1
|
Lee DW, Park HC, Kim DH. Transgenic zebrafish as a model for investigating diabetic peripheral neuropathy: investigation of the role of insulin signaling. Front Cell Neurosci 2024; 18:1441827. [PMID: 39381501 PMCID: PMC11458509 DOI: 10.3389/fncel.2024.1441827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN), a complication of diabetes mellitus (DM), is a neurodegenerative disorder that results from hyperglycemic damage and deficient insulin receptor (IR) signaling in peripheral nerves, triggered by failure of insulin production and insulin resistance. IR signaling plays an important role in nutrient metabolism and synaptic formation and maintenance in peripheral neurons. Although several animal models of DPN have been developed to identify new drug candidates using cytotoxic reagents, nutrient-rich diets, and genetic manipulations, a model showing beneficial effects remains to be established. In this study, we aimed to develop a DPN animal model using zebrafish to validate the effects of drug candidates on sensory neuropathy through in vivo imaging during the early larval stage. To achieve this, we generated Tg (ins:gal4p16);Tg (5uas:epNTR-p2a-mcherry) zebrafish using an enhanced potency nitroreductase (epNTR)-mediated chemogenetic ablation system, which showed highly efficient ablation of pancreatic β-cells following treatment with low-dose metronidazole (MTZ). Using in vivo live imaging, we observed that sensory nerve endings and postsynaptic formation in the peripheral lateral line (PLL) were defective, followed by a disturbance in rheotaxis behavior without any locomotory behavioral changes. Despite defects in sensory nerves and elevated glucose levels, both reactive oxygen species (ROS) levels, a primary cause of DPN, and the number of ganglion cells, remained normal. Furthermore, we found that the activity of mTOR, a downstream target of IR signaling, was decreased in the PLL ganglion cells of the transgenic zebrafish. Our data indicates that peripheral neuropathy results from the loss of IR signaling due to insulin deficiency rather than hyperglycemia alone.
Collapse
Affiliation(s)
- Dong-Won Lee
- Core Research and Development Center, Korea University Ansan Hospital, Ansan, Republic of Korea
- Zebrafish Translational Medical Research Center, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Dong Hwee Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
2
|
Lam KHS, Wu YT, Reeves KD, Galluccio F, Allam AES, Peng PWH. Ultrasound-Guided Interventions for Carpal Tunnel Syndrome: A Systematic Review and Meta-Analyses. Diagnostics (Basel) 2023; 13:diagnostics13061138. [PMID: 36980446 PMCID: PMC10046938 DOI: 10.3390/diagnostics13061138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Carpal tunnel syndrome (CTS) is the most common peripheral entrapment, and recently, ultrasound-guided perineural injection (UPIT) and percutaneous flexor retinaculum release (UPCTR) have been utilized to treat CTS. However, no systematic review or meta-analysis has included both intervention types of ultrasound-guided interventions for CTS. Therefore, we performed this review using four databases (i.e., PubMed, EMBASE, Scopus, and Cochrane) to evaluate the quality of evidence, effectiveness, and safety of the published studies on ultrasound-guided interventions in CTS. Among sixty studies selected for systemic review, 20 randomized treatment comparison or controlled studies were included in six meta-analyses. Steroid UPIT with ultrasound guidance outperformed that with landmark guidance. UPIT with higher-dose steroids outperformed that with lower-dose steroids. UPIT with 5% dextrose in water (D5W) outperformed control injection and hydrodissection with high-volume D5W was superior to that with low-volume D5W. UPIT with platelet-rich plasma outperformed various control treatments. UPCTR outperformed open surgery in terms of symptom improvement but not functional improvement. No serious adverse events were reported in the studies reviewed. The findings suggest that both UPIT and UPCTR may provide clinically important benefits and appear safe. Further treatment comparison studies are required to determine comparative therapeutic efficacy.
Collapse
Affiliation(s)
- King Hei Stanley Lam
- The Department of Clinical Research, The Hong Kong Institute of Musculoskeletal Medicine, Hong Kong
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Faculty of Medicine, The University of Hong Kong, Hong Kong
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Center for Regional Anesthesia and Pain Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: ; Tel.: +852-23720888
| | - Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Research and Development, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Kenneth Dean Reeves
- Private Practice PM&R and Pain Management, 4840 El Monte, Roeland Park, KS 66205, USA
| | - Felice Galluccio
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Fisiotech Lab. Studio, Rheumatology and Pain Management, 50136 Firenze, Italy
- Morphological Madrid Research Center (MoMaRC), 10107 Madrid, Spain
| | - Abdallah El-Sayed Allam
- Morphological Madrid Research Center (MoMaRC), 10107 Madrid, Spain
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Clinical Neurophysiology Fellowship, Arab Board of Health Specializations, Ministry of Health, Baghdad 61298, Iraq
| | - Philip W. H. Peng
- Department of Anesthesiology and Pain Medicine, The University of Toronto, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
3
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
4
|
Nagao M, Asai A, Eliasson L, Oikawa S. Selectively bred rodent models for studying the etiology of type 2 diabetes: Goto-Kakizaki rats and Oikawa-Nagao mice. Endocr J 2023; 70:19-30. [PMID: 36477370 DOI: 10.1507/endocrj.ej22-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a polygenic disease and studies to understand the etiology of the disease have required selectively bred animal models with polygenic background. In this review, we present two models; the Goto-Kakizaki (GK) rat and the Oikawa-Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mouse. The GK rat was developed by continuous selective breeding for glucose tolerance from the outbred Wistar rat around 50 years ago. The main cause of spontaneous hyperglycemia in this model is insulin secretion deficiency from pancreatic β-cells and mild insulin resistance in insulin target organs. A disadvantage of the GK rat is that environmental factors have not been considered in the selective breeding. Hence, the GK rat may not be suitable for elucidating predisposition to diabetes under certain environmental conditions, such as a high-fat diet. Therefore, we recently established two mouse lines with different susceptibilities to diet-induced diabetes, which are prone and resistant to the development of diabetes, designated as the ON-DP and ON-DR mouse, respectively. The two ON mouse lines were established by continuous selective breeding for inferior and superior glucose tolerance after high-fat diet feeding in hybrid mice of three inbred strains. Studies of phenotypic differences between ON-DP and ON-DR mice and their underlying molecular mechanisms will shed light on predisposing factors for the development of T2D in the modern obesogenic environment. This review summarizes the background and the phenotypic differences and similarities of GK rats and ON mice and highlights the advantages of using selectively bred rodent models in diabetes research.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö 214 28, Sweden
- Clincal Research Centre (CRC), Skåne University Hospital(SUS), Malmö 214 28, Sweden
| | - Akira Asai
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö 214 28, Sweden
- Clincal Research Centre (CRC), Skåne University Hospital(SUS), Malmö 214 28, Sweden
| | - Shinichi Oikawa
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
5
|
Nasiri A, Rezaei Motlagh F, Vafaei MA. Efficacy comparison between ultrasound-guided injections of 5% dextrose with corticosteroids in carpal tunnel syndrome patients. Neurol Res 2023; 45:554-563. [PMID: 36617808 DOI: 10.1080/01616412.2022.2164453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is no standard guideline for treating mild to moderate carpal tunnel syndrome (CTS). 5% dextrose perineural injection has been a potential and innovative treatment with long-term effects for CTS; however, there is few published randomized clinical trial comparing the efficacy of 5% dextrose perineural injection versus corticosteroid injection in treating CTS. MATERIALS AND METHODS In this double-blinded randomized active-controlled trial, we randomly allocated 1 session of either 2 cc 5% dextrose or 1 cc methylprednisolone acetate mixed with 1 cc normal saline in 36 patients with mild to moderate CTS of single or both their wrists. The baseline VAS, BCTQ, electrophysiological studies, and sonography assessment of median nerve CSA were carried out at the baseline and 1-month and 3-month follow-ups, as well as recording demographic variables. RESULTS A statistically significant decreasing trend in VAS (P < 0.0001), BCTQ-ss (P < 0.0001), median nerve CSA (P = 0.05), SNAP-PL (P < 0.0001), and CMAP-OL (P = 0.048) in both methylprednisolone and 5% dextrose groups was observed. No significant difference was observed in slope of the trend of studied parameters, including VAS (P = 0.95), BCTQ-ss (P = 0.88), BCTQ-F (P = 0.34), median nerve CSA (P = 0.321), SNAP-PL (P = 0.9), CMAP-OL (P = 0.799), SNAP-amplitude (P = 0.798), and CMAP-amplitude (P = 0.584). CONCLUSION 5% dextrose perineural injection is an effective and safe treatment for mild to moderate CTS, in comparison with the short-term results attained from corticosteroids. Further randomized clinical trials with longer follow-up periods are warranted.
