1
|
Gholami M, Coleman-Fuller N, Salehirad M, Darbeheshti S, Motaghinejad M. Neuroprotective Effects of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors (Gliflozins) on Diabetes-Induced Neurodegeneration and Neurotoxicity: A Graphical Review. Int J Prev Med 2024; 15:28. [PMID: 39239308 PMCID: PMC11376549 DOI: 10.4103/ijpvm.ijpvm_5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetes is a chronic endocrine disorder that negatively affects various body systems, including the nervous system. Diabetes can cause or exacerbate various neurological disorders, and diabetes-induced neurodegeneration can involve several mechanisms such as mitochondrial dysfunction, activation of oxidative stress, neuronal inflammation, and cell death. In recent years, the management of diabetes-induced neurodegeneration has relied on several types of drugs, including sodium-glucose cotransporter-2 (SGLT2) inhibitors, also called gliflozins. In addition to exerting powerful effects in reducing blood glucose, gliflozins have strong anti-neuro-inflammatory characteristics that function by inhibiting oxidative stress and cell death in the nervous system in diabetic subjects. This review presents the molecular pathways involved in diabetes-induced neurodegeneration and evaluates the clinical and laboratory studies investigating the neuroprotective effects of gliflozins against diabetes-induced neurodegeneration, with discussion about the contributing roles of diverse molecular pathways, such as mitochondrial dysfunction, oxidative stress, neuro-inflammation, and cell death. Several databases-including Web of Science, Scopus, PubMed, Google Scholar, and various publishers, such as Springer, Wiley, and Elsevier-were searched for keywords regarding the neuroprotective effects of gliflozins against diabetes-triggered neurodegenerative events. Additionally, anti-neuro-inflammatory, anti-oxidative stress, and anti-cell death keywords were applied to evaluate potential neuronal protection mechanisms of gliflozins in diabetes subjects. The search period considered valid peer-reviewed studies published from January 2000 to July 2023. The current body of literature suggests that gliflozins can exert neuroprotective effects against diabetes-induced neurodegenerative events and neuronal dysfunction, and these effects are mediated via activation of mitochondrial function and prevention of cell death processes, oxidative stress, and inflammation in neurons affected by diabetes. Gliflozins can confer neuroprotective properties in diabetes-triggered neurodegeneration, and these effects are mediated by inhibiting oxidative stress, inflammation, and cell death.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Mahsa Salehirad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Darbeheshti
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yorek M. Combination therapy is it in the future for successfully treating peripheral diabetic neuropathy? Front Endocrinol (Lausanne) 2024; 15:1357859. [PMID: 38812811 PMCID: PMC11133577 DOI: 10.3389/fendo.2024.1357859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
In 2022, the Center for Disease Control and Prevention reported that 11.3% of the United States population, 37.3 million people, had diabetes and 38% of the population had prediabetes. A large American study conducted in 2021 and supported by many other studies, concluded that about 47% of diabetes patients have peripheral neuropathy and that diabetic neuropathy was present in 7.5% of patients at the time of diabetes diagnosis. In subjects deemed to be pre-diabetes and impaired glucose tolerance there was a wide range of prevalence estimates (interquartile range (IQR): 6%-34%), but most studies (72%) reported a prevalence of peripheral neuropathy ≥10%. There is no recognized treatment for diabetic peripheral neuropathy (DPN) other than good blood glucose control. Good glycemic control slows progression of DPN in patients with type 1 diabetes but for patients with type 2 diabetes it is less effective. With obesity and type 2 diabetes at epidemic levels the need of a treatment for DPN could not be more important. In this article I will first present background information on the "primary" mechanisms shown from pre-clinical studies to contribute to DPN and then discuss mono- and combination therapies that have demonstrated efficacy in animal studies and may have success when translated to human subjects. I like to compare the challenge of finding an effective treatment for DPN to the ongoing work being done to treat hypertension. Combination therapy is the recognized approach used to normalize blood pressure often requiring two, three or more drugs in addition to lifestyle modification to achieve the desired outcome. Hypertension, like DPN, is a progressive disease caused by multiple mechanisms. Therefore, it seems likely as well as logical that combination therapy combined with lifestyle adjustments will be required to successfully treat DPN.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Altaf N, Rehman NU, Karim N, Khan I, Halim SA, Alotaibi BS, Hamad RS, Batiha GES, Tayyeb JZ, Turkistani A, Khan A, Al-Harrasi A. Attenuation of Streptozotocin-Induced Diabetic Neuropathic Allodynia by Flavone Derivative Through Modulation of GABA-ergic Mechanisms and Endogenous Biomarkers. Neurochem Res 2024; 49:980-997. [PMID: 38170385 DOI: 10.1007/s11064-023-04078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2β2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.
Collapse
Affiliation(s)
- Nouman Altaf
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir, KPK, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat al Mouz, Initial Campus, 616, Nizwa, Sultanate of Oman
| | - Nasiara Karim
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir, KPK, Pakistan.
- Department of Pharmacy, University of Peshawar, Peshawar, KPK, Pakistan.
| | - Imran Khan
- Department of Pharmacy, University of Swabi, Swabi, KPK, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat al Mouz, Initial Campus, 616, Nizwa, Sultanate of Oman
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, 23890, Jeddah, Saudi Arabia
| | - Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Kingdom of Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat al Mouz, Initial Campus, 616, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat al Mouz, Initial Campus, 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
4
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Vitale E, Triggiani V. Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications. Endocr Metab Immune Disord Drug Targets 2024; 24:321-332. [PMID: 37534489 DOI: 10.2174/1871530323666230803095118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D. A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D. Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Elsa Vitale
- Department of Mental Health, University of Bari Aldo Moro, Local Health Authority Bari, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| |
Collapse
|
5
|
Tian M, Zhi JY, Pan F, Chen YZ, Wang AZ, Jia HY, Huang R, Zhong WH. Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1048856. [PMID: 37251674 PMCID: PMC10215986 DOI: 10.3389/fendo.2023.1048856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is a serious complication in Diabetes Mellitus (DM) patients and the underlying mechanism is yet unclear. Ferroptosis has been recently intensively researched as a key process in the pathogenesis of diabetes but there yet has been no related bioinformatics-based studies in the context of DPN. Methods We used data mining and data analysis techniques to screen differentially expressed genes (DEGs) and immune cell content in patients with DPN, DM patients and healthy participants (dataset GSE95849). These DEGs were then intersected with the ferroptosis dataset (FerrDb) to obtain ferroptosis DEGs and the associated key molecules and miRNAs interactions were predicted. Results A total of 33 ferroptosis DEGs were obtained. Functional pathway enrichment analysis revealed 127 significantly related biological processes, 10 cellular components, 3 molecular functions and 30 KEGG signal pathways. The biological processes that were significantly enriched were in response to extracellular stimulus and oxidative stress. Key modules constructed by the protein-protein interaction network analysis led to the confirmation of the following genes of interest: DCAF7, GABARAPL1, ACSL4, SESN2 and RB1. Further miRNA interaction prediction revealed the possible involvement of miRNAs such as miR108b-8p, miR34a-5p, mir15b-5p, miR-5838-5p, miR-192-5p, miR-222-3p and miR-23c. Immune-environment content of samples between DM and DPN patients revealed significant difference in the levels of endothelial cells and fibroblasts, which further speculates their possible involvement in the pathogenesis of DPN. Conclusion Our findings could provide insight for investigations about the role of ferroptosis in the development of DPN.
Collapse
Affiliation(s)
- Ming Tian
- Burns Department, Shanghai Jiao Tong University Affiliated Ruijin Hospital, Shanghai, China
| | - Jin Yong Zhi
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Pan
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Zhu Chen
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ai Zhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Ying Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic (PR) China, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Hui Zhong
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Karami F, Jamaati H, Coleman-Fuller N, Zeini MS, Hayes AW, Gholami M, Salehirad M, Darabi M, Motaghinejad M. Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Rep 2023; 75:511-543. [PMID: 37093496 DOI: 10.1007/s43440-023-00469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.
Collapse
Affiliation(s)
- Fatemeh Karami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Maryam Shokrian Zeini
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University, East Lansing, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Darabi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
8
|
SIRT1-Enriched Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Alleviate Peripheral Neuropathy via Conserving Mitochondrial Function. J Mol Neurosci 2022; 72:2507-2516. [PMID: 36534294 DOI: 10.1007/s12031-022-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly prevalent diabetic complication characterized at the molecular level by mitochondrial dysfunction and deleterious oxidative damage. No effective treatments for DPN are currently available. The present study was developed to examine the impact of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) overexpressing sirtuin 1 (SIRT1) on DPN through antioxidant activity and the preservation of mitochondrial homeostasis. A DPN model was established using 20-week-old diabetic model mice (db/db). Exosomes were prepared from control BMSCs (exo-control) and BMSCs that had been transduced with a SIRT1 lentivirus (exo-SIRT1). Sensory and motor nerve conduction velocity values were measured to assess neurological function, and mechanical and thermal sensitivity were analyzed in these animals. Exo-SIRT1 preparations exhibited a high loading capacity and readily accumulated within peripheral nerves following intravenous administration, whereupon they were able to promote improved neurological recovery relative to exo-control treatment. DPN mice exhibited significantly improved nerve conduction velocity following exo-SIRT1 treatment. Relative to exo-control-treated mice, those that underwent exo-SIRT1 treatment exhibited significantly elevated TOMM20 and Nrf2/HO-1 expression, reduced MDA levels, increased GSH and SOD activity, and increased MMP. Together, these results revealed that both exo-control and exo-SIRT1 administration was sufficient to reduce the morphological and behavioral changes observed in DPN model mice, with exo-SIRT1 treatment exhibiting superior therapeutic efficacy. These data thus provide a foundation for future efforts to explore other combinations of gene therapy and exosome treatment in an effort to alleviate DPN.
Collapse
|
9
|
Dastgheib M, Shetab-Boushehri SV, Baeeri M, Gholami M, Karimi MY, Hosseini A. Rolipram and pentoxifylline combination ameliorates experimental diabetic neuropathy through inhibition of oxidative stress and inflammatory pathways in the dorsal root ganglion neurons. Metab Brain Dis 2022; 37:2615-2627. [PMID: 35922732 DOI: 10.1007/s11011-022-01060-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Diabetic neuropathy (DN) is the most challenging microvascular complication of diabetes and there is no suitable treatment for it, so the development of new agents to relieve DN is urgently needed. Since oxidative stress and inflammation play an essential role in the development of DN, clearance of these factors are good strategies for the treatment of this disease. According to key role of cyclic adenosine monophosphate (cAMP) in the regulation of oxidative stress and inflammatory pathways, it seems that phosphodiesterase inhibitors (PDEIs) can be as novel drug targets for improving DN through enhancement of cAMP level. The aim of this study was to evaluate the effects of rolipram, a selective PDE4 inhibitor, and pentoxifylline, a general PDE inhibitor on experimental model of DN and also to determine the possible mechanisms involved in the effectiveness of these agents. We investigated the effects of rolipram (1 mg/kg) and pentoxifylline (100 mg/kg) and also combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for five weeks in rats that became diabetic by STZ (55 mg/kg, i.p.). After treatments, motor function was evaluated by open-field test, then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Next, oxidative stress biomarkers and inflammatory factors were assessed by biochemical and ELISA methods, and RT-PCR analysis in DRG neurons. Rolipram and/or pentoxifylline treatment significantly attenuated DN - induced motor function deficiency by modulating distance moved and velocity. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, as well as suppressed DN - induced oxidative stress which was associated with decrease in LPO and ROS and increase in TAC, total thiol, CAT and SOD in DRG neurons. On the other hand, the level of inflammatory factors (TNF-α, NF-kB and COX2) significantly decreased following rolipram and/or pentoxifylline administration. The maximum effectiveness was with rolipram and/or pentoxifylline combination on mentioned factors. These findings provide novel experimental evidence for further clinical investigations on rolipram and pentoxifylline combination for the treatment of DN.
Collapse
Affiliation(s)
- Mona Dastgheib
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Baeeri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Reyes-Pardo H, Sánchez-Herrera DP, Santillan M. On the effects of diabetes mellitus on the mechanical properties of DRG sensory neurons and their possible relation with diabetic neuropathy. Phys Biol 2022; 19. [PMID: 35417901 DOI: 10.1088/1478-3975/ac6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022]
Abstract
Diabetic neuropathy (DN) is one of the principal complications of diabetes mellitus (DM). Dorsal root ganglion (DRG) neurons are the primary sensory neurons that transduce mechanical, chemical, thermal, and pain stimuli. Diabetes-caused sensitivity alterations and presence of pain are due to cellular damage originated by persistent hyperglycemia, microvascular insufficiency, and oxidative and nitrosative stress. However, the underlying mechanisms have not been fully clarified. The present work addresses this problem by hypothesizing that sensitivity changes in DN result from mechanotransduction-system alterations in sensory neurons; especially, plasma membrane affectations. This hypothesis is tackled by means of elastic-deformation experiments performed on DGR neurons from a murine model for type-1 DM, as well a mathematical model of the cell mechanical structure. The obtained results suggest that the plasma-membrane fluidity of DRG sensory neurons is modified by the induction of DM, and that this alteration may correlate with changes in the cell calcium transient that results from mechanical stimuli.
Collapse
Affiliation(s)
- Humberto Reyes-Pardo
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, Monterrey, Nuevo Leon, 64849, MEXICO
| | - Daniel P Sánchez-Herrera
- Via del Conocimiento 201, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Parque PIIT, Apodaca, Nuevo León, 66628, MEXICO
| | - Moises Santillan
- Via del Conocimiento 201, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Parque PIIT, Apodaca, Nuevo León, 66628, MEXICO
| |
Collapse
|
11
|
Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice. PLoS One 2022; 17:e0266108. [PMID: 35353852 PMCID: PMC8967015 DOI: 10.1371/journal.pone.0266108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Methotrexate (MTX) has been used in treating various types of cancers but can also cause damage to normal organs and cell types. Folinic acid (FA) is a well-known MTX antidote that protects against toxicity caused by the drug and has been used for decades. Since hearing loss caused by MTX treatment is not well studied, herein we aimed to investigate the efficiency of the antioxidant Avenanthramide-C (AVN-C) on high-dose MTX (HDMTX) toxicity in the ear and provide insights into the possible mechanism involved in MTX-induced hearing loss in normal adult C57Bl/6 mice and HEI-OC1 cells. Our results show that the levels of MTX increased in the serum and perilymph 30 minutes after systemic administration. MTX increased hearing thresholds in mice, whereas AVN-C and FA preserved hearing within the normal range. MTX also caused a decrease in wave I amplitude, while AVN-C and FA maintained it at higher levels. MTX considerably damaged the cochlear synapses and neuronal integrity, and both AVN-C and FA rescued the synapses. MTX reduced the cell viability and increased the reactive oxygen species (ROS) level in HEI-OC1 cells, but AVN-C and FA reversed these changes. Apoptosis- and ROS-related genes were significantly upregulated in MTX-treated HEI-OC1 cells; however, they were downregulated by AVN-C and FA treatment. We show that MTX can cause severe hearing loss; it can cross the blood–labyrinth barrier and cause damage to the cochlear neurons and outer hair cells (OHCs). The antioxidant AVN-C exerts a strong protective effect against MTX-induced ototoxicity and preserved the inner ear structures (synapses, neurons, and OHCs) from MTX-induced damage. The mechanism of AVN-C against MTX suggests that ROS is involved in HDMTX-induced ototoxicity.
Collapse
|
12
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
13
|
Howlader M, Sultana MI, Akter F, Hossain MM. Adiponectin gene polymorphisms associated with diabetes mellitus: A descriptive review. Heliyon 2021; 7:e07851. [PMID: 34471717 PMCID: PMC8387910 DOI: 10.1016/j.heliyon.2021.e07851] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Diabetes is currently a growing concern of the age. Prevention and treatment of diabetes is a global health priority. Adiponectin is an adipocyte derived protein hormone that enhances insulin sensitivity and ameliorates diabetes by enhancing fatty acid oxidation and glucose uptake in skeletal muscle and reducing glucose production in the liver. Low serum adiponectin concentrations are associated with diabetes, central obesity, insulin resistance and metabolic syndrome. Adiponectin gene is located on chromosome 3q27, where a locus of susceptibility to diabetes was mapped. Several cross-sectional studies showed that single nucleotide polymorphisms (SNPs) in adiponectin gene (ADIPOQ) were associated with diabetes. SNPs in ADIPOQ help in assessing the association of common variants with levels of adiponectin and the risk of diabetes. Two common SNPs, rs2241766 and rs1501299, have been linked significantly to type 1 diabetes mellitus which endow the world with a block of haplotypes. Experimental evidences also suggest that rs1501299, rs2241766, rs266729, rs17366743, rs17300539, rs182052, rs822396, rs17846866, rs3774261 and rs822393 are significantly associated with type 2 diabetes mellitus which is the predominant form of the disease. In addition, rs2241766 and rs266729 are extensively associated with gestational diabetes, a condition that develops in women during pregnancy. Therefore not a particular single mutation but a number of SNPs in adiponectin gene could be a risk factor for developing diabetes among the individuals worldwide. This study firmly suggests that adiponectin plays a crucial role in the pathogenesis of type 1, type 2 and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mst Irin Sultana
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| |
Collapse
|
14
|
Adjuvant use of melatonin for relieving symptoms of painful diabetic neuropathy: results of a randomized, double-blinded, controlled trial. Eur J Clin Pharmacol 2021; 77:1649-1663. [PMID: 34121140 DOI: 10.1007/s00228-021-03170-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE The trial aimed to investigate the effectiveness of exogenous melatonin as an adjuvant to pregabalin for relief of pain in patients suffering from painful diabetic neuropathy (PDN). PATIENTS AND METHODS This randomized, double-blind, placebo-controlled trial was carried out between October 2019 and December 2020 in an outpatient specialty clinic in Iran. One-hundred-three type 2 diabetic patients suffering from PDN were randomized into either the melatonin group (n = 52) or the placebo group (n = 51). Besides pregabalin at a dose of 150 mg per day, patients started with melatonin or an identical placebo, at a dose of 3 mg/day at bedtime for 1 week, which was augmented to 6 mg/day for further 7 weeks. The primary outcomes were changes in mean NRS (numerical rating scale) pain score from baseline to endpoint and responder rate (patients with a reduction of 50% and higher in average pain score compared with baseline). Secondary endpoints were changes in mean NRS pain-related sleep-interference score, overall improvement evaluated by Patient and Clinical Global Impressions of Change (PGIC, CGIC), and impact of the intervention on patient's Health-related quality of life (QOL). All analyses were conducted on an Intention-to-Treat (ITT) analysis data set. RESULTS At the study endpoint, treatment with melatonin resulted in a considerably higher reduction in the mean NRS pain score in comparison with placebo (4.2 ± 1.83 vs. 2.9 ± 1.56; P-value < 0.001). In terms of treatment responders, a greater proportion of melatonin-treated patients satisfied the responder criterion than placebo-treated patients (63.5% vs. 43.1%). Melatonin also reduced pain-related sleep interference scores more than did placebo (3.38 ± 1.49 vs. 2.25 ± 1.26; P-value < 0.001). Further, at the endpoint, more improvement was also seen in terms of PGIC, CGIC, and Health-related QOL in patients treated with melatonin than placebo. Melatonin was also well tolerated. CONCLUSION The present results showed that melatonin as an adjunct therapy to pregabalin might be helpful for use in patients with PDN. However, confirmation of these results requires further studies.
Collapse
|
15
|
Adki KM, Kulkarni YA. Neuroprotective effect of paeonol in streptozotocin-induced diabetes in rats. Life Sci 2021; 271:119202. [PMID: 33577853 DOI: 10.1016/j.lfs.2021.119202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diabetic neuropathy is one of the most common microvascular complication of diabetes. It is associated with neuronal dysfunction and pain. Paeonol is an important natural product reported for its antioxidant, anti-inflammatory and antidiabetic activities. AIM The present research was planned to study effect of paeonol in diabetic peripheral neuropathy in rats. METHODS Diabetes was induced in Sprague Dawley rats by using Streptozotocin (55 mg/kg, i.p.). After six weeks, diabetic animals were treated daily with paeonol at a dose of 50, 100 and 200 mg/kg for four weeks. At the end of the treatment, plasma glucose, mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia and nerve conduction velocities were recorded. Oxidative stress parameters were studied in sciatic nerve. Histopathology study of sciatic nerve, NF-κB and MCP-1 expression were also studied at the end of study. KEY FINDINGS Paeonol treatment significantly lowered the plasma glucose levels, mechanical allodynia, mechanical hyperalgesia and thermal hyperalgesia as compared to diabetic control group. Paeonol treatment also enhanced the motor and sensory nerve conduction velocity. Paeonol treated diabetic animals showed significant changes in oxidative stress parameters. Histopathology study indicated that paeonol treatment prevented the neuronal damage, lowered demyelination and leukocyte infiltration. NF-κB and MCP-1 expression was significantly decreased in sciatic nerve of diabetic animals treated with paeonol. SIGNIFICANCE Results of the present study indicate that paeonol may be considered as effective option for management of diabetic neuropathy.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India.
| |
Collapse
|
16
|
A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8878172. [PMID: 33299532 PMCID: PMC7704201 DOI: 10.1155/2020/8878172] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Despite the availability of various antidiabetic drugs, diabetes mellitus (DM) remains one of the world's most prevalent chronic diseases and is a global burden. Hyperglycaemia, a characteristic of type 2 diabetes mellitus (T2DM), substantially leads to the generation of reactive oxygen species (ROS), triggering oxidative stress as well as numerous cellular and molecular modifications such as mitochondrial dysfunction affecting normal physiological functions in the body. In mitochondrial-mediated processes, oxidative pathways play an important role, although the responsible molecular mechanisms remain unclear. The impaired mitochondrial function is evidenced by insulin insensitivity in various cell types. In addition, the roles of master antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response elements (ARE) are being deciphered to explain various molecular pathways involved in diabetes. Dietary factors are known to influence diabetes, and many natural dietary factors have been studied to improve diabetes. Honey is primarily rich in carbohydrates and is also abundant in flavonoids and phenolic acids; thus, it is a promising therapeutic antioxidant for various disorders. Various research has indicated that honey has strong wound-healing properties and has antibacterial, anti-inflammatory, antifungal, and antiviral effects; thus, it is a promising antidiabetic agent. The potential antidiabetic mechanisms of honey were proposed based on its major constituents. This review focuses on the various prospects of using honey as an antidiabetic agent and the potential insights.
Collapse
|
17
|
Shoda S, Hyodo F, Tachibana Y, Kiniwa M, Naganuma T, Eto H, Koyasu N, Murata M, Matsuo M. Imaging of Hydroxyl-Radical Generation Using Dynamic Nuclear Polarization-Magnetic Resonance Imaging and a Spin-Trapping Agent. Anal Chem 2020; 92:14408-14414. [PMID: 33064938 DOI: 10.1021/acs.analchem.0c02331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cell metabolism, but they can cause oxidative damage to biomolecules. Among ROS, the hydroxyl radical (·OH) is one of the most reactive molecules in biological systems because of its high reaction rate constant. Therefore, imaging of ·OH could be useful for evaluation of the redox mechanism and diagnosis of oxidative diseases. In vivo dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) is a noninvasive imaging method to obtain spatiotemporal information about free radicals with MRI anatomical resolution. In this study, we investigated the visualization of hydroxyl radicals generated from the Fenton reaction by combining DNP-MRI with a spin-trapping agent (DMPO: 5,5-dimethyl-1-pyrroline N-oxide) for ·OH. Additionally, we demonstrated the radical-scavenging effect using four thiol-related reagents by DNP-MRI. We demonstrated that DNP enhancement could be induced by the DMPO-OH radical using the DNP-MRI/spin-trapping method and visualized ·OH generation for the first time. Maximum DNP enhancement was observed at an electron paramagnetic resonance irradiation frequency of 474.5 MHz. Furthermore, the radical-scavenging effect was simultaneously evaluated by the decrease in the DNP image value of DMPO-OH. An advantage of our methods is that they simultaneously investigate compound activity and the radical-scavenging effect.
Collapse
Affiliation(s)
- Shinichi Shoda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu 501-1194, Japan.,Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoko Tachibana
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mamoru Kiniwa
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuya Naganuma
- Japan Redox Limited, Fukuoka, 4-29 Chiyo, Fukuoka 812-0044, Japan
| | - Hinako Eto
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Norikazu Koyasu
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masaharu Murata
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
18
|
Saraswat N, Sachan N, Chandra P. Anti-diabetic, diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from Selinum vaginatum roots in rats. Heliyon 2020; 6:e05137. [PMID: 33088940 PMCID: PMC7566111 DOI: 10.1016/j.heliyon.2020.e05137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/09/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Phytopharmaceuticals have always reported vital roles in the field of medicine hence the need to investigate safe and efficient drugs for treating metabolic disorders is very significant. Roots of Selinum vaginatum have therapeutic benefits and are widely used by the people of the Rohtang region for treating diabetes and its associated complications. The present study focusses on the isolation of the bioactive from the S. vaginatum roots for estimating acute toxicity studies, anti-diabetic and diabetic neuropathy protective action along with the mechanism of action in STZ induced Wistar rats. The Selinum vaginatum roots were collected from the Rohtang region, Himalayas. Chlorogenic acid was isolated and underwent identification by UV, HPLC, 1H NMR, C13 NMR, Mass, and FTIR spectroscopy methods. Chlorogenic acid was dosed at 10 and 20 mg/kg to observe the effects on experimentally induced diabetes and with time generated diabetic neuropathic complications. Biomarkers TNF-α, superoxide dismutase, nitrosative stress, lipid peroxide profile, and membrane-bound inorganic phosphate were analyzed. Histopathological evaluation of the liver and sciatic nerve was performed for all groups. Parameters like blood glucose levels, body weight, food intake, Thermal Hyperalgesia, Writhing, Cold Hyperalgesia Responses, Mechanical hyperalgesia, Grip Strength, Spontaneous Locomotor (Exploratory) Test, Neuromuscular Coordination tests, and lipid profile analysis showcased the anti-diabetic and diabetic neuropathy protective action of the drug. Inflammation, degradation, and necrosis were found to be reduced in the liver and sciatic nerve cells of treated groups. All the biomarkers used to analyze the oxidative pathway were significantly replenished indicates that chlorogenic acid produces these effects through this pathway.
Collapse
Affiliation(s)
- Nikita Saraswat
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway-2, Bhauti, Kanpur (UP), 209 305, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad (UP), 244 102, India
| | - Phool Chandra
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad (UP), 244 102, India
| |
Collapse
|
19
|
Fink B, Coppey L, Davidson E, Shevalye H, Obrosov A, Chheda PR, Kerns R, Sivitz W, Yorek M. Effect of mitoquinone (Mito-Q) on neuropathic endpoints in an obese and type 2 diabetic rat model. Free Radic Res 2020; 54:311-318. [PMID: 32326763 DOI: 10.1080/10715762.2020.1754409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study sought to determine whether the addition of mitoquinone (Mito-Q) in the diet is an effective treatment for peripheral neuropathy in animal models of diet-induced obesity (pre-diabetes) and type 2 diabetes. Unlike other anti-oxidative stress compounds investigated as a treatment for peripheral neuropathy, Mito-Q specifically targets mitochondria. Although mito-Q has been shown to reduce oxidative stress generated by mitochondria there have been no studies performed of the effect of Mito-Q on peripheral neuropathy induced by diet-induced obesity or type 2 diabetes. Diet-induced obese (12 weeks after high fat diet) or type 2 diabetic rats (12 weeks of high fat diet and 4 weeks after the onset of hyperglycemia) were treated via the diet with Mito-Q (0.93 g/kg diet) for 12 weeks. Afterwards, glucose utilization, vascular reactivity of epineurial arterioles to acetylcholine and peripheral neuropathy related endpoints were examined. The addition of Mito-Q to the diets of obese and diabetic rats improved motor and/or sensory nerve conduction velocity, cornea and intraepidermal nerve fibre density, cornea sensitivity and thermal nociception. Surprisingly, treating obese and diabetic rats with Mito-Q did not improve glucose utilization or vascular reactivity by epineurial arterioles to acetylcholine. These studies imply that mitochondrial dysfunction contributes to peripheral neuropathy in animal models of pre-diabetes and late-stage type 2 diabetes. However, improvement in peripheral neuropathy following treatment with Mito-Q was not associated with improvement in glucose utilization or vascular reactivity of epineurial arterioles to acetylcholine.
Collapse
Affiliation(s)
- Brian Fink
- Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA, USA
| | - Lawrence Coppey
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Alexander Obrosov
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Robert Kerns
- College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - William Sivitz
- Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Mark Yorek
- Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.,Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| |
Collapse
|
20
|
Heidari N, Sajedi F, Mohammadi Y, Mirjalili M, Mehrpooya M. Ameliorative Effects Of N-Acetylcysteine As Adjunct Therapy On Symptoms Of Painful Diabetic Neuropathy. J Pain Res 2019; 12:3147-3159. [PMID: 31819599 PMCID: PMC6875491 DOI: 10.2147/jpr.s228255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Painful diabetic neuropathy (PDN) is a variant of diabetic peripheral neuropathy which is highly prevalent and distressing in diabetic patients. Despite its high burden, the optimal treatment of PDN has remained a clinical challenge. To explain the emergence and maintenance of PDN, increasing attention has been focused on dimensions of inflammation and oxidative toxic stress (OTS). Accordingly, the aim of this study was to investigate the effects of oral N-acetylcysteine (NAC), an agent with known anti-oxidant and anti-inflammatory effects, as an adjunct therapy in patients suffering from PDN. Patients and methods 113 eligible patients with type 2 diabetes suffering from PDN were randomly assigned to either the pregabalin + placebo or pregabalin + NAC group for 8 weeks (pregabalin at a dose of 150 mg per day, NAC and matched placebo at doses of 600 mg twice a day). Mean pain score was evaluated at baseline, week 1, 2, 4, 6, and 8 of the study based on the mean 24 hr average pain score, using an 11-point numeric rating scale (NRS). As secondary efficacy measures, mean sleep interference score (SIS) resulting from PDN, responder rates, Patient Global Impression of Change (PGIC), Clinical Global Impression of Change (CGIC), and safety were also assessed. Additionally, serum levels of total antioxidant capacity (TAC), total thiol groups (TTG), catalase activity (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), nitric oxide (NO), and malondialdehyde (MDA) were assessed at baseline and at the end of the study. Results Ninety patients completed the eight-week course of the study. The decrease in mean pain scores and mean sleep interference score in pregabalin + NAC group was greater in comparison with pregabalin + placebo group (p value<0.001 in both conditions). Moreover, more responders (defined as ≥50% reduction in mean pain score from baseline to end-point) were observed in the pregabalin + NAC group, in comparison with pregabalin + placebo group (72.1% vs 46.8%). More improvement in PGIC and CGIC from baseline to the end of the study was reported in pregabalin + NAC group. Oral NAC had minimal adverse effects and was well tolerated in almost all patients. Furthermore, in respect to OTS biomarkers, adjuvant NAC significantly decreased serum level of MDA and significantly increased serum levels of SOD, GPx, TAC, and TTG. Conclusion The pattern of results suggests that compared to placebo and over a time period of 8 weeks, adjuvant NAC is more efficacious in improving neuropathic pain associated with diabetic neuropathy than placebo. Ameliorative effects of NAC on OTS biomarkers demonstrated that NAC may alleviate painful symptoms of diabetic neuropathy, at least in part by its antioxidant effects.
Collapse
Affiliation(s)
- Narges Heidari
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, Baeeri M, Jamshidzade A, Falak R, Davoodzadeh Gholami M, Hassanzadeh G, Mokhtari T, Hassani S, Rahimifard M, Hosseini A. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci 2019; 216:101-110. [DOI: 10.1016/j.lfs.2018.10.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/25/2023]
|
22
|
Calcimimetic restores diabetic peripheral neuropathy by ameliorating apoptosis and improving autophagy. Cell Death Dis 2018; 9:1163. [PMID: 30478254 PMCID: PMC6255917 DOI: 10.1038/s41419-018-1192-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023]
Abstract
Decreased AMPK-eNOS bioavailability mediates the development of diabetic peripheral neuropathy (DPN) through increased apoptosis and decreased autophagy activity in relation to oxidative stress. Schwann cells are responsible for maintaining structural and functional integrity of neurons and for repairing damaged nerves. We evaluated the neuro-protective effect of cinacalcet on DPN by activating the AMPK-eNOS pathway using db/db mice and human Schwann cells (HSCs). Sciatic nerve of db/db mice was characterized by disorganized myelin, axonal shrinkage, and degeneration that were accompanied by marked fibrosis, inflammation, and apoptosis. These phenotypical alterations were significantly improved by cinacalcet treatment along with improvement in sensorimotor functional parameters. Cinacalcet demonstrated favorable effects through increased expression and activation of calcium-sensing receptor (CaSR)-CaMKKβ and phosphorylation of AMPK-eNOS signaling in diabetic sciatic nerve. Cinacalcet decreased apoptosis and increased autophagy activity in relation to decreased oxidative stress in HSCs cultured in high-glucose medium as well. This was accompanied by increased expression of the CaSR, intracellular Ca++ ([Ca++]i) levels, and CaMKKβ-LKB1-AMPK signaling pathway, resulting in the net effect of increased eNOS phosphorylation, NOx concentration, Bcl-2/Bax ratio, beclin 1, and LC3-II/LC3-I ratio. These results demonstrated that cinacalcet treatment ameliorates inflammation, apoptosis, and autophagy through increased expression of the CaSR, [Ca++]i levels and subsequent activation of CaMKKβ-LKB-1-AMPK-eNOS pathway in the sciatic nerve and HSCs under diabetic condition. Therefore, cinacalcet may play an important role in the restoration and amelioration of DPN by ameliorating apoptosis and improving autophagy.
Collapse
|
23
|
Lee KA, Lee NY, Park TS, Jin HY. Comparison of peripheral nerve protection between insulin-based glucose control and alpha lipoic acid (ALA) in the streptozotocin (STZ)-induced diabetic rat. Endocrine 2018; 61:58-67. [PMID: 29736880 DOI: 10.1007/s12020-018-1613-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/17/2018] [Indexed: 01/29/2023]
Abstract
Strict glucose control is a well-proven therapeutic approach for peripheral neuropathies in patients with diabetes. Alpha lipoic acid (ALA) has also been accepted as a therapeutic agent for diabetic peripheral neuropathy (DPN) in the respect of pathogenesis. However, the potential of ALA as a treatment for DPN in comparison to that of glucose control is unclear. In this study, we compared the neuroprotective potential of glucose control and ALA. Animals were divided into 6 groups based on the intervention used, as follows: normal, diabetes (DM), DM+racemic form of ALA, DM+R form of ALA, DM+once daily insulin glargine, and DM+once daily insulin glargine with twice daily insulin glulisine. Various sensory tests were performed after 12 weeks of treatment, and immunohistochemistry of nerve fibers obtained from the sciatic and cutaneous nerves was performed after 24 weeks of treatment. There were no significant differences between the ALA-treated and insulin-treated DM groups in the sensory tests or in antioxidant activity. The axonal diameters and myelin sheath area of the sciatic nerves and the cutaneous small nerves, as assessed based on intraepidermal nerve fiber density, were similar in the ALA-treated and insulin-treated animals, although there was a non-significant trend for a mild increase in the both basal and rapid-acting insulin group compared with non-treated DM group. In conclusion, our results suggest that the neuroprotective benefits of ALA and insulin-based glucose control may be similar, although glucose control may have had slightly more beneficial effects in this animal model of diabetes. Of note, glucose levels should be strictly controlled, including corrections for fluctuations in the glucose level, to obtain therapeutic benefits in DPN.
Collapse
Affiliation(s)
- Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Na Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea.
| |
Collapse
|
24
|
Shokrzadeh M, Mirshafa A, Yekta Moghaddam N, Birjandian B, Shaki F. Mitochondrial dysfunction contribute to diabetic neurotoxicity induced by streptozocin in mice: protective effect of Urtica dioica and pioglitazone. Toxicol Mech Methods 2018; 28:499-506. [PMID: 29606029 DOI: 10.1080/15376516.2018.1459993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Uncontrolled chronic hyperglycemia in diabetic patients could result in various complications, including neurotoxicity. Urtica dioica L. (UD) is known for its hypoglycemic and antioxidant effects. In this study, we evaluated the efficacy of UD and pioglitazone (PIO) in reduction of neurotoxicity and oxidative stress in streptozocin-induced diabetic mice. MATERIALS AND METHODS Male mice were divided into seven groups: control, diabetic, dimethyl sulfoxide-treated control, PIO-treated, UD-treated, UD-PIO-treated, and vitamin E-treated. For induction of diabetes, streptozocin was injected in a single dose (65 mg/kg, i.p.). All treatments were performed for 5 weeks. Neurotoxicity was evaluated through hot plate and formalin test. Then, animals were killed, brain tissue was separated and the mitochondrial fraction was isolated with different centrifuge technique. Also, oxidative stress markers (reactive oxygen species, lipid peroxidation, protein carbonyl, glutathione) were measured in brain. Mitochondrial function was evaluated by MTT test in brain isolated mitochondria. RESULTS Elevation of oxidative stress markers and mitochondrial damage were observed in diabetic mice compared to control group. Administration of PIO and UD ameliorated the oxidative stress and mitochondrial damage (p < 0.05) in diabetic mice. Also increase in pain score was shown in diabetic mice that treatment with UD and PIO diminished elevation of pain score in diabetic mice. Interestingly, simultaneous administration of PIO and UD showed synergism effect in attenuation of oxidative stress and hyperglycemia. CONCLUSION UD showed a therapeutic potential for the attenuation of oxidative stress and diabetes-induced hyperglycemia that can be considered as co-treatment in treatment of diabetic neurotoxicity.
Collapse
Affiliation(s)
- Mohammad Shokrzadeh
- a Pharmaceutical Sciences Research Center, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Atefeh Mirshafa
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,c Student Research Committee , Mazandaran University of Medical Sciences , Sari , Iran
| | - Niusha Yekta Moghaddam
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,c Student Research Committee , Mazandaran University of Medical Sciences , Sari , Iran
| | - Behnoosh Birjandian
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,c Student Research Committee , Mazandaran University of Medical Sciences , Sari , Iran
| | - Fatemeh Shaki
- a Pharmaceutical Sciences Research Center, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| |
Collapse
|
25
|
Mittal R, Kumar A, Singh DP, Bishnoi M, Nag TC. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology 2017; 26:755-768. [PMID: 29094308 DOI: 10.1007/s10787-017-0413-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Emerging role of Nrf-2/HO-1 in pathogenesis of diabetic neuropathy has been suggested. Diabetic neuropathy is one of the most common complications of diabetes and more than 50% patients of diabetes develop diabetic neuropathy. Rutin has been well documented to show protective effect in various complications, e.g., diabetic neuropathy. However, its mechanistic insight is still not completely understood. The present study has been designed to explore the protective effect of rutin and its interaction with COX-2 inhibitor, nimesulide in diabetic neuropathy. DN (diabetic neuropathy) rats were maintained with or without rutin (100 and 200 mg/kg), nimesulide (5 and 10 mg/kg), and their combinations for 8 weeks. Body weight, serum glucose, pain assessment (mechanical allodynia, cold allodynia, mechanical hyperalgesia, and thermal hyperalgesia), and motor nerve conduction velocity (MNCV) were measured in all groups. Oxidative damage was assessed through biochemical estimation and mitochondrial ROS production, followed by inflammatory and apoptotic markers (TNF-α, caspase-3, Nrf-2, HO-1, and NF-kBp65) for their activity, protein, and gene expression. The structural changes were also reported through transmission electron microscope. Streptozotocin injection (55 mg/kg) induced diabetes reduced body weight, reduced the threshold for pain in various pain assessment parameters. Oxidative damage (increased MDA, decreased SOD, catalase, and GSH levels) increased mitochondrial ROS production followed by increased expression of inflammatory markers and decreased expression of Nrf-2/HO-1 in sciatic nerve. Treatment with rutin (100 and 200 mg/kg) and nimesulide (5 and 10 mg/kg) significantly attenuates these alterations as compared to DN control rats. Furthermore, combination of rutin (200 mg/kg) and nimesulide (10 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect alone in streptozotocin-treated rats. The present study suggests the involvement of Nrf-2/HO-1 pathway in the protective effect of rutin against streptozotocin-induced diabetic neuropathy.
Collapse
Affiliation(s)
- Ruchika Mittal
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160014, India.
| | - Dhirendra Pratap Singh
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Nasiry D, khalatbary AR, Ahmadvand H, Talebpour Amiri F, Akbari E. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. Altern Ther Health Med 2017; 17:476. [PMID: 28969623 PMCID: PMC5625610 DOI: 10.1186/s12906-017-1983-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
Abstract
Background Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. Methods The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Results Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Conclusion Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Graphical abstract Protection against neuropathy![]()
Collapse
|
27
|
Obrosov A, Shevalye H, Coppey LJ, Yorek MA. Effect of tempol on peripheral neuropathy in diet-induced obese and high-fat fed/low-dose streptozotocin-treated C57Bl6/J mice. Free Radic Res 2017; 51:360-367. [PMID: 28376643 DOI: 10.1080/10715762.2017.1315767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we sought to determine the efficacy of tempol on multiple neuropathic endpoints in a diet-induced obese mouse, a model of pre-diabetes, and a high-fat fed low-dose streptozotocin treated mouse, a model of type 2 diabetes. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperdine -1-oxyl) is a low molecular weight, water soluble, membrane permeable, and metal-independent superoxide dismutase mimetic that has been widely used in cellular studies for the removal of intracellular and extracellular superoxide. This in vivo study was designed to be an early intervention. Fourteen weeks post-high-fat diet (6 weeks post-hyperglycemia) control, obese, and diabetic mice were divided into no treatment and treatment groups. The treated mice received tempol by gavage (150 mg/kg in water), while the untreated mice received vehicle. The diet-induced obese and the diabetic mice were maintained on the high-fat diet for the duration of the study, while the control group was maintained on the standard diet. Obesity and diabetes caused slowing of motor and sensory nerve conduction, reduction in intraepidermal nerve fiber density, thermal hypoalgesia, and mechanical allodynia. Treatment with tempol partially or completely protected obese and diabetic mice from these deficits. These studies suggest that tempol or other effective scavengers of reactive oxygen species may be a viable option for treating neural complications associated with obesity or type 2 diabetes.
Collapse
Affiliation(s)
- Alexander Obrosov
- a Department of Internal Medicine , University of Iowa , Iowa City , IA , USA
| | - Hanna Shevalye
- a Department of Internal Medicine , University of Iowa , Iowa City , IA , USA
| | - Lawrence J Coppey
- a Department of Internal Medicine , University of Iowa , Iowa City , IA , USA
| | - Mark A Yorek
- a Department of Internal Medicine , University of Iowa , Iowa City , IA , USA.,b Department of Veterans Affairs Iowa City Health Care System , Iowa City , IA , USA.,c Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City , IA , USA
| |
Collapse
|
28
|
Almogbel E, Rasheed N. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers. J Clin Diagn Res 2017; 11:BC21-BC25. [PMID: 28384853 DOI: 10.7860/jcdr/2017/23789.9417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. AIM To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. MATERIALS AND METHODS Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients' age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. RESULTS Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1C<8.8). Similar pattern of protein carbonyls formation was also observed with patients' ages or with patient's disease durations, suggesting a possible relationship between protein oxidation and disease progression. Furthermore, sera from DMN patients had higher levels of protein carbonylation compared with non-neuropathic DM patients' sera, suggesting an involvement of protein oxidation in the progression of diabetes to diabetes neuropathy. CONCLUSION These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients' ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the mechanisms of these disorders pathogenesis.
Collapse
Affiliation(s)
- Ebtehal Almogbel
- Assistant Professor, Department of Family Medicine, College of Medicine, Qassim University , Buraidah, KSA
| | - Naila Rasheed
- Specialist Doctor, Department of Medical Biochemistry, College of Medicine, Qassim University , Buraidah, KSA
| |
Collapse
|
29
|
Tang-Luo-Ning Improves Mitochondrial Antioxidase Activity in Dorsal Root Ganglia of Diabetic Rats: A Proteomics Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8176089. [PMID: 28133612 PMCID: PMC5241458 DOI: 10.1155/2017/8176089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Tang-luo-ning (TLN) is a traditional Chinese herbal recipe for treating diabetic peripheral neuropathy (DPN). In this study, we investigated mitochondrial protein profiles in a diabetic rat model and explored the potential protective effect of TLN. Diabetic rats were established by injection of streptozocin (STZ) and divided into model, alpha lipoic acid (ALA), and TLN groups. Mitochondrial proteins were isolated from dorsal root ganglia and proteomic analysis was used to quantify the differentially expressed proteins. Tang-luo-ning mitigated STZ-induced diabetic symptoms and blood glucose level, including response time to cold or hot stimulation and nerve conductive velocity. As compared to the normal, there were 388 differentially expressed proteins in the TLN group, 445 in ALA group, and 451 in model group. As compared to the model group, there were 275 differential proteins in TLN group and 251 in ALA group. As compared to model group, mitochondrial complex III was significantly decreased, while glutathione peroxidase and peroxidase were increased in TLN group. When compared with ALA group, the mitochondrial complex III was increased, and mitochondrial complex IV was decreased in TLN group. Together, TLN should have a strong antioxidative activity, which appears to be modulated through regulation of respiratory complexes and antioxidases.
Collapse
|
30
|
Jin HY, Lee NY, Ko HA, Lee KA, Park TS. Comparison of sensory tests and neuronal quantity of peripheral nerves between streptozotocin (STZ)-induced diabetic rats and paclitaxel (PAC)-treated rats. Somatosens Mot Res 2016; 33:186-195. [DOI: 10.1080/08990220.2016.1239577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Rasoulinejad SA, Kasiri A, Montazeri M, Rashidi N, Montazeri M, Montazeri M, Hedayati H. The Association Between Primary Open Angle Glaucoma and Clustered Components of Metabolic Syndrome. Open Ophthalmol J 2015; 9:149-55. [PMID: 26535072 PMCID: PMC4627385 DOI: 10.2174/1874364101509010149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/22/2022] Open
Abstract
Purpose : There is conflicting evidence whether components of metabolic syndrome (MetS) increase or decrease the risk of primary open-angle glaucoma (POAG). The aim of the present study was to determine the association between metabolic syndrome and primary open-angle glaucoma. Methods : A total of 200 participants comprising 100 controls and 100 patients with POAG documented by clinical tests and examined by an experienced ophthalmologist using standard ophthalmologic equipment were included in the study. MetS was defined and based on ATP III criteria and POAG was defined by the criteria of the International Society of Geographic and Epidemiological Ophthalmology (ISGEO). The data were entered into the SPSS software and analyzed. Results : The prevalence of MetS in the glaucoma group was 53% in comparison to 38% in the control group (p=0.037). MetS was associated with an increased odds ratio for an IOP higher than 21 mmHg (OR: 1.72; 95% CI 1.03-2.79; p=0.034). The mean IOP was 24.91±4.29 mmHg in the patients without MetS, and 27.23±4.81 mmHg in those with MetS (p=0.027). The mean values of CCT were 603.64±63.16 µm in MetS patients and 579.27±72.87 µm in controls (p=0.018). Conclusion : Data showed an increased prevalence of components of metabolic syndrome in patients with glaucoma. The mechanisms underlying these associations need to be established in future studies. Our results support the recommendation that patients with metabolic syndrome undergo regular ophthalmological exams to monitor for the onset or progression of glaucoma.
Collapse
Affiliation(s)
| | - Ali Kasiri
- Department of Ophthalmology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Montazeri
- Department of Cardiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Rashidi
- Department of Internal Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Montazeri
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Montazeri
- Young Researchers Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Hesam Hedayati
- Department of Ophthalmology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Yorek MA. Vascular Impairment of Epineurial Arterioles of the Sciatic Nerve: Implications for Diabetic Peripheral Neuropathy. Rev Diabet Stud 2015; 12:13-28. [PMID: 26676659 PMCID: PMC5397981 DOI: 10.1900/rds.2015.12.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
This article reviews the impact of diabetes and its treatment on vascular function with a focus on the reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve. Another focus is the relationship between the dysregulation of neurovascular function and diabetic peripheral neuropathy. Diabetic peripheral neuropathy is a debilitating disorder that occurs in more than 50 percent of patients with diabetes. The etiology involves metabolic, vascular, and immunologic pathways besides neurohormonal growth factor deficiency and extracellular matrix remodeling. In the light of this complex etiology, an effective treatment for diabetic peripheral neuropathy has not yet been identified. Current opinion postulates that any effective treatment for diabetic peripheral neuropathy will require a combination of life style and therapeutic interventions. However, a more comprehensive understanding of the factors contributing to neurovascular and neural dysfunction in diabetes is needed before such a treatment strategy can be developed. After reading this review, the reader should have gained insight into the complex regulation of vascular function and blood flow to the sciatic nerve, and the impact of diabetes on numerous elements of vascular reactivity of epineurial arterioles of the sciatic nerve.
Collapse
Affiliation(s)
- Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
33
|
The Combined Extract of Zingiber officinale and Zea mays (Purple Color) Improves Neuropathy, Oxidative Stress, and Axon Density in Streptozotocin Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:301029. [PMID: 25969689 PMCID: PMC4410543 DOI: 10.1155/2015/301029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
Based on the protective effect of the combined extract of purple waxy corn and ginger (PWCG) on oxidative stress related disorders in diabetic condition, we aimed to determine the effect of PWCG on the functional, biochemical, and structural change of the lesion nerve in streptozotocin- (STZ-) diabetic rats. PWCG at doses of 100, 200, and 300 mg·kg−1 BW were orally given to STZ-diabetic rats which were subjected to chronic constriction (CCI) at right sciatic nerve for 21 days. The blood sugar was assessed before and at the end of study whereas the sciatic function index (SFI), paw withdrawal threshold intensity (PWTI), and paw withdrawal latency (PWL) were assessed every 3 days until the end of study. At the end of study, the determination of nerve conduction velocity (NCV), axon density, oxidative stress status, and aldose reductase (AR) activity of the lesion nerve were performed. It was found that PWCG improved SFI, PWTI, PWL, and NCV together with the improved oxidative stress status and the axon density in the lesion nerve. No changes of AR activity or blood sugar level were observed. Therefore, PWCG might improve the functional and structural changes in STZ-diabetic rats plus CCI via the improved oxidative stress status.
Collapse
|
34
|
Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:515042. [PMID: 25821809 PMCID: PMC4363503 DOI: 10.1155/2015/515042] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
Chronic hyperglycaemia (an abnormally high glucose concentration in the blood) resulting from defects in insulin secretion/action, or both, is the major hallmark of diabetes in which it is known to be involved in the progression of the condition to different complications that include diabetic neuropathy. Diabetic neuropathy (diabetes-induced nerve damage) is the most common diabetic complication and can be devastating because it can lead to disability. There is an increasing body of evidence associating diabetic neuropathy with oxidative stress. Oxidative stress results from the production of oxygen free radicals in the body in excess of its ability to eliminate them by antioxidant activity. Antioxidants have different mechanisms and sites of actions by which they exert their biochemical effects and ameliorate nerve dysfunction in diabetes by acting directly against oxidative damage. This review will examine different strategies for managing diabetic neuropathy which rely on exogenous antioxidants.
Collapse
Affiliation(s)
- Ayodeji Babatunde Oyenihi
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, University Road, Durban 4000, South Africa
| | - Ademola Olabode Ayeleso
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2002, South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2002, South Africa
| | - Bubuya Masola
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, University Road, Durban 4000, South Africa
| |
Collapse
|
35
|
Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 2015; 22:486-504. [PMID: 24735331 PMCID: PMC4323017 DOI: 10.1089/ars.2014.5884] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. RECENT ADVANCES Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. CRITICAL ISSUES The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. FUTURE DIRECTIONS Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.
Collapse
Affiliation(s)
- Nikita Gamper
- 1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
36
|
Demir Y, Sari A. Nerve Decompression Models in Diabetic Rats. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Diabetes, glucose metabolism, and glaucoma: the 2005-2008 National Health and Nutrition Examination Survey. PLoS One 2014; 9:e112460. [PMID: 25393836 PMCID: PMC4231045 DOI: 10.1371/journal.pone.0112460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/14/2014] [Indexed: 11/23/2022] Open
Abstract
Background Diabetes may affect vascular autoregulation of the retina and optic nerve and may be associated with an increased risk of glaucoma,but the association of prediabetes, insulin resistance, markers of glucose metabolismwith glaucoma has not beenevaluated in general population samples. Objective To examine the relation between diabetes, pre-diabetes, metabolic syndrome and its components and the levels of fasting glucose, HbA1c and HOMA-IR with the prevalence of glaucoma in the general U.S. population. Methods Cross-sectional study of 3,299 adult men and women from the 2005–2008 National Health and NutritionExamination Survey (NHANES). The presence of diabetes, prediabetes, the metabolic syndrome and its individual components and biomarkers of glucose metabolisms were based on standardized questionnaire and physical exam data and laboratory tests. The history of glaucoma was assessed through questionnaire during the home interview. Results Diabetes was strongly associated with prevalent glaucoma.In fully adjusted models, the odds ratiofor glaucoma comparing participants with diabetes with participants in the reference group with neither pre-diabetes nor diabetes was 2.12 (95% CI: 1.23, 3.67). The corresponding odd ratio comparing participants with pre-diabetes to those in the reference group was 1.01 (95% CI: 0.57, 1.82). Patients with 5 or more years of diabetes duration hadan OR for glaucoma of 3.90 (95% CI: 1.63, 9.32) compared with patients with <5 years of diabetes duration. We also found a hockey-stick shaped associations between biomarkers of glucose metabolisms and the prevalence of glaucoma. Conclusions Diabetes was associated with higher risk of glaucoma. Participants without diabetes but at the higher levels of fasting glucose, fasting insulin, HbA1c and HOMA-IR spectrum may also be at greater risk of glaucoma.
Collapse
|
38
|
Storino MA, Contreras MA, Rojano J, Serrano R, Nouel A. Complicaciones de la diabetes y su asociación con el estrés oxidativo: un viaje hacia el daño endotelial. REVISTA COLOMBIANA DE CARDIOLOGÍA 2014. [DOI: 10.1016/j.rccar.2014.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Moon E, Lee SO, Kang TH, Kim HJ, Choi SZ, Son MW, Kim SY. Dioscorea Extract (DA-9801) Modulates Markers of Peripheral Neuropathy in Type 2 Diabetic db/db Mice. Biomol Ther (Seoul) 2014; 22:445-52. [PMID: 25414776 PMCID: PMC4201231 DOI: 10.4062/biomolther.2014.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to investigate the therapeutic effects of DA-9801, an optimized extract of Dioscorea species, on diabetic peripheral neuropathy in a type 2 diabetic animal model. In this study, db/db mice were treated with DA-9801 (30 and 100 mg/kg, daily, p.o.) for 12 weeks. DA-9801 reduced the blood glucose levels and increased the withdrawal latencies in hot plate tests. Moreover, it prevented nerve damage based on increased nerve conduction velocity and ultrastructural changes. Decrease of nerve growth factor (NGF) may have a detrimental effect on diabetic neuropathy. We previously reported NGF regulatory properties of the Dioscorea genus. In this study, DA-9801 induced NGF production in rat primary astrocytes. In addition, it increased NGF levels in the sciatic nerve and the plasma of type 2 diabetic animals. DA-9801 also increased neurite outgrowth and mRNA expression of Tieg1/Klf10, an NGF target gene, in PC12 cells. These results demonstrated the attenuation of diabetic peripheral neuropathy by oral treatment with DA-9801 via NGF regulation. DA-9801 is currently being evaluated in a phase II clinical study.
Collapse
Affiliation(s)
- Eunjung Moon
- College of Pharmacy, Gachon University, Incheon 406-799
| | - Sung Ok Lee
- Graduate School of East-West Medical Science, Kyung Hee University Global Campus, Yongin 446-701
| | - Tong Ho Kang
- College of Life Sciences, Kyung Hee University Global Campus, Yongin 446-701
| | | | | | | | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799 ; Gachon Medical Research Institute, Gil Medical Center, Incheon 406-799, Republic of Korea
| |
Collapse
|
40
|
Agca CA, Tuzcu M, Hayirli A, Sahin K. Taurine ameliorates neuropathy via regulating NF-κB and Nrf2/HO-1 signaling cascades in diabetic rats. Food Chem Toxicol 2014; 71:116-21. [DOI: 10.1016/j.fct.2014.05.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022]
|
41
|
Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 2014; 7:241-53. [PMID: 25018645 PMCID: PMC4075959 DOI: 10.2147/dmso.s43731] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly - some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D.
Collapse
Affiliation(s)
- Kimberly A Coughlan
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Rudy J Valentine
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Neil B Ruderman
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Asish K Saha
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| |
Collapse
|
42
|
Rocha-González HI, Ramírez-Aguilar M, Granados-Soto V, Reyes-García JG, Torres-López JE, Huerta-Cruz JC, Navarrete A. Antineuropathic effect of 7-hydroxy-3,4-dihydrocadalin in streptozotocin-induced diabetic rodents. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:129. [PMID: 24708659 PMCID: PMC3984493 DOI: 10.1186/1472-6882-14-129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/31/2014] [Indexed: 01/03/2023]
Abstract
Background Painful neuropathy is the most common and debilitating complication of diabetes and results in hyperalgesia and allodynia. Hyperglycemia clearly plays a key role in the development and progression of diabetic neuropathy. Current therapeutic approaches are only partially successful and they are only thought to reduce the pain associated with peripheral neuropathy. Some natural products offer combined antioxidant, anti-inflammatory and antinociceptive properties that may help to treat in a more integrative manner this condition. In this regard, the purpose of this study was to investigate the antineuropathic effect of 7-hydroxy-3,4-dihydrocadalin in streptozotocin-induced diabetic rats and mice without glucose control as well as the possible mechanism of action involved in this effect. Methods Rats and mice were injected with 50 or 200 mg/kg streptozotocin, respectively, to produce hyperglycemia. The formalin test and von Frey filaments were used to assess the nociceptive activity. Rota-rod was utilized to measure motor activity and malondialdehyde assay to determine anti-oxidative properties. Results After 3 weeks of diabetes induction, chemical hyperalgesia was observed in streptozotocin-injected rats. Oral acute administration of 7-hydroxy-3,4-dihydrocadalin (0.3–30 mg/kg) decreased in a dose-dependent manner formalin-evoked hyperalgesia in diabetic rats. In addition, methiothepin (non-selective 5-HT receptor antagonist, 1 mg/kg, i.p.) and ODQ (guanylyl cyclase inhibitor, 2 mg/kg, i.p.), but not naltrexone (opioid receptor antagonist, 1 mg/kg, s.c.), prevented 7-hydroxy-3,4-dihydrocadalin-induced antihyperalgesic effect. The anti-hyperalgesic effect of 7-hydroxy-3,4-dihydrocadalin was similar to that produced by pregabalin (10 mg/kg, p.o.). Furthermore, oral acute administration of 7-hydroxy-3,4-dihydrocadalin (30 mg/kg) reduced streptozotocin-induced changes in malondialdehyde concentration from plasma samples. Unlike pregabalin, 7-hydroxy-3,4-dihydrocadalin did not affect motor activity. Six weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. At this time, oral administration of 7-hydroxy-3,4-dihydrocadalin (30 mg/kg) or pregabalin (10 mg/kg) reduced in a similar way tactile allodynia in diabetic rats. Finally, chronic oral administration of 7-hydroxy-3,4-dihydrocadalin (30-300 mg/kg, 3 times/week, during 6 weeks), significantly prevented the development of mechanical hyperalgesia and allodynia in streptozotocin-induced diabetic mice. Conclusions Data suggests that 7-hydroxy-3,4-dihydrocadalin has acute and chronic effects in painful diabetic neuropathy. This effect seems to involve antioxidant properties as well as activation of 5-HT receptors and inhibition of guanylyl cyclase enzyme.
Collapse
|
43
|
Cho YR, Lim JH, Kim MY, Kim TW, Hong BY, Kim YS, Chang YS, Kim HW, Park CW. Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS One 2014; 9:e83204. [PMID: 24392081 PMCID: PMC3879243 DOI: 10.1371/journal.pone.0083204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/31/2013] [Indexed: 12/16/2022] Open
Abstract
Neural vascular insufficiency plays an important role in diabetic peripheral neuropathy (DPN). Peroxisome proliferative-activated receptor (PPAR)α has an endothelial protective effect related to activation of PPARγ coactivator (PGC)-1α and vascular endothelial growth factor (VEGF), but its role in DPN is unknown. We investigated whether fenofibrate would improve DPN associated with endothelial survival through AMPK-PGC-1α-eNOS pathway. Fenofibrate was given to db/db mice in combination with anti-flt-1 hexamer and anti-flk-1 heptamer (VEGFR inhibition) for 12 weeks. The db/db mice displayed sensory-motor impairment, nerve fibrosis and inflammation, increased apoptotic cells, disorganized myelin with axonal shrinkage and degeneration, fewer unmyelinated fibers, and endoneural vascular rarefaction in the sciatic nerve compared to db/m mice. These findings were exacerbated with VEGFR inhibition in db/db mice. Increased apoptotic cell death and endothelial dysfunction via inactivation of the PPARα-AMPK-PGC-1α pathway and their downstream PI3K-Akt-eNOS-NO pathway were noted in db/db mice, human umbilical vein endothelial cells (HUVECs) and human Schwann cells (HSCs) in high-glucose media. The effects were more prominent in response to VEGFR inhibition. In contrast, fenofibrate treatment ameliorated neural and endothelial damage by activating the PPARα-AMPK-PGC-1α-eNOS pathway in db/db mice, HUVECs and HSCs. Fenofibrate could be a promising therapy to prevent DPN by protecting endothelial cells through VEGF-independent activation of the PPARα-AMPK-PGC-1α-eNOS-NO pathway.
