage in diabetes.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Nobutaka Nakamura
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Mika Suematsu
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.,Saravio Central Institute, Oita, Japan
| | | | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
45
|
Górriz JL, Nieto J, Navarro-González JF, Molina P, Martínez-Castelao A, Pallardó LM. Nephroprotection by Hypoglycemic Agents: Do We Have Supporting Data? J Clin Med 2015; 4:1866-89. [PMID: 26512703 PMCID: PMC4626660 DOI: 10.3390/jcm4101866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022] Open
Abstract
Current therapy directed at delaying the progression of diabetic nephropathy includes intensive glycemic and optimal blood pressure control, renin angiotensin-aldosterone system blockade and multifactorial intervention. However, the renal protection provided by these therapeutic modalities is incomplete. There is a scarcity of studies analysing the nephroprotective effect of antihyperglycaemic drugs beyond their glucose lowering effect and improved glycaemic control on the prevention and progression of diabetic nephropathy. This article analyzes the exisiting data about older and newer drugs as well as the mechanisms associated with hypoglycemic drugs, apart from their well known blood glucose lowering effect, in the prevention and progression of diabetic nephropathy. Most of them have been tested in humans, but with varying degrees of success. Although experimental data about most of antihyperglycemic drugs has shown a beneficial effect in kidney parameters, there is a lack of clinical trials that clearly prove these beneficial effects. The key question, however, is whether antihyperglycemic drugs are able to improve renal end-points beyond their antihyperglycemic effect. Existing experimental data are post hoc studies from clinical trials, and supportive of the potential renal-protective role of some of them, especially in the cases of dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Dedicated and adequately powered renal trials with renal outcomes are neccessary to assess the nephrotection of antihyperglycaemic drugs beyond the control of hyperglycaemia.
Collapse
Affiliation(s)
- Jose Luis Górriz
- Hospital Universitario Dr Peset, Universidad de Valencia, Valencia 46017, Spain.
- GEENDIAB, Diabetic Nephropathy Working Group of the Spanish Society of Nephrology, Spain.
- Carlos III Research Institute, Madrid 28029, Spain.
| | - Javier Nieto
- Hospital General Universitario de Ciudad Real, Ciudad Real, 13005 Ciudad Real, Spain.
- GEENDIAB, Diabetic Nephropathy Working Group of the Spanish Society of Nephrology, Spain.
| | - Juan F Navarro-González
- Hospital Universitario N S Candelaria, Tenerife 38010, Spain.
- GEENDIAB, Diabetic Nephropathy Working Group of the Spanish Society of Nephrology, Spain.
- Carlos III Research Institute, Madrid 28029, Spain.
| | - Pablo Molina
- Hospital Universitario Dr Peset, Universidad de Valencia, Valencia 46017, Spain.
| | - Alberto Martínez-Castelao
- Hospital Universitario Bellvitge, IDIBELL, Barcelona 08907, Spain.
- GEENDIAB, Diabetic Nephropathy Working Group of the Spanish Society of Nephrology, Spain.
- Carlos III Research Institute, Madrid 28029, Spain.
| | - Luis M Pallardó
- Hospital Universitario Dr Peset, Universidad de Valencia, Valencia 46017, Spain.
| |
Collapse
|
46
|
Schmidt AM. Soluble RAGEs - Prospects for treating & tracking metabolic and inflammatory disease. Vascul Pharmacol 2015; 72:1-8. [PMID: 26130225 DOI: 10.1016/j.vph.2015.06.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Emerging evidence links the receptor for advanced glycation endproducts (RAGE) to the pathogenesis of tissue damage in chronic metabolic and inflammatory diseases. In human subjects, multiple reports suggest that in the plasma/serum, circulating levels of distinct forms of soluble RAGEs may be biomarkers of the presence or absence, and the extent of chronic disease. These considerations prompt us to consider in this review, what are soluble RAGEs; how are they formed; what might be their natural functions; and may they serve as biomarkers of inflammatory and metabolic disease activity? In this brief review, we seek to address what is known and suggest new areas for scientific investigation to uncover the biology of soluble RAGEs.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
47
|
Godinho R, Mega C, Teixeira-de-Lemos E, Carvalho E, Teixeira F, Fernandes R, Reis F. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A "Me Too" or "the Special One" Antidiabetic Class? J Diabetes Res 2015; 2015:806979. [PMID: 26075286 PMCID: PMC4449938 DOI: 10.1155/2015/806979] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/12/2022] Open
Abstract
Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the "incretin defect" seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications.