Collapse
Affiliation(s)
- Aref Nasiri
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Rezaei Motlagh
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Vafaei
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Chen W, Yin H, Xiao J, Liu W, Qu Q, Gong F, He X. The effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass in type 2 diabetes rats. Nutr Diabetes 2022; 12:51. [PMID: 36564376 PMCID: PMC9789110 DOI: 10.1038/s41387-022-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass (RYGB) in rat models with type 2 diabetes mellitus (T2DM). METHODS Twenty aged Goto-Kakizaki rats were randomly assigned into RYGB-A group and sham RYGB (SR-A) group, and 10 adult Goto-Kakizaki rats also accept RYGB procedures (RYGB-Y). Glucose metabolism, resting energy expenditure (REE), glucagon-like peptide-1 (GLP-1) and total bile acid level were measured. RESULTS RYGB could significantly improve glucose metabolism in aged diabetic rats. The fasting blood glucose level in the RYGB-A group decreased from 15.8 ± 1.1 mmol/l before surgery to 12.3 ± 1.5 mmol/l 16 weeks after surgery (P < 0.01), and the AUCOGTT value decreased from 2603.9 ± 155.4 (mmol/l) min to 2299.9 ± 252.8 (mmol/l) min (P = 0.08). The decrease range of fasting blood glucose in the RYGB-A group was less than that in the RYGB-Y group (20.5% ± 6.5% vs. 40.6% ± 10.6%, P < 0.01), so is the decrease range of AUCOGTT value (11.6% ± 14.8% vs. 38.5% ± 8.3%, P < 0.01). Moreover, at the 16th postoperative week, the increase range of REE of the RYGB-A group was lower than that of the RYGB-Y group (15.3% ± 11.1% vs. 29.1% ± 12.1%, P = 0.04). The increased range of bile acid of the RYGB-A group was less than that of the RYGB-Y group (80.2 ± 59.3 % vs.212.3 ± 139.0 %, P < 0.01). The GLP-1 level of the RYGB-A group was less than that of the RYGB-Y group (12.8 ± 3.9 pmol/L vs. 18.7 ± 5.6 pmol/L, P = 0.02). There was no significant difference between the RYGB-A group and the RYGB-Y group in the level of the triiodothyronine level. CONCLUSIONS RYGB could induce a glucose metabolism improvement in aged diabetic rats, and aging might moderate the effect of RYGB.
Collapse
Affiliation(s)
- Weijie Chen
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Haixin Yin
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Jianchun Xiao
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Wei Liu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Qiang Qu
- grid.413106.10000 0000 9889 6335Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Fengying Gong
- grid.413106.10000 0000 9889 6335Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730 PR China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, PR China.
| |
Collapse
|
7
|
Association of Non-Dipping Blood Pressure Patterns with Diabetic Peripheral Neuropathy: A Cross-Sectional Study among a Population with Diabetes in Greece. Nutrients 2022; 15:nu15010072. [PMID: 36615728 PMCID: PMC9824387 DOI: 10.3390/nu15010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is present in 20-50% of cases with diabetes. The pathophysiology of DPN is not yet clear regarding hypertension (HTN). The aim of this study was to assess the association between the stages of DPN and HTN in a Greek population with diabetes. We examined 102 adults for diabetic neuropathy (DPN) from November 2020 to December 2021, using the Toronto Clinical Neuropathy Scale System (TCNSS) to categorize them into two groups (no/mild DPN versus medium/severe DPN). Ambulatory blood pressure monitoring was performed to evaluate their hypertensive status. Univariate and multivariate logistic regression analyses were performed to assess the association between the stage of DPN and HTN. The multivariate analysis, considering sex, age, and dipping status, did not show statistically significant associations between stages of HTN and DPN. However, in contrast to dippers, non-dippers had an almost four-times higher risk of developing medium-to-severe DPN (odds ratio (OR) 3.93; 95% confidence interval (CI) [1.33-11.64]); females, in contrast to males, had a 65% lower risk of developing moderate/severe DPN (OR 0.35; 95%CI [0.14-0.92]). In conclusion, our findings showed no statistically significant associations between DPN and HTN; however, dipping status, hyperglycemia, and female sex were shown to play a role in the pathophysiology of DPN.
Collapse
|
8
|
Erol K, Topaloğlu US, Göl MF. Frequency of carpal tunnel syndrome and hand dysfunction in prediabetes: A cross-sectional, controlled study. Turk J Phys Med Rehabil 2022; 68:62-69. [PMID: 35949959 PMCID: PMC9305650 DOI: 10.5606/tftrd.2022.6828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to evaluate the frequency of carpal tunnel syndrome (CTS), to investigate the impairment of hand functions in patients with prediabetes (PD), and to compare laboratory findings of PD patients with and without CTS. Patients and methods Between June 2018 and January 2019, a total of 115 patients (29 males, 86 females; mean age: 51.4±11.8 years; range, 24 to 78 years) who were recently diagnosed with PD and a total of 54 healthy participants (17 males, 37 females; mean age: 48.4±13.2 years; range, 21 to 78 years) as the control group were included. Demographic and clinical data of the patients including oral glucose tolerance test (OGTT) and glycated hemoglobin (HbA1c) were recorded, and both groups were examined for the presence of CTS. Clinically suspected CTS was confirmed by electrodiagnostic studies. The hand grip strength (HGS) was measured and hand functions were evaluated using the Duruöz Hand Index (DHI). Results There were no significant differences in the age, sex, occupation, body mass index (BMI), or insulin resistance between the groups. A total of 24 (20.9%) patients with PD and eight (14.8%) healthy controls had CTS (p=0.349). Hand functions were worse in the PD patients than the control group (p=0.044). Age, occupation, BMI, insulin resistance, OGTT at 0 and 2 h, and HbA1c values were similar between the PD patients with or without CTS. Conclusion Our study, for the first time, reveals that CTS is slightly more common and hand functions are impaired in PD compared to the healthy individuals. Based on these findings, we suggest that hand functions should be evaluated in PD patients.
Collapse
Affiliation(s)
- Kemal Erol
- Department of Rheumatology, Kayseri City Hospital, Kayseri, Turkey
| | | | | |
Collapse
|
9
|
Kikuchi H, Nakamura Y, Inoue C, Nojiri S, Koita M, Kojima M, Koyama H, Miki R, Seki T, Egawa Y. Hydrogen Peroxide-Triggered Conversion of Boronic Acid-Appended Insulin into Insulin and Its Application as a Glucose-Responsive Insulin Formulation. Mol Pharm 2021; 18:4224-4230. [PMID: 34623822 DOI: 10.1021/acs.molpharmaceut.1c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p-Boronophenylmethoxycarbonyl (BPmoc) is a protecting group for amines that is removable by treatment with hydrogen peroxide (H2O2). We prepared BPmoc-modified insulin (BPmoc-Ins) and subcutaneously injected the formulation into diabetic rats. The results demonstrated that BPmoc effectively sealed the blood glucose (Glc)-lowering effects of Ins. Conversely, coinjection of BPmoc-Ins and Glc oxidase (GOx) resulted in reduced blood Glc levels, indicating that Ins was generated from BPmoc-Ins through the following reactions: oxidation of endogenous Glc by GOx; production of H2O2 accompanied by Glc oxidation; removal of BPmoc residues by H2O2. These results show the potential of BPmoc-Ins for a Glc-responsive Ins release system.
Collapse
Affiliation(s)
- Hinako Kikuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuki Nakamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Chika Inoue
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Sayaka Nojiri
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Miho Koita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Minori Kojima
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroki Koyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ryotaro Miki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Toshinobu Seki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
10
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
11
|
Kankowski S, Grothe C, Haastert-Talini K. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. Eur J Neurosci 2021; 54:4475-4496. [PMID: 33942412 DOI: 10.1111/ejn.15266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
The International Association for the Study of Pain defines neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". The associated changes can be observed in the peripheral as well as the central nervous system. The available literature discusses a wide variety of causes as predisposing for the development and amplification of neuropathic pain. Further, key interactions within sensory pathways have been discovered, but no common molecular mechanism leading to neuropathic pain has been identified until now. In the first part of this review, the pain mediating lateral spinothalamic tract is described. Different in vivo models are presented that allow studying trauma-, chemotherapy-, virus-, and diabetes-induced neuropathic pain in rodents. We furthermore discuss approaches to assess neuropathic pain in these models. Second, the current knowledge about cellular and molecular mechanisms suggested to underlie the development of neuropathic pain is presented and discussed. A summary of established therapies that are already applied in the clinic and novel, promising approaches closes the paper. In conclusion, the established animal models are able to emulate the diversity of neuropathic pain observed in the clinics. However, the assessment of neuropathic pain in the presented in vivo models should be improved. The determination of common molecular markers with suitable in vitro models would simplify the assessment of neuropathic pain in vivo. This would furthermore provide insights into common molecular mechanisms of the disease and establish a basis to search for satisfying therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| |
Collapse
|
12
|
Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model. Molecules 2020; 25:molecules25235713. [PMID: 33287318 PMCID: PMC7731446 DOI: 10.3390/molecules25235713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia. Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in β-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes, excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related complications in many organ systems. Antidiabetic drugs have been approved for the treatment of hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have the risk of side effects, such as nausea or an upset stomach. A wide range of active components, derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids may act as alternative sources of antidiabetic agents. They are usually attributed to improvements in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological actions make plant-based preparations the key player of all available treatments. Based on the study of therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in humans and have the advantages of ease of genetic manipulation, a short breeding span, and access to physiological and invasive testing. In this review, we summarize the pathophysiological status of T2DM rat models and focus on several bioactive compounds from herbal medicine with different functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future approach in treating diabetes with natural drugs.
Collapse
|
13
|
Lee RSB, Hamlet SM, Moon HJ, Ivanovski S. Re-establishment of macrophage homeostasis by titanium surface modification in type II diabetes promotes osseous healing. Biomaterials 2020; 267:120464. [PMID: 33130322 DOI: 10.1016/j.biomaterials.2020.120464] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/19/2020] [Accepted: 10/18/2020] [Indexed: 12/27/2022]
Abstract
Titanium surface mediated immunomodulation may address compromised post-implantation bone healing in diabetes mellitus. To assess in vitro phenotypic changes, M1 and M2 polarised Type 2 diabetic rat (Goto Kakizaki, GK) macrophages were cultured on micro-rough (SLA) or hydrophilic nanostructured SLA (modSLA) titanium. The in vivo effects of the SLA and modSLA surfaces on macrophage phenotype, wound-associated protein expression and bone formation were investigated using a critical-sized calvarial defect model. Compared to healthy macrophages, GK M2 macrophage function was compromised, secreting significantly lower levels of the anti-inflammatory cytokine IL-10. The modSLA surface attenuated the pro-inflammatory cellular environment, reducing pro-inflammatory cytokine production and promoting M2 macrophage phenotype differentiation. ModSLA also suppressed gene expression associated with macrophage multinucleation and giant cell formation and stimulated pro-osteogenic genes in co-cultured osteoblasts. In vivo, modSLA enhanced osteogenesis compared to SLA in GK rats. During early healing, proteomic analysis of both surface adherent and wound exudate material showed that modSLA promoted an immunomodulatory pro-reparative environment. The modSLA surface therefore successfully compensated for the compromised M2 macrophage function in Type 2 diabetes by attenuating the pro-inflammatory response and promoting M2 macrophage activity, thus restoring macrophage homeostasis and resulting in a cellular environment favourable for enhanced osseous healing.
Collapse
Affiliation(s)
- Ryan S B Lee
- The University of Queensland, School of Dentistry, Herston, Australia; School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - Stephen M Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Herston, Australia.
| |
Collapse
|
14
|
Pham VM, Matsumura S, Katano T, Funatsu N, Ito S. Diabetic neuropathy research: from mouse models to targets for treatment. Neural Regen Res 2019; 14:1870-1879. [PMID: 31290436 PMCID: PMC6676867 DOI: 10.4103/1673-5374.259603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic neuropathy is one of the most serious complications of diabetes, and its increase shows no sign of stopping. Furthermore, current clinical treatments do not yet approach the best effectiveness. Thus, the development of better strategies for treating diabetic neuropathy is an urgent matter. In this review, we first discuss the advantages and disadvantages of some major mouse models of diabetic neuropathy and then address the targets for mechanism-based treatment that have been studied. We also introduce our studies on each part. Using stem cells as a source of neurotrophic factors to target extrinsic factors of diabetic neuropathy, we found that they present a promising treatment.
Collapse
Affiliation(s)
- Vuong M Pham
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Funatsu
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata; Department of Anesthesiology, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
15
|
Wu YT, Ke MJ, Ho TY, Li TY, Shen YP, Chen LC. Randomized double-blinded clinical trial of 5% dextrose versus triamcinolone injection for carpal tunnel syndrome patients. Ann Neurol 2018; 84:601-610. [DOI: 10.1002/ana.25332] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/12/2018] [Accepted: 09/01/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center; Taipei Taiwan Republic of China
| | - Ming-Jen Ke
- Department of Physical Medicine and Rehabilitation
| | - Tsung-Yen Ho
- Department of Physical Medicine and Rehabilitation
| | - Tsung-Ying Li
- Department of Physical Medicine and Rehabilitation
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center; Taipei Taiwan Republic of China
| | - Yu-Ping Shen
- Department of Physical Medicine and Rehabilitation
| | | |
Collapse
|
16
|
Aeimlapa R, Charoenphandhu N, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Krishnamra N. Insulin does not rescue cortical and trabecular bone loss in type 2 diabetic Goto-Kakizaki rats. J Physiol Sci 2018; 68:531-540. [PMID: 28689272 PMCID: PMC10717542 DOI: 10.1007/s12576-017-0558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
In type 2 diabetes mellitus (T2DM), the decreased bone strength is often associated with hyperglycemia and bone cell insulin resistance. Since T2DM is increasingly reported in young adults, it is not known whether the effect of T2DM on bone would be different in young adolescents and aging adults. Here, we found shorter femoral and tibial lengths in 7-month, but not 13-month, Goto-Kakizaki (GK) T2DM rats as compared to wild-type rats. Bone µCT analysis showed long-lasting impairment of both cortical and trabecular bones in GK rats. Although insulin treatment effectively improved hyperglycemia, it was not able to rescue trabecular BMD and cortical thickness in young adult GK rats. In conclusion, insulin treatment and alleviation of hyperglycemia did not increase BMD of osteopenic GK rats. It is likely that early prevention of insulin resistance should prevail over treatment of full-blown T2DM-related osteopathy.
Collapse
Affiliation(s)
- Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
| | - Panan Suntornsaratoon
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Wacharaporn Tiyasatkulkovit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Kengkoom
- National Laboratory Animal Center, Mahidol University, Nakhon Pathom, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Sung K, Ferrari LF, Yang W, Chung C, Zhao X, Gu Y, Lin S, Zhang K, Cui B, Pearn ML, Maloney MT, Mobley WC, Levine JD, Wu C. Swedish Nerve Growth Factor Mutation (NGF R100W) Defines a Role for TrkA and p75 NTR in Nociception. J Neurosci 2018; 38:3394-3413. [PMID: 29483280 PMCID: PMC5895035 DOI: 10.1523/jneurosci.1686-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Nerve growth factor (NGF) exerts multiple functions on target neurons throughout development. The recent discovery of a point mutation leading to a change from arginine to tryptophan at residue 100 in the mature NGFβ sequence (NGFR100W) in patients with hereditary sensory and autonomic neuropathy type V (HSAN V) made it possible to distinguish the signaling mechanisms that lead to two functionally different outcomes of NGF: trophic versus nociceptive. We performed extensive biochemical, cellular, and live-imaging experiments to examine the binding and signaling properties of NGFR100W Our results show that, similar to the wild-type NGF (wtNGF), the naturally occurring NGFR100W mutant was capable of binding to and activating the TrkA receptor and its downstream signaling pathways to support neuronal survival and differentiation. However, NGFR100W failed to bind and stimulate the 75 kDa neurotrophic factor receptor (p75NTR)-mediated signaling cascades (i.e., the RhoA-Cofilin pathway). Intraplantar injection of NGFR100W into adult rats induced neither TrkA-mediated thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia based on agonism for TrkA signaling. Together, our studies provide evidence that NGFR100W retains trophic support capability through TrkA and one aspect of its nociceptive signaling, but fails to engage p75NTR signaling pathways. Our findings suggest that wtNGF acts via TrkA to regulate the delayed priming of nociceptive responses. The integration of both TrkA and p75NTR signaling thus appears to regulate neuroplastic effects of NGF in peripheral nociception.SIGNIFICANCE STATEMENT In the present study, we characterized the naturally occurring nerve growth factor NGFR100W mutant that is associated with hereditary sensory and autonomic neuropathy type V. We have demonstrated for the first time that NGFR100W retains trophic support capability through TrkA, but fails to engage p75NTR signaling pathways. Furthermore, after intraplantar injection into adult rats, NGFR100W induced neither thermal nor mechanical acute hyperalgesia, but retained the ability to induce chronic hyperalgesia. We have also provided evidence that the integration of both TrkA- and p75NTR-mediated signaling appears to regulate neuroplastic effects of NGF in peripheral nociception. Our study with NGFR100W suggests that it is possible to uncouple trophic effect from nociceptive function, both induced by wild-type NGF.
Collapse
Affiliation(s)
| | - Luiz F Ferrari
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Wanlin Yang
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea
| | | | - Yingli Gu
- Department of Neurosciences
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China 150001
| | - Suzhen Lin
- Department of Neurosciences
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200025
| | - Kai Zhang
- Department of Chemistry
- Department of Biochemistry, Neuroscience Program, Center for Biophysics and Quantitative Biology, Chemistry-Biology Interface Training Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | | - Matthew L Pearn
- Department of Anesthesiology, University of California San Diego, School of Medicine, La Jolla, California 92093
- V.A. San Diego Healthcare System, San Diego, California 92161
| | - Michael T Maloney
- Department of Neurosciences, Stanford University, Stanford, California 94305
| | | | - Jon D Levine
- Department of Oral Surgery, University of California San Francisco, San Francisco, California 94143
| | - Chengbiao Wu
- Department of Neurosciences,
- V.A. San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
18
|
Lietzau G, Davidsson W, Östenson CG, Chiazza F, Nathanson D, Pintana H, Skogsberg J, Klein T, Nyström T, Darsalia V, Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta Neuropathol Commun 2018; 6:14. [PMID: 29471869 PMCID: PMC5824492 DOI: 10.1186/s40478-018-0517-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/26/2022] Open
Abstract
Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms. The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system. Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons. We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity. The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for understanding the interplay between T2D and cognitive decline and for designing effective preventive therapies.
Collapse
|
19
|
Al Kury L, Smail M, Qureshi MA, Sydorenko V, Shmygol A, Oz M, Singh J, Howarth FC. Calcium Signaling in the Ventricular Myocardium of the Goto-Kakizaki Type 2 Diabetic Rat. J Diabetes Res 2018; 2018:2974304. [PMID: 29850600 PMCID: PMC5914098 DOI: 10.1155/2018/2974304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
The association between diabetes mellitus (DM) and high mortality linked to cardiovascular disease (CVD) is a major concern worldwide. Clinical and preclinical studies have demonstrated a variety of diastolic and systolic dysfunctions in patients with type 2 diabetes mellitus (T2DM) with the severity of abnormalities depending on the patients' age and duration of diabetes. The cellular basis of hemodynamic dysfunction in a type 2 diabetic heart is still not well understood. The aim of this review is to evaluate our current understanding of contractile dysfunction and disturbances of Ca2+ transport in the Goto-Kakizaki (GK) diabetic rat heart. The GK rat is a widely used nonobese, nonhypertensive genetic model of T2DM which is characterized by insulin resistance, elevated blood glucose, alterations in blood lipid profile, and cardiac dysfunction.
Collapse
Affiliation(s)
- L. Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE
| | - M. Smail
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. A. Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - V. Sydorenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - A. Shmygol
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. Oz
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - J. Singh
- School of Forensic & Applied Sciences, University of Central Lancashire, Preston, UK
| | - F. C. Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| |
Collapse
|
20
|
Zhao J, Yang J, Liao D, Gregersen H. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine. Clin Exp Gastroenterol 2017; 10:303-314. [PMID: 29238211 PMCID: PMC5716675 DOI: 10.2147/ceg.s145016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.
Collapse
Affiliation(s)
- Jingbo Zhao
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jian Yang
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donghua Liao
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Gregersen
- Giome Center, Department of Surgery, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
21
|
Maekawa T, Tadaki H, Sasase T, Motohashi Y, Miyajima K, Ohta T, Kume S. Pathophysiological profiles of SDT fatty rats, a potential new diabetic peripheral neuropathy model. J Pharmacol Toxicol Methods 2017; 88:160-166. [DOI: 10.1016/j.vascn.2017.09.257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023]
|
22
|
Kumar A, Kaur H, Singh A. Neuropathic Pain models caused by damage to central or peripheral nervous system. Pharmacol Rep 2017; 70:206-216. [PMID: 29475003 DOI: 10.1016/j.pharep.2017.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/24/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Neuropathic Pain (NP) is a painful condition which is a direct consequence of a lesion or disease affecting the somatosensory system with symptoms like allodynia, hyperalgesia. It has complex pathogenesis as it involves several molecular signaling pathways, thus numerous reliable animal models are crucial to understand the underlying mechanism of NP and formulate effective management therapy. Some models like spinal cord injury, chronic constriction injury, spinal nerve ligation, chemotherapy induced peripheral neuropathy, diabetes-induced NP and many more are discussed. This review contains an overview of the procedures followed to induce neuropathy and specific characteristics of that particular model. Some new techniques like spared nerve ligation, have omitted the limitation of methods not presently used where complete nerve damage occurs. Since animal models provide a window to experienced symptoms and physiology and impact the translation of bench discoveries to the bedside, the reporting, interpretation and comparison of these models is necessary because slight variation in procedure of model generation can drastically alter the results. The development of novel, but rational analgesic drugs to alleviate this intractable pain demands elucidation of molecular mechanisms of NP for which different types of animal models have been established.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India.
| | - Harshpreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India
| | - Arti Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Wu YT, Ho TY, Chou YC, Ke MJ, Li TY, Tsai CK, Chen LC. Six-month Efficacy of Perineural Dextrose for Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial. Mayo Clin Proc 2017; 92:1179-1189. [PMID: 28778254 DOI: 10.1016/j.mayocp.2017.05.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess the 6-month effectiveness of ultrasound-guided perineural injection therapy (PIT) using 5% dextrose (D5W) in patients with mild-to-moderate carpal tunnel syndrome (CTS). PATIENTS AND METHODS A prospective, randomized, placebo-controlled, and double-blind study was conducted between May 1, 2016, through March 30, 2017. A total of 49 participants diagnosed with mild-to-moderate CTS were randomized into D5W and control groups. Participants in the D5W group received 1 session of ultrasound-guided PIT with 5 cc of D5W, and the control group received PIT with normal saline. The visual analog scale measured pain as a primary outcome. Secondary outcomes were Boston Carpal Tunnel Syndrome Questionnaire scores, the cross-sectional area of the median nerve, and electrophysiological measurement results. Assessment was performed before injection and at 1, 3, and 6 months post-injection. RESULTS All patients (data from 30 wrists in each group) completed the study. Compared with the control group, at all post-injection time points, the D5W group had a significant reduction in pain and disability, improvement on electrophysiological response measures, and decreased cross-sectional area of the median nerve. CONCLUSION Our study reveals that ultrasound-guided PIT with D5W is an effective treatment for patients with mild-to-moderate CTS. TRIAL REGISTRATION www.ClinicalTrials.gov: NCT02809261.
Collapse
Affiliation(s)
- Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China; Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China
| | - Tsung-Yen Ho
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Jen Ke
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China
| | - Tsung-Ying Li
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China; Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China; Graduate Institute of Medical Science, School of Medicine, Taipei, Taiwan, Republic of China
| | - Liang-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, Taipei, Taiwan, Republic of China.
| |
Collapse
|
24
|
Takeda Y, Shimomura T, Asao H, Wakabayashi I. Relationship between Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Amplification Circuits for Diabetes. J Diabetes Res 2017; 2017:4275851. [PMID: 28299342 PMCID: PMC5337356 DOI: 10.1155/2017/4275851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of pathogenic mechanisms is required in order to treat diseases. However, the mechanisms of diabetes mellitus and diabetic complications are extremely complex. Immune reactions are involved in the pathogenesis of diabetes and its complications, while diabetes influences immune reactions. Furthermore, both diabetes and immune reactions are influenced by genetic and environmental factors. To address these issues, animal models are useful tools. So far, various animal models of diabetes have been developed in rats, which have advantages over mice models in terms of the larger volume of tissue samples and the variety of type 2 diabetes models. In this review, we introduce rat models of diabetes and summarize the immune reactions in diabetic rat models. Finally, we speculate on the relationship between immune reactions and diabetic episodes. For example, diabetes-prone Biobreeding rats, type 1 diabetes model rats, exhibit increased autoreactive cellular and inflammatory immune reactions, while Goto-Kakizaki rats, type 2 diabetes model rats, exhibit increased Th2 reactions and attenuation of phagocytic activity. Investigation of immunological abnormalities in various diabetic rat models is useful for elucidating complicated mechanisms in the pathophysiology of diabetes. Studying immunological alterations, such as predominance of Th1/17 or Th2 cells, humoral immunity, and innate immune reactions, may improve understanding the structure of amplification circuits for diabetes in future studies.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
- *Yuji Takeda:
| | - Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
25
|
Grote CW, Wright DE. A Role for Insulin in Diabetic Neuropathy. Front Neurosci 2016; 10:581. [PMID: 28066166 PMCID: PMC5179551 DOI: 10.3389/fnins.2016.00581] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
The peripheral nervous system is one of several organ systems that are profoundly affected in diabetes. The longstanding view is that insulin does not have a major role in modulating neuronal function in both central and peripheral nervous systems is now being challenged. In the setting of insulin deficiency or excess insulin, it is logical to propose that insulin dysregulation can contribute to neuropathic changes in sensory neurons. This is particularly important as sensory nerve damage associated with prediabetes, type 1 and type 2 diabetes is so prevalent. Here, we discuss the current experimental literature related to insulin's role as a potential neurotrophic factor in peripheral nerve function, as well as the possibility that insulin deficiency plays a role in diabetic neuropathy. In addition, we discuss how sensory neurons in the peripheral nervous system respond to insulin similar to other insulin-sensitive tissues. Moreover, studies now suggest that sensory neurons can also become insulin resistant like other tissues. Collectively, emerging studies are revealing that insulin signaling pathways are active contributors to sensory nerve modulation, and this review highlights this novel activity and should provide new insight into insulin's role in both peripheral and central nervous system diseases.
Collapse
Affiliation(s)
- Caleb W Grote
- Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| | - Douglas E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
26
|
Lietzau G, Nyström T, Östenson CG, Darsalia V, Patrone C. Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist exendin-4. Oncotarget 2016; 7:5865-76. [PMID: 26744321 PMCID: PMC4868727 DOI: 10.18632/oncotarget.6823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 11/25/2022] Open
Abstract
Type 2 diabetes (T2D) patients often present olfactory dysfunction. However, the histopathological basis behind this has not been previously shown. Since the piriform cortex plays a crucial role in olfaction, we hypothesize that pathological changes in this brain area can occur in T2D patients along aging. Thus, we determined potential neuropathology in the piriform cortex of T2D rats, along aging. Furthermore, we determined the potential therapeutic role of the glucagon-like peptide-1 receptor (GLP1-R) agonist exendin-4 to counteract the identified T2D-induced neuropathology. Young-adult and middle-aged T2D Goto-Kakizaki rats were compared to age-matched Wistars. Additional Goto-Kakizaki rats were treated for six weeks with exendin-4/vehicle before sacrifice. Potential T2D-induced neuropathology was assessed by quantifying NeuN-positive neurons and Calbindin-D28k-positive interneurons by immunohistochemistry and stereology methods. We also quantitatively measured Calbindin-D28k neuronal morphology and JNK phosphorylation-mediated cellular stress. PI3K/AKT signalling was assessed by immunohistochemistry, and potential apoptosis by TUNEL. We show T2D-induced neuronal pathology in the piriform cortex along aging, characterized by atypical nuclear NeuN staining and increased JNK phosphorylation, without apoptosis. We also demonstrate the specific vulnerability of Calbindin-D28k interneurons. Finally, chronic treatment with exendin-4 substantially reversed the identified neuronal pathology in correlation with decreased JNK and increased AKT phosphorylation. Our results reveal the histopathological basis to explain T2D olfactory dysfunction. We also show that the identified T2D-neuropathology can be counteracted by GLP-1R activation supporting recent research promoting the use of GLP-1R agonists against brain diseases. Whether the identified neuropathology could represent an early hallmark of cognitive decline in T2D remains to be determined.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden.,Medical University of Gdansk, Department of Anatomy and Neurobiology, Gdansk, Poland
| | - Thomas Nyström
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Claes-Göran Östenson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden
| | - Vladimer Darsalia
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Cesare Patrone
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| |
Collapse
|
27
|
Diabetes negatively affects cortical and striatal GABAergic neurons: an effect that is partially counteracted by exendin-4. Biosci Rep 2016; 36:BSR20160437. [PMID: 27780892 PMCID: PMC5137538 DOI: 10.1042/bsr20160437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023] Open
Abstract
Diabetes negatively affects specific subtypes of inhibitory neurons in brain areas that regulate sensory and motor functions. This impairment can be partially reversed by exendin-4 (Ex-4). The findings could contribute to the development of treatments against diabetic neurological complications. Type 2 diabetic (T2D) patients often develop early cognitive and sensorimotor impairments. The pathophysiological mechanisms behind these problems are largely unknown. Recent studies demonstrate that dysfunctional γ-aminobutyric acid (GABAergic) neurons are involved in age-related cognitive decline. We hypothesized that similar, but earlier dysfunction is taking place under T2D in the neocortex and striatum (two brain areas important for cognition and sensorimotor functions). We also hypothesized that the T2D-induced effects are pharmacologically reversible by anti-diabetic drugs targeting the glucagon-like peptide-1 receptor (GLP-1R). We determined the effect of T2D on cortical and striatal GABAergic neurons positive for glutamic acid decarboxylase-67 (GAD67), calbindin (CB), parvalbumin (PV) and calretinin (CR) by using immunohistochemistry and quantitative microscopy. Young and middle-aged T2D Goto-Kakizaki (GK) (a model of spontaneous T2D) and Wistar rats were used. Furthermore, we determined the therapeutic potential of the GLP1-R agonist exendin-4 (Ex-4) by treating middle-aged GK rats for 6 weeks with 0.1 μg/kg Ex-4 twice daily. We show that T2D reduced the density of GAD67-positive neurons in the striatum and of CB-positive neurons in both striatum and neocortex. T2D also increased the average volume of PV-positive interneurons in the striatum. Ex-4 treatment increased the density of CB-positive neurons in the striatum of GK rats. Our data demonstrate that T2D negatively affects GAD67 and CB-positive GABAergic neurons in the brain during aging, potentially identifying some of the pathophysiological mechanisms to explain the increased prevalence of neurological complications in T2D. We also show a specific, positive effect of Ex-4 on striatal CB-positive neurons, which could be exploited in therapeutic perspective.
Collapse
|
28
|
Candeias E, Duarte AI, Sebastião I, Fernandes MA, Plácido AI, Carvalho C, Correia S, Santos RX, Seiça R, Santos MS, Oliveira CR, Moreira PI. Middle-Aged Diabetic Females and Males Present Distinct Susceptibility to Alzheimer Disease-like Pathology. Mol Neurobiol 2016; 54:6471-6489. [PMID: 27730513 DOI: 10.1007/s12035-016-0155-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is a highly concerning public health problem of the twenty-first century. Currently, it is estimated that T2D affects 422 million people worldwide with a rapidly increasing prevalence. During the past two decades, T2D has been widely shown to have a major impact in the brain. This, together with the cognitive decline and increased risk for dementia upon T2D, may arise from the complex interaction between normal brain aging and central insulin signaling dysfunction. Among the several features shared between T2D and some neurodegenerative disorders (e.g., Alzheimer disease (AD)), the impairment of insulin signaling may be a key link. However, these may also involve changes in sex hormones' function and metabolism, ultimately contributing to the different susceptibilities between females and males to some pathologies. For example, female sex has been pointed as a risk factor for AD, particularly after menopause. However, less is known on the underlying molecular mechanisms or even if these changes start during middle-age (perimenopause). From the above, we hypothesized that sex differentially affects hormone-mediated intracellular signaling pathways in T2D brain, ultimately modulating the risk for neurodegenerative conditions. We aimed to evaluate sex-associated alterations in estrogen/insulin-like growth factor-1 (IGF-1)/insulin-related signaling, oxidative stress markers, and AD-like hallmarks in middle-aged control and T2D rat brain cortices. We used brain cortices homogenates obtained from middle-aged (8-month-old) control Wistar and non-obese, spontaneously T2D Goto-Kakizaki (GK) male and female rats. Peripheral characterization of the animal models was done by standard biochemical analyses of blood, plasma, or serum. Steroid sex hormones, oxidative stress markers, and AD-like hallmarks were given by specific ELISA kits and colorimetric techniques, whereas the levels of intracellular signaling proteins were determined by Western blotting. Albeit the high levels of plasma estradiol and progesterone observed in middle-aged control females suggested that they were still under their reproductive phase, some gonadal dysfunction might be already occurring in T2D ones, hence, anticipating their menopause. Moreover, the higher blood and lower brain cholesterol levels in female rats suggested that its dysfunctional uptake into the brain cortex may also hamper peripheral estrogen uptake and/or its local brain steroidogenic metabolism. Despite the massive drop in IGF-1 levels in females' brains, particularly upon T2D, they might have developed some compensatory mechanisms towards the maintenance of estrogen, IGF-1, and insulin receptors function and of the subsequent Akt- and ERK1/2-mediated signaling. These may ultimately delay the deleterious AD-like brain changes (including oxidative damage to lipids and DNA, amyloidogenic processing of amyloid precursor protein and increased tau protein phosphorylation) associated with T2D and/or age (reproductive senescence) in female rats. By demonstrating that differential sex steroid hormone profiles/action may play a pivotal role in brain over T2D progression, the present study reinforces the need to establish sex-specific preventive and/or therapeutic approaches and an appropriate time window for the efficient treatment against T2D and AD.
Collapse
Affiliation(s)
- E Candeias
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal.
| | - I Sebastião
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
| | - M A Fernandes
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
- Instituto do Mar, Life Sciences Department, University of Coimbra, 3004-517, Coimbra, Portugal
| | - A I Plácido
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - C Carvalho
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - S Correia
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - R X Santos
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - R Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - M S Santos
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Instituto do Mar, Life Sciences Department, University of Coimbra, 3004-517, Coimbra, Portugal
| | - C R Oliveira
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - P I Moreira
- CNC- Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
29
|
Rota E, Morelli N. Entrapment neuropathies in diabetes mellitus. World J Diabetes 2016; 7:342-353. [PMID: 27660694 PMCID: PMC5027001 DOI: 10.4239/wjd.v7.i17.342] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/18/2016] [Accepted: 07/22/2016] [Indexed: 02/05/2023] Open
Abstract
Neuropathy is a common complication of diabetes mellitus (DM) with a wide clinical spectrum that encompasses generalized to focal and multifocal forms. Entrapment neuropathies (EN), which are focal forms, are so frequent at any stage of the diabetic disease, that they may be considered a neurophysiological hallmark of peripheral nerve involvement in DM. Indeed, EN may be the earliest neurophysiological abnormalities in DM, particularly in the upper limbs, even in the absence of a generalized polyneuropathy, or it may be superimposed on a generalized diabetic neuropathy. This remarkable frequency of EN in diabetes is underlain by a peculiar pathophysiological background. Due to the metabolic alterations consequent to abnormal glucose metabolism, the peripheral nerves show both functional impairment and structural changes, even in the preclinical stage, making them more prone to entrapment in anatomically constrained channels. This review discusses the most common and relevant EN encountered in diabetic patient in their epidemiological, pathophysiological and diagnostic features.
Collapse
|
30
|
Stecker M, Stevenson M. Effects of insulin on peripheral nerves. J Diabetes Complications 2016; 30:770-7. [PMID: 27134033 DOI: 10.1016/j.jdiacomp.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
AIMS To assess the effects of insulin on peripheral nerve under normoglycemic and hyperglycemic conditions in the presence and absence of anoxia. METHODS This study uses the in-vitro sciatic nerve model to assess the effect of insulin on peripheral nerve with the nerve action potential (NAP) as an index of nerve function. RESULTS Under normoglycemic conditions, low concentrations of regular insulin (0.01nM) reduced the conduction velocity of oxygenated nerves. Hyperglycemia increased the duration of the NAP and this increase was nearly completely eliminated by insulin in the 0.1nM-100nM concentration range. Insulin (1nM) also had effects on normoglycemic nerves exposed to intermittent anoxia, producing a decrease in the paired-pulse response and NAP amplitude and an increase in peak duration. This was associated with a reduced time to anoxia-induced conduction block. Similar effects were seen when regular insulin was replaced by insulin detemir, but the latter required much higher concentrations. CONCLUSIONS Insulin has concentration dependent effects on the peripheral nerve that are dependent on glucose and anoxia. These effects may be important in modulating neuropathic consequences of diabetes.
Collapse
Affiliation(s)
- Mark Stecker
- Department of Neuroscience, Winthrop University Hospital, Mineola NY 11530.
| | - Matthew Stevenson
- Department of Neuroscience, Winthrop University Hospital, Mineola NY 11530
| |
Collapse
|
31
|
Abstract
The study of diabetic neuropathy has relied primarily on the use of streptozotocin-treated rat and mouse models of type 1 diabetes. This chapter will review the creation and use of other rodent models that have been developed in order to investigate the contribution of factors besides insulin deficiency to the development and progression of diabetic neuropathy as it occurs in obesity, type 1 or type 2 diabetes. Diabetic peripheral neuropathy is a complex disorder with multiple mechanisms contributing to its development and progression. Even though many animal models have been developed and investigated, no single model can mimic diabetic peripheral neuropathy as it occurs in humans. Nonetheless, animal models can play an important role in improving our understanding of the etiology of diabetic peripheral neuropathy and in performing preclinical screening of potential new treatments. To date treatments found to be effective for diabetic peripheral neuropathy in rodent models have failed in clinical trials. However, with the identification of new endpoints for the early detection of diabetic peripheral neuropathy and the understanding that a successful treatment may require a combination therapeutic approach there is hope that an effective treatment will be found.
Collapse
Affiliation(s)
- M A Yorek
- Iowa City Health Care System, Iowa City, IA, United States; University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
32
|
Macia M, Pecchi E, Vilmen C, Desrois M, Lan C, Portha B, Bernard M, Bendahan D, Giannesini B. Insulin Resistance Is Not Associated with an Impaired Mitochondrial Function in Contracting Gastrocnemius Muscle of Goto-Kakizaki Diabetic Rats In Vivo. PLoS One 2015; 10:e0129579. [PMID: 26057538 PMCID: PMC4461248 DOI: 10.1371/journal.pone.0129579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle would play a major role in type 2 diabetes mellitus (T2DM) development, but the causal relationships between these events remain conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in Goto-Kakizaki (GK) rats, a non-obese T2DM model developing peripheral insulin resistant without abnormal level of plasma non-esterified fatty acids (NEFA). Wistar rats were used as controls. Mechanical performance and energy metabolism were assessed strictly non-invasively using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Compared with control group, plasma insulin and glucose were respectively lower and higher in GK rats, but plasma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced whereas glucose content and intracellular pH were both higher. However, there were not differences between both groups for basal oxidative ATP synthesis rate, citrate synthase activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in vivo mitochondrial regulator). During a standardized fatiguing protocol (6 min of maximal repeated isometric contractions electrically induced at a frequency of 1.7 Hz), mechanical performance and glycolytic ATP production rate were reduced in diabetic animals whereas oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction were not changed. These findings provide in vivo evidence that insulin resistance is not caused by an impairment of mitochondrial function in this diabetic model.
Collapse
Affiliation(s)
- Michael Macia
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
- * E-mail:
| | - Emilie Pecchi
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Martine Desrois
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Carole Lan
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Bernard Portha
- Universitx Paris-Diderot, Sorbonne Paris Cité, Laboratoire B2PE, Unité BFA, CNRS EAC 4413, Paris, France
| | - Monique Bernard
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| |
Collapse
|
33
|
Lukaszuk M. Diabetic Rat Model. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Qu L, Liang X, Gu B, Liu W. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy. Neural Regen Res 2014; 9:1195-203. [PMID: 25206782 PMCID: PMC4146282 DOI: 10.4103/1673-5374.135328] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Quercetin can reverse high glucose-induced inhibition of neural cell proliferation, and therefore may have a neuroprotective effect in diabetic peripheral neuropathy. It is difficult to obtain primary Schwann cells and RSC96 cells could replace primary Schwann cells in studies of the role of autophagy in the mechanism underlying diabetic peripheral neuropathy. Here, we show that under high glucose conditions, there are fewer autophagosomes in immortalized rat RSC96 cells and primary rat Schwann cells than under control conditions, the proliferative activity of both cell types is significantly impaired, and the expression of Beclin-1 and LC3, the molecular markers for autophagy, is significantly lower. After intervention with quercetin, the autophagic and proliferative activity of both cell types is rescued. These results suggest that quercetin can alleviate high glucose-induced damage to Schwann cells by autophagy.
Collapse
Affiliation(s)
- Ling Qu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, China Academy of Medical Sciences, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, China Academy of Medical Sciences, Beijing, China
| | - Bei Gu
- Cell Center, Institute of Basic Medical Science, Peking Union Medical College, China Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, China Academy of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Lapmanee S, Charoenphandhu N, Aeimlapa R, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Chaimongkolnukul K, Seriwatanachai D, Krishnamra N. High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats. Lipids 2014; 49:975-86. [PMID: 25200330 DOI: 10.1007/s11745-014-3950-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) often occurs concurrently with high blood cholesterol or dyslipidemia. Although T2DM has been hypothesized to impair bone microstructure, several investigations showed that, when compared to age-matched healthy individuals, T2DM patients had normal or relatively high bone mineral density (BMD). Since cholesterol and lipids profoundly affect the function of osteoblasts and osteoclasts, it might be cholesterol that obscured the changes in BMD and bone microstructure in T2DM. The present study, therefore, aimed to determine bone elongation, epiphyseal histology, and bone microstructure in non-obese T2DM Goto-Kakizaki rats treated with normal (GK-ND) and high cholesterol diet. We found that volumetric BMD was lower in GK-ND rats than the age-matched wild-type controls. In histomorphometric study of tibial metaphysis, T2DM evidently suppressed osteoblast function as indicated by decreases in osteoblast surface, mineral apposition rate, and bone formation rate in GK-ND rats. Meanwhile, the osteoclast surface and eroded surface were increased in GK-ND rats, thus suggesting an activation of bone resorption. T2DM also impaired bone elongation, presumably by retaining the chondrogenic precursor cells in the epiphyseal resting zone. Interestingly, several bone changes in GK rats (e.g., increased osteoclast surface) disappeared after high cholesterol treatment as compared to wild-type rats fed high cholesterol diet. In conclusion, high cholesterol diet was capable of masking the T2DM-induced osteopenia and changes in several histomorphometric parameters that indicated bone microstructural defect. Cholesterol thus explained, in part, why a decrease in BMD was not observed in T2DM, and hence delayed diagnosis of the T2DM-associated bone disease.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aeimlapa R, Wongdee K, Charoenphandhu N, Suntornsaratoon P, Krishnamra N. Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto-Kakizaki diabetic rats. Biochem Biophys Res Commun 2014; 452:395-401. [PMID: 25159845 DOI: 10.1016/j.bbrc.2014.08.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is much more detrimental to bone than previously thought. Specifically, it is associated with aberrant bone remodeling, defective bone microstructure, poor bone quality, and growth retardation. The T2DM-associated impairment of bone elongation may result from a decrease in growth plate function, but the detailed mechanism has been unknown. The present study, therefore, aimed to test hypothesis that T2DM led to premature apoptosis of growth plate chondrocytes in Goto-Kakizaki (GK) type 2 diabetic rats, and thus triggered the compensatory responses to overcome this premature apoptosis, such as overexpression of Runt-related transcription factor (Runx)-2 and vascular endothelial growth factor (VEGF), the essential mediators for bone elongation. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) of epiphyseal sections successfully revealed increases in chondrocyte apoptosis in the hypertrophic zone (HZ) and chondro-osseous junction of GK rats. Quantitative immunohistochemical analysis further confirmed the overexpression of parathyroid hormone-related protein (PTHrP), Runx2 and VEGF, but not Indian hedgehog (Ihh) in the HZ. Analysis of blood chemistry indicated suppression of bone remodeling with a marked decrease in parathyroid hormone level. In conclusion, GK rats manifested a premature increase in chondrocyte apoptosis in the HZ of growth plate, and a compensatory overexpression of chondroregulatory proteins, such as PTHrP, Runx2, and VEGF. Our results, therefore, help explain how T2DM leads to impaired bone elongation and growth retardation.
Collapse
Affiliation(s)
- Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Takeda Y, Shimomura T, Wakabayashi I. [Immunological disorders of diabetes mellitus in experimental rat models]. Nihon Eiseigaku Zasshi 2014; 69:166-176. [PMID: 25253518 DOI: 10.1265/jjh.69.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A comprehensive understanding of the pathogenic mechanism is the prerequisite for proper disease management. However, the mechanisms of diabetes mellitus and diabetic complication remain extremely complicated and unresolved. While immune reactions are involved in the pathogenesis of diabetes and diabetic complication, the diabetic condition itself can influence immune responses. Furthermore, both diabetes and immune reactions are regulated by genetic and environmental factors. As a result, animal models have evolved to be powerful research tools to elucidate the complicated mechanisms for the pathogenesis of diabetes. Recently, various animal models of diabetes have been developed in rats, which provide advantages over mouse models in the scale of tissue samples and variation in type 2 diabetes models. In this review, we introduced rat models of diabetes and summarized the immune reactions in diabetic rats to propose the relationship between immune reactions and diabetes. Type 1 diabetes is induced by self-reactive cellular immune reactions. On the other hand, type 2 diabetes in rat models is associated with augmentation of innate immune reactions and increased humoral immunity. For example, helper T (Th) 1/Th17 cells are prevalent in non-obese type 1 diabetes rats (diabetes-prone BioBreeding rats), while non-obese type 2 diabetes rats (Goto-Kakizaki rat) show higher levels of natural IgM and T cell ratios with elevated Th2 cells compared with Wister rats. The investigation of immunological disorders in various diabetic rat models is useful to elucidate complicated mechanisms for the pathophysiology of diabetes. In future studies, immunological experimentations altering Th1/Th17 or Th2 cell levels and natural immune reactions may lend support to understanding the causes of diabetes and predicting the pathological conditions in diabetes.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine
| | | | | |
Collapse
|
38
|
Abstract
As ensheathing and secretory cells, Schwann cells are a ubiquitous and vital component of the endoneurial microenvironment of peripheral nerves. The interdependence of axons and their ensheathing Schwann cells predisposes each to the impact of injury in the other. Further, the dependence of the blood-nerve interface on trophic support from Schwann cells during development, adulthood, and after injury suggests these glial cells promote the structural and functional integrity of nerve trunks. Here, the developmental origin, injury-induced changes, and mature myelinating and nonmyelinating phenotypes of Schwann cells are reviewed prior to a description of nerve fiber pathology and consideration of pathogenic mechanisms in human and experimental diabetic neuropathy. A fundamental role for aldose-reductase-containing Schwann cells in the pathogenesis of diabetic neuropathy, as well as the interrelationship of pathogenic mechanisms, is indicated by the sensitivity of hyperglycemia-induced biochemical alterations, such as polyol pathway flux, formation of reactive oxygen species, generation of advanced glycosylation end products (AGEs) and deficient neurotrophic support, to blocking polyol pathway flux.
Collapse
Affiliation(s)
- Andrew P Mizisin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
39
|
Batulevicius D, Frese T, Peschke E, Pauza DH, Batuleviciene V. Remodelling of the intracardiac ganglia in diabetic Goto-Kakizaki rats: an anatomical study. Cardiovasc Diabetol 2013; 12:85. [PMID: 23758627 PMCID: PMC3688305 DOI: 10.1186/1475-2840-12-85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Background Although cardiac autonomic neuropathy is one of major complications of diabetes mellitus (DM), anatomical data on cardiac innervation of diabetic animal models is scant and controversial. We performed this study to check whether long-term diabetic state impacts the anatomy of intracardiac ganglia in Goto-Kakizaki (GK) rats, a genetic model of type 2 DM. Methods Twelve GK rats (276 ± 17 days of age; mean ± standard error) and 13 metabolically healthy Wistar rats (262 ± 5 days of age) as controls were used for this study. Blood glucose was determined using test strips, plasma insulin by radioimmunoassay. Intrinsic ganglia and nerves were visualized by acetylcholinesterase histochemistry on whole hearts. Ganglion area was measured, and the neuronal number was assessed according to ganglion area. Results The GK rats had significantly elevated blood glucose level compared to controls (11.0 ± 0.6 vs. 5.9 ± 0.1 mmol/l, p < 0.001), but concentration of plasma insulin did not differ significantly between the two groups (84.0 ± 9.8 vs. 67.4 ± 10.9 pmol/l, p = 0.17). The GK rats contained significantly fewer intracardiac ganglia, decreased total area of intracardiac ganglia (1.4 ± 0.1 vs. 2.2 ± 0.1 mm2, p < 0.001) and smaller somata of ganglionic neurons. Mean total number of intracardiac neurons in GK rats was 1461 ± 62, while this number in control rats was higher by 39% and reached 2395 ± 110 (p < 0.001). Conclusions Results of our study demonstrate the decreased number of intracardiac neurons in GK rats compared to metabolically healthy Wistar rats of similar age. It is likely that the observed structural remodelling of intracardiac ganglia in GK rats is caused by a long-term diabetic state.
Collapse
|
40
|
Grote CW, Groover AL, Ryals JM, Geiger PC, Feldman EL, Wright DE. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol Commun 2013; 1:15. [PMID: 24252636 PMCID: PMC3893412 DOI: 10.1186/2051-5960-1-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022] Open
Abstract
Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy.
Collapse
|
41
|
Aizawa N, Homma Y, Igawa Y. Characteristics of Lower Urinary Tract Dysfunction and Bladder Afferent Nerve Properties in Type 2 Diabetic Goto-Kakizaki Rats. J Urol 2013; 189:1580-7. [DOI: 10.1016/j.juro.2012.10.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 11/25/2022]
Affiliation(s)
- Naoki Aizawa
- Departments of Continence Medicine and Urology (YH), University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yukio Homma
- Departments of Continence Medicine and Urology (YH), University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Igawa
- Departments of Continence Medicine and Urology (YH), University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Hicks S, Labinskyy N, Piteo B, Laurent D, Mathew JE, Gupte SA, Edwards JG. Type II diabetes increases mitochondrial DNA mutations in the left ventricle of the Goto-Kakizaki diabetic rat. Am J Physiol Heart Circ Physiol 2013; 304:H903-15. [PMID: 23376826 DOI: 10.1152/ajpheart.00567.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction has a significant role in the development of diabetic cardiomyopathy. Mitochondrial oxidant stress has been accepted as the singular cause of mitochondrial DNA (mtDNA) damage as an underlying cause of mitochondrial dysfunction. However, separate from a direct effect on mtDNA integrity, diabetic-induced increases in oxidant stress alter mitochondrial topoisomerase function to propagate mtDNA mutations as a contributor to mitochondrial dysfunction. Both glucose-challenged neonatal cardiomyocytes and the diabetic Goto-Kakizaki (GK) rat were studied. In both the GK left ventricle (LV) and in cardiomyocytes, chronically elevated glucose presentation induced a significant increase in mtDNA damage that was accompanied by decreased mitochondrial function. TTGE analysis revealed a number of base pair substitutions in the 3' end of COX3 from GK LV mtDNA that significantly altered the protein sequence. Mitochondrial topoisomerase DNA cleavage activity in isolated mitochondria was significantly increased in the GK LV compared with Wistar controls. Both hydroxycamptothecin, a topoisomerase type 1 inhibitor, and doxorubicin, a topoisomerase type 2 inhibitor, significantly exacerbated the DNA cleavage activity of isolated mitochondrial extracts indicating the presence of multiple functional topoisomerases in the mitochondria. Mitochondrial topoisomerase function was significantly altered in the presence of H2O2 suggesting that separate from a direct effect on mtDNA, oxidant stress mediated type II diabetes-induced alterations of mitochondrial topoisomerase function. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mtDNA integrity and the well being of the diabetic myocardium.
Collapse
Affiliation(s)
- S Hicks
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Beddow SA, Samuel VT. Fasting hyperglycemia in the Goto-Kakizaki rat is dependent on corticosterone: a confounding variable in rodent models of type 2 diabetes. Dis Model Mech 2012; 5:681-5. [PMID: 22864022 PMCID: PMC3424465 DOI: 10.1242/dmm.009035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Goto-Kakizaki (GK) rat is an inbred model of type 2 diabetes (T2D); GK rats are lean but have hyperglycemia and increased gluconeogenesis. However, fasting hyperglycemia in other commonly used rodent models of T2D is associated with increased corticosterone, and thus the underlying mechanism for hyperglycemia differs significantly from T2D in humans. Information regarding corticosterone in the GK rat is not readily available. We studied 14- to 16-week-old GK rats in comparison with age-matched control Wistar-Kyoto (WK) rats. GK rats had lower body weights (WK: 343±10 g vs GK: 286±9 g, P<0.01), but higher plasma glucose concentrations (WK: 132±1.5 mg/dl vs GK: 210±11.7 mg/dl, P<0.01). This was associated with an ∼twofold increase in PEPCK1 expression (P<0.05). However, these findings were also associated with elevations in plasma corticosterone and urinary corticosterone excretion. Ketoconazole (KTZ) treatment in GK rats reduced plasma corticosterone, fasting glucose (GK: 218±15 mg/dl vs GK-KTZ: 135±19 mg/dl, P<0.01) and rates of glucose production [GK: 16.5±0.6 mg/(kg-minute) vs GK-KTZ: 12.2±0.9 mg/(kg-minute), P<0.01]. This was associated with an ∼40% reduction in hepatic PEPCK1 expression as well as a 20% reduction in alanine turnover. Thus, hypercorticosteronemia might contribute to the diabetic phenotype of GK rats and should be considered as a potential confounder in rodent models of T2D.
Collapse
Affiliation(s)
- Sara A Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
44
|
Ishii-Nozawa R, Mita M, Shoji M, Takeuchi K. Dysfunction of Neurotransmitter Modulation System on Adrenergic Nerves of Caudal Artery in Type 2 Diabetic Goto–Kakizaki Rats. Biol Pharm Bull 2012; 35:1091-5. [DOI: 10.1248/bpb.b12-00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Mitsuo Mita
- Department of Pharmacodynamics, Meiji Pharmaceutical University
| | - Masaru Shoji
- Department of Pharmacodynamics, Meiji Pharmaceutical University
| | - Koichi Takeuchi
- Department of Clinical Pharmacology, Meiji Pharmaceutical University
| |
Collapse
|
45
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
46
|
Topol GA, Podesta LA, Reeves KD, Raya MF, Fullerton BD, Yeh HW. Hyperosmolar dextrose injection for recalcitrant Osgood-Schlatter disease. Pediatrics 2011; 128:e1121-8. [PMID: 21969284 DOI: 10.1542/peds.2010-1931] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To examine the potential of dextrose injection versus lidocaine injection versus supervised usual care to reduce sport alteration and sport-related symptoms in adolescent athletes with Osgood-Schlatter disease. PATIENTS AND METHODS Girls aged 9 to 15 and boys aged 10 to 17 were randomly assigned to either therapist-supervised usual care or double-blind injection of 1% lidocaine solution with or without 12.5% dextrose. Injections were administered monthly for 3 months. All subjects were then offered dextrose injections monthly as needed. Unaltered sport (Nirschl Pain Phase Scale < 4) and asymptomatic sport (Nirschl Pain Phase Scale = 0) were the threshold goals. RESULTS Sixty-five knees in 54 athletes were treated. Compared with usual care at 3 months, unaltered sport was more common in both dextrose-treated (21 of 21 vs 13 of 22; P = .001) and lidocaine-treated (20 of 22 vs 13 of 22; P = .034) knees, and asymptomatic sport was more frequent in dextrose-treated knees than either lidocaine-treated (14 of 21 vs 5 of 22; P = .006) or usual-care-treated (14 of 21 vs 3 of 22; P < .001) knees. At 1 year, asymptomatic sport was more common in dextrose-treated knees than knees treated with only lidocaine (32 of 38 vs 6 of 13; P = .024) or only usual care (32 of 38 vs 2 of 14; P < .0001). CONCLUSIONS Our results suggest superior symptom-reduction efficacy of injection therapy over usual care in the treatment of Osgood-Schlatter disease in adolescents. A significant component of the effect seems to be associated with the dextrose component of a dextrose/lidocaine solution. Dextrose injection over the apophysis and patellar tendon origin was safe and well tolerated and resulted in more rapid and frequent achievement of unaltered sport and asymptomatic sport than usual care.
Collapse
Affiliation(s)
- Gastón Andrés Topol
- Department of Physical Medicine and Rehabilitation, Hospital Provincial de Rosario, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Hyperinsulinemia induces hypertension associated with neurogenic vascular dysfunction resulting from abnormal perivascular innervations in rat mesenteric resistance arteries. Hypertens Res 2011; 34:1190-6. [DOI: 10.1038/hr.2011.97] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Abstract
There has been considerable interest in the possible association between impaired glucose tolerance (IGT) and neuropathy. A systematic literature search (Medline) and review was here performed. Twenty-three studies were evaluated. Fourteen investigated for the presence of neuropathy in patients with IGT. Nine studied patients with chronic idiopathic axonal polyneuropathy (CIAP), for the prevalence of IGT. The findings suggest that a significant proportion of patients with IGT may have neuropathy, particularly of the small-fibre and painful type. Similarly, a significant percentage of patients without another identifiable cause for painful axonal neuropathy may have IGT. This may however not be applicable to all populations. There are issues relating to the reproducibility, reliability and timing of a single glucose tolerance test (GTT) in establishing a diagnosis of IGT. Furthermore, it is possible neuropathic damage may occur at lower glucose levels than those defining IGT. In conclusion, further prospective long-term study of large IGT cohorts with known prestudy IGT duration is required to confirm and answer the many remaining questions about this presumed association. However, at present time, consideration of IGT as potential cause of painful small-fibre neuropathy appears justified, especially as patients may benefit from dietary and physical exercise interventions.
Collapse
Affiliation(s)
- Y A Rajabally
- Neuromuscular Clinic, Department of Neurology, University Hospitals of Leicester, UK.
| |
Collapse
|
49
|
Abstract
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.
Collapse
Affiliation(s)
- Nga N Le
- Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Kenan Plastic Surgery Research Laboratories, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Patrizia Luppi
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA
| | | | | |
Collapse
|