Collapse
Affiliation(s)
- Ye Rim Cho
- Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hee Lim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Young Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae Woo Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo Young Hong
- Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Soo Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Won Kim
- Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Whee Park
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
44
|
Zhang Y, Shi W, Li X, Ma H. Sensitive detection of ozone by a practical resorufin-based spectroscopic probe with extremely low background signal. Sci Rep 2013; 3:2830. [PMID: 24088783 PMCID: PMC3789151 DOI: 10.1038/srep02830] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022] Open
Abstract
Ozone (O3) has attracted much attention because of its key role in human health and disease, and its detection is of great importance for various biochemical studies as well as environmental evaluation. Here we develop a simple and practical spectroscopic off-on O3 probe based on resorufin and the specific reaction of but-3-enyl with O3. The probe shows an extremely low background spectroscopic signal, but reacts with O3 producing a distinct color and fluorescence change. The detection limit of the probe for O3 is 5.9 nM, which corresponds to an ozone concentration of 0.056 mg m−3 in air in this study and is lower than the international ambient air quality standard of 0.1 mg m−3. More importantly, the proposed probe is worth popularizing, and its applicability has been successfully demonstrated on both the determination of O3 in real ambient air samples and the imaging of O3 in biological cells.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | |
Collapse
|
45
|
Van Dam PS, Cotter MA, Bravenboer B, Cameron NE. Pathogenesis of diabetic neuropathy: focus on neurovascular mechanisms. Eur J Pharmacol 2013; 719:180-186. [PMID: 23872412 DOI: 10.1016/j.ejphar.2013.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/11/2013] [Indexed: 02/08/2023]
Abstract
Neuropathies of the peripheral and autonomic nervous systems affect up to half of all people with diabetes, and are major risk factors for foot ulceration and amputation. The aetiology is multifactorial: metabolic changes in diabetes may directly affect neural tissue, but importantly, neurodegenerative changes are precipitated by compromised nerve vascular supply. Experiments in animal models of diabetic neuropathy suggest that similar metabolic sequelae affect neurons and vasa nervorum endothelium. These include elevated polyol pathway activity, oxidative stress, the formation of advanced glycation and lipoxidation end products, and various pro-inflammatory changes such as elevated protein kinase C, nuclear factor κB and p38 mitogen activated protein kinase signalling. These mechanisms do not work in isolation but strongly interact in a mutually facilitatory fashion. Nitrosative stress and the induction of the enzyme poly (ADP-ribose) polymerase form one important link between physiological stressors such as reactive oxygen species and the pro-inflammatory mechanisms. Recently, evidence points to endoplasmic stress and the unfolded protein response as forming another crucial link. This review focuses on the aetiopathogenesis of neurovascular changes in diabetic neuropathy, elucidated in animal studies, and on putative therapeutic targets the majority of which have yet to be tested for efficacy in clinical trials.
Collapse
Affiliation(s)
- P Sytze Van Dam
- Onze Lieve Vrouwe Gasthuis, Department of internal Medicine, PO Box 95500, 1090HM Amsterdam, The Netherlands
| | - Mary A Cotter
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland UK
| | | | - Norman E Cameron
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland UK.
| |
Collapse
|
46
|
Bertolotto F, Massone A. Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs R D 2012; 12:29-34. [PMID: 22329607 PMCID: PMC3586118 DOI: 10.2165/11599200-000000000-00000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and Objective: The management of diabetic neuropathy is still a challenge for physicians. The aim of this study was to assess the efficacy of a new combination of alpha lipoic acid and superoxide dismutase for the treatment of diabetic neuropathy. p] Methods: The setting of this study was ambulatory (outpatient) care. A prospective, non-randomized, open-label study was conducted in 50 patients with diabetes mellitus and with a deficit in both motor and sensory nerve conduction. Treatment was with a new combination of alpha lipoic acid and superoxide dismutase (ALA600SOD®) for 4 months. Electroneurographic parameters and perceived pain were assessed at baseline and after treatment. Results: After 4 months of treatment, patients significantly (p < 0.001) improved their electroneurographic parameters and their perception of pain. Best improvements were observed in sensory nerve conduction. Conclusion: The combination of two powerful antioxidant agents leads to improvement in both subjective and objective parameters in patients with diabetic neuropathy. New profitable directions for investigations are opened for a non-invasive treatment of diabetic neuropathy in the future.
Collapse
Affiliation(s)
- Fulvio Bertolotto
- Neurophysiology Laboratory, Spine Unit at Santa Corona Hospital, Pietra Ligure, Savona, Italy
| | | |
Collapse
|
47
|
Kushwaha S, Vikram A, Trivedi PP, Jena GB. Alkaline, Endo III and FPG modified comet assay as biomarkers for the detection of oxidative DNA damage in rats with experimentally induced diabetes. Mutat Res 2011; 726:242-50. [PMID: 22015262 DOI: 10.1016/j.mrgentox.2011.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 09/12/2011] [Accepted: 10/06/2011] [Indexed: 01/11/2023]
Abstract
Increased production of reactive oxygen species under diabetic condition underlines the higher oxidatively damaged DNA in different tissues. However, it is practically difficult to assess the oxidatively damaged DNA in different internal organs. Therefore, the present study was aimed to evaluate the extent of oxidative stress-induced DNA damage in different organs with the progression of diabetes. Diabetic and control Sprague Dawley rats were sacrificed in time-dependent manner and the lung, liver, heart, aorta, kidney, pancreas and peripheral blood lymphocytes (PBL) were analyzed for both alkaline and modified comet assay with endonuclease-III (Endo III) and formamidopyrimidine-DNA glycosylase (FPG) (hereafter called modified comet assay) for the detection of oxidative DNA damage. The statistically significant increase in olive tail moment (OTM) was found in all the tested tissues. The extent of DNA damage was increased with the progression of diabetes as revealed by the parameter of OTM in alkaline and modified comet assay. Further, the positive correlations were observed between OTM of the lung, liver, heart, aorta, kidney and pancreas with PBL of diabetic rat in the alkaline and modified comet assay. Moreover, significant increase in the 8-oxodG positive nuclei in the lung, liver, heart, aorta, kidney and pancreas was observed in 4th and 8th week diabetic rat as compared to control. Results of the present study clearly indicated the suitability of alkaline and modified comet assay for the detection of multi-organ oxidative DNA damage in streptozotocin (STZ)-induced diabetic rat and showed that damaged DNA of PBL can be used as a suitable biomarker to assess the internal organs response to DNA damage in diabetes.
Collapse
Affiliation(s)
- S Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | | | | |
Collapse
|
48
|
Treatment of diabetic neuropathy with baicalein: intervention at multiple sites. Exp Neurol 2011; 232:105-9. [PMID: 21907195 DOI: 10.1016/j.expneurol.2011.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 01/03/2023]
|
49
|
Hattangady NG, Rajadhyaksha MS. A brief review of in vitro models of diabetic neuropathy. Int J Diabetes Dev Ctries 2011; 29:143-9. [PMID: 20336195 PMCID: PMC2839127 DOI: 10.4103/0973-3930.57344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 09/12/2009] [Indexed: 01/08/2023] Open
Abstract
The neuropathies of the peripheral, central and autonomic nervous systems are known to be caused by hyperglycemia, a consequence of the deregulation of glucose in diabetes. Several in vivo models such as streptozotocin-induced diabetic rats, mice and Chinese hamsters have been used to study the pathogenesis of diabetic neuropathy because of their resemblance to human pathology. However, these in vivo models have met with strong ethical oppositions. Further, the system complexity has inherent limitations of inconvenience of analyzing ephemeral molecular events and crosstalk of signal transduction pathways. Alternative in vitro models have been selected and put to effective use in diabetic studies. We critically review the use of these in vitro models such as primary cultures of dorsal root ganglia, Schwann cells and neural tissue as well as neural cell lines which have proved to be excellent systems for detailed study. We also assess the use of embryo cultures for the study of hyperglycemic effects on development, especially of the nervous system. These systems function as useful models to scrutinize the molecular events underlying hyperglycemia-induced stress in neuronal systems and have been very effectively used for the same. This comprehensive overview of advantages and disadvantages of in vitro systems that are currently in use will be of interest especially for comparative assessment of results and for appropriate choice of models for experiments in diabetic neuropathy.
Collapse
Affiliation(s)
- Namita G Hattangady
- Department of Life Sciences, Sophia College, B. Desai Road, Mumbai - 400 026, India
| | | |
Collapse
|
50
|
Abstract
Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs) occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS). Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive,National University of Singapore, Singapore.
| | | | | |
Collapse
|