1
|
Li Q, Xie Y, Zuo M, Li F. A comprehensive review of biomarker research in diabetic nephropathy from a global bibliometric and visualization perspective. Medicine (Baltimore) 2024; 103:e40729. [PMID: 39612398 PMCID: PMC11608688 DOI: 10.1097/md.0000000000040729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes, which is prone to develop into end-stage renal disease, and early diagnosis and treatment is the key to effective management of DN. Biomarkers have important clinical significance in the diagnosis and treatment of DN and have attracted extensive attention from researchers in recent years. The aim of this study was to visualize the field of biomarker research in DN through bibliometric analysis, to summarize the current status and predict future trends of this field, with a view to providing valuable insights for scholars and policy makers. METHODS Literature search and data collection from Web of Science Core Collection. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. RESULTS We identified 1274 publications about biomarker research in DN from 1995 to November 01, 2023, with a steady increase in annual publications. China, Steno Diabetes Center in Denmark, and Frontiers in Endocrinology were the most productive country, institution, and journal, respectively; Mischak, Harald was both the most productive and highly cited author, and Kidney International was the most cited journal. The high frequency keywords were "albuminuria," