1
|
Luo Z, Xu J, Gao Q, Wang Z, Hou M, Liu Y. Study on the effect of licochalcone A on intestinal flora in type 2 diabetes mellitus mice based on 16S rRNA technology. Food Funct 2023; 14:8903-8921. [PMID: 37702574 DOI: 10.1039/d3fo00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Licorice, has a long history in China where it has various uses, including as a medicine, and is often widely consumed as a food ingredient. Licorice is rich in various active components, including polysaccharides, triterpenoids, alkaloids, and nucleosides, among which licochalcone A (LicA) is an active component with multiple physiological effects. Previous studies from our research group have shown that LicA can significantly improve glucose and lipid metabolism and related complications in Type 2 diabetes mellitus (T2DM) mice. However, research on the mechanism of LicA in T2DM mice based on intestinal flora has not been carried out in depth. Therefore, in this study, LicA was taken as the research object and the effects of LicA on glucose and lipid metabolism and intestinal flora in T2DM mice induced by streptozotocin (STZ)/high-fat feed (HFD) were explored. The results indicated that LicA could reduce serum TC, TG, and LDL-C levels, increase HDL-C levels, reduce blood glucose, and improve insulin resistance and glucose tolerance. LicA also alleviated pathological damage to the liver. The results also showed that LicA significantly affected the intestinal microbiota composition and increased the α diversity index. β Diversity analysis showed that after the intervention of LicA, the composition of intestinal flora was significantly different from that in the T2DM model group. Correlation analysis showed that the changes in glucose and lipid metabolism parameters in mice were significantly correlated with the relative abundance of Firmicutes, Bacteroidetes, Helicobacter, and Lachnospiraceae (p < 0.01). Analysis of key bacteria showed that LicA could significantly promote the growth of beneficial bacteria, such as Bifidobacterium, Turicibacter, Blautia, and Faecococcus, and inhibit the growth of harmful bacteria, such as Enterococcus, Dorea, and Arachnococcus. In conclusion, it was confirmed that LicA reversed the imbalanced intestinal flora, and increased the richness and diversity of the species in T2DM mice.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shuren International College, Shenyang Medical College, Huanghe North Street, No. 146, Shenyang 110034, China.
| | - Jing Xu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Gao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhifang Wang
- College of physical education, Yanshan University, Qinhuangdao 066004, China
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Huanghe North Street, No. 146, Shenyang 110034, China.
| |
Collapse
|
2
|
Geiger JD, Khan N, Murugan M, Boison D. Possible Role of Adenosine in COVID-19 Pathogenesis and Therapeutic Opportunities. Front Pharmacol 2020; 11:594487. [PMID: 33324223 PMCID: PMC7726428 DOI: 10.3389/fphar.2020.594487] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) requires urgent clinical interventions. Crucial clinical needs are: 1) prevention of infection and spread of the virus within lung epithelia and between people, 2) attenuation of excessive lung injury in Advanced Respiratory Distress Syndrome, which develops during the end stage of the disease, and 3) prevention of thrombosis associated with SARS-CoV-2 infection. Adenosine and the key adenosine regulators adenosine deaminase (ADA), adenosine kinase (ADK), and equilibrative nucleoside transporter 1 may play a role in COVID-19 pathogenesis. Here, we highlight 1) the non-enzymatic role of ADA by which it might out-compete the virus (SARS-CoV-2) for binding to the CD26 receptor, 2) the enzymatic roles of ADK and ADA to increase adenosine levels and ameliorate Advanced Respiratory Distress Syndrome, and 3) inhibition of adenosine transporters to reduce platelet activation, thrombosis and improve COVID-19 outcomes. Depending on the stage of exposure to and infection by SARS-CoV-2, enhancing adenosine levels by targeting key adenosine regulators such as ADA, ADK and equilibrative nucleoside transporter 1 might find therapeutic use against COVID-19 and warrants further investigation.
Collapse
Affiliation(s)
- Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Xiao-Die X, Xiao-Hong W, Cheng-Feng H, Zhong-Yu Y, Jian-Tao W, Hou-Guang Z, Jing-Chun G. Increased NRSF/REST in anterior cingulate cortex contributes to diabetes-related neuropathic pain. Biochem Biophys Res Commun 2020; 527:785-790. [PMID: 32423826 DOI: 10.1016/j.bbrc.2020.04.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathic pain is one of the most common complications of diabetes. Mechanisms underlying the central modulation are still unclear. Here, we investigated the role of the neuron-restricted silencing factor (NRSF/REST) in diabetic-related neuropathic pain. Mechanical allodynia and thermal hyperalgesia were assessed to evaluate painful behaviors. Our results found that in the anterior cingulate cortex (ACC) of db/db mice, NRSF/REST levels increased significantly. Reduction of NRSF/REST improved the painful sensation. Meanwhile, in vitro study found that high glucose and high palmitic acid treatment induced elevation of NRSF/REST and its cofactors (mSin3A, CoREST and HDAC1), whereas downregulation of GluR2 and NMDAR2B. Knockdown of NRSF/REST could attenuate the LDH release and partially reversed the expression changes of HDAC1 and NMDAR2B. Our results suggested that the elevation of NRSF/REST in the ACC area of db/db mice is one of the key mediators of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Xu Xiao-Die
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wen Xiao-Hong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - He Cheng-Feng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yu Zhong-Yu
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wang Jian-Tao
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhou Hou-Guang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo Jing-Chun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Translational Neuroscience Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Astragaloside IV Suppresses High Glucose-Induced NLRP3 Inflammasome Activation by Inhibiting TLR4/NF- κB and CaSR. Mediators Inflamm 2019; 2019:1082497. [PMID: 30906223 PMCID: PMC6398021 DOI: 10.1155/2019/1082497] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023] Open
Abstract
Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.
Collapse
|
5
|
Zhang J, Wang H, Wang Z, Zhang J, Zhang B. Association between Toenail Magnesium and Type 2 Diabetes in Chinese Adults. Nutrients 2017; 9:nu9080811. [PMID: 28749415 PMCID: PMC5579605 DOI: 10.3390/nu9080811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have showed an inverse association between magnesium level and type 2 diabetes, but the results are inconsistent, and the evidence relates only to dietary and serum magnesium. Moreover, it is not certain how these findings are applicable to Asian people. This study was designed to examine the association between toenail magnesium and type 2 diabetes in Chinese adults. The sample was 5683 adults aged 18 years or older from the 2009 China Health and Nutrition Survey. We used hemoglobin A1c equal to or greater than 6.5% as the diagnostic criterion for type 2 diabetes. Inductively coupled plasma–mass spectrometry determined toenail magnesium. Mean toenail magnesium in participants with and without type 2 diabetes was 263.0 ± 170.9 and 282.3 ± 191.9 micrograms per gram, respectively. The multivariable-adjusted odds ratio for type 2 diabetes comparing the highest to the lowest quartile of toenail magnesium was 0.72 (95% confidence interval, 0.52–0.99). We found a statistically significant interaction between toenail magnesium and geographic region on the prevalence of type 2 diabetes (p for interaction = 0.009). Our findings suggest that toenail magnesium is inversely associated with the prevalence of type 2 diabetes. Promoting the intake of magnesium-rich foods may bring considerable benefits for the prevention of type 2 diabetes, especially in those at high risk.
Collapse
Affiliation(s)
- Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China.
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China.
| | - Zhihong Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China.
| | - Ji Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China.
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China.
| |
Collapse
|
6
|
Sun Y, Wei R, Yan D, Xu F, Zhang X, Zhang B, Yimiti D, LI H, Sun H, Hu C, Luo L, Yao H. Association between APOE polymorphism and metabolic syndrome in Uyghur ethnic men. BMJ Open 2016; 6:e010049. [PMID: 26739741 PMCID: PMC4716259 DOI: 10.1136/bmjopen-2015-010049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES This study aimed to examine the association between apolipoprotein E (APOE) polymorphism and metabolic syndrome (MetS) among Uyghur ethnic men in Xinjiang, China. PARTICIPANTS A total of 482 patients with MetS and 510 healthy sex-matched and age-matched controls were recruited from the Xinjiang Uyghur Autonomous Region of China. The participants were subjected to routine physical and blood biochemical tests, and APOE genotyping was performed. RESULTS The APOE ε3/3 was the predominant type, with a frequency of 71.8%, while ε2/2 was less common than ε4/4 in Uyghur males. The frequencies of the APOE2, E3 and E4 alleles in Uyghur males were 8.5%, 80.0% and 11.5%, respectively. However, the distribution of APOE genotypes was significantly different between the MetS and control groups (p<0.001). In the MetS group, the frequencies of the ε2 and ε4 alleles and the frequencies of the ε2/2, ε2/3 and ε2/4 genotypes were significantly lower than those of the control group. Those individuals without the ε2 and ε4 alleles had higher MetS prevalence than the other gene carriers, and the ORs of these individuals developing MetS were 1.5 and 1.27 compared to the gene carriers. Triglyceride, serum total cholesterol and low-density lipoprotein cholesterol levels were lower and serum high-density lipoprotein was higher in the ε2 carriers than the ε3 carriers, and the prevalence of MetS, central obesity, high blood pressure, hypercholesterolaemia and hypertriglyceridaemia was lower in the APOE2 group than in the APOE4 group. The risks of these individuals with ε4 allele carriers getting these changes were 1.327, 1.780, 1.888, 1.428 and 2.571 times greater than those of ε2 allele carriers. CONCLUSIONS APOE4 is associated with many individual components of MetS, whereas APOE2 was associated with a reduced risk of MetS at the univariate level in Uyghur ethnic men.
Collapse
Affiliation(s)
- YuPing Sun
- College of Basic Medical Science, Xinjiang Medical University, Xinjiang, China
| | - Rong Wei
- The Fourth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - DanDan Yan
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - FeiLi Xu
- The Fourth Affiliated Hospital, Xinjiang Medical University, Xinjiang, China
| | - XiaoJin Zhang
- The Key Laboratory of Metabolic Diseases, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Bei Zhang
- College of Basic Medical Science, Xinjiang Medical University, Xinjiang, China
| | - Delixiati Yimiti
- College of Basic Medical Science, Xinjiang Medical University, Xinjiang, China
| | - Hui LI
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - HongYan Sun
- Department of Science and Technology, Xinjiang Medical University, Urumqi, China
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Luo
- The Key Laboratory of Metabolic Diseases, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Hua Yao
- The Key Laboratory of Metabolic Diseases, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| |
Collapse
|