Collapse
Affiliation(s)
- Ricardo Godinho
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Cristina Mega
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Edite Teixeira-de-Lemos
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
- The Portuguese Diabetes Association (APDP), 1250-189 Lisbon, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
48
|
Matsui T, Nakashima S, Nishino Y, Ojima A, Nakamura N, Arima K, Fukami K, Okuda S, Yamagishi SI. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. J Transl Med 2015; 95:525-33. [PMID: 25730373 DOI: 10.1038/labinvest.2015.35] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/27/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) and their receptor (RAGE) have a role in diabetic nephropathy. We have recently found that linagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP-4), could inhibit renal damage in type 1 diabetic rats by suppressing the AGE-RAGE axis. However, it remains unclear whether DPP-4 deficiency could also have beneficial effects on experimental diabetic nephropathy. To address the issue, we rendered wild-type F344/NSlc and DPP-4-deficient F344/DuCrl/Crlj rats diabetic by injection of streptozotocin, and then investigated whether DPP-4 deficiency could block the activation of AGE-RAGE axis in the diabetic kidneys and resultantly ameliorate renal injury in streptozotocin-induced diabetic rats. Compared with control rats at 9 and 11 weeks old, body weight and heart rates were significantly lower, while fasting blood glucose was higher in wild-type and DPP-4-deficient diabetic rats at the same age. There was no significant difference of body weight, fasting blood glucose and lipid parameters between the two diabetic rat strains. AGEs, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine levels in the kidney, renal gene expression of RAGE and intercellular adhesion molecule-1, glomerular area, urinary excretion of 8-OHdG and albumin, and the ratio of renal to body weight were increased in wild-type diabetic rats at 9 and/or 11 weeks old compared with age-matched control rats, all of which except for urinary 8-OHdG levels at 11 weeks old were significantly suppressed in DPP-4-deficient diabetic rats. Our present study suggests that DPP-4 deficiency could exert beneficial actions on type 1 diabetic nephropathy partly by blocking the AGE-RAGE axis. DPP-4 might be a novel therapeutic target for preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Sae Nakashima
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Ayako Ojima
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Nobutaka Nakamura
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Kazunari Arima
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University Graduate School of Science and Engineering, Kagoshima, Japan
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Seiya Okuda
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
49
|
Rotz ME, Ganetsky VS, Sen S, Thomas TF. Implications of incretin-based therapies on cardiovascular disease. Int J Clin Pract 2015; 69:531-49. [PMID: 25363540 DOI: 10.1111/ijcp.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Incretin-based therapies offer another treatment option for patients with type 2 diabetes. Agents that provide glycaemic control in addition to attenuating cardiovascular disease (CVD) risk factors are important for diabetes management. This review will focus on the off-target effects of incretin-based therapies on CVD risk factors [body weight, blood pressure (BP), lipid profile and albuminuria], major adverse cardiovascular events (MACE), heart failure (HF) and beta-cell preservation. METHODS A literature search was conducted to identify English-language publications for incretin-based therapies evaluating the following off-target end-points: body weight, BP, lipid profile, albuminuria, MACE, HF and beta-cell function. Randomised controlled trials (RCTs) were prioritised as the primary source of information. RESULTS Overall, incretin-based therapies have shown beneficial effects on CVD risk factors, and glucagon-like peptide 1 (GLP-1) receptor agonists appear to have a more pronounced effect compared with dipeptidyl peptidase-4 inhibitors. RCTs are being conducted to determine if these positive effects on CVD risk factors translate to a reduction in MACE. To date, these studies have not shown an increase in MACE. A signal of increased hospitalisations for HF was observed with saxagliptin, warranting continued evaluation and vigilance in high-risk patients. In addition, incretin-based therapies have shown positive effects on measures of beta-cell function supporting their durability in the management of diabetes. CONCLUSIONS Incretin-based therapies are an important treatment option for patients with type 2 diabetes, offering beneficial effects on CVD risk factors without increasing MACE.
Collapse
Affiliation(s)
- M E Rotz
- Temple University School of Pharmacy, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors, a new class of oral hypoglycemic agents, augment glucose-dependent insulin secretion and suppress glucagon levels through enhancement of the action of endogenous incretin by inhibiting DPP-4, an incretin-degrading enzyme. DPP-4 inhibitors are generally well tolerated because of their low risk of hypoglycemia and other adverse events. Moreover, with their potential to improve beta cell function, a core defect of type 2 diabetes, DPP-4 inhibitors are becoming a major component of treatment of type 2 diabetes. Alogliptin benzoate is a newly developed, highly selective DPP-4 inhibitor which has been approved in many countries throughout the world. Once-daily administration of alogliptin as either monotherapy or combination therapy with other oral antidiabetic drugs or insulin has a potent glucose-lowering effect which is similar to that of other DPP-4 inhibitors, with a low risk of hypoglycemia and weight gain. The cardiovascular safety of this drug has been confirmed in a recent randomized controlled trial. This review summarizes the efficacy and safety of alogliptin, and discusses the role of DPP-4 inhibitors in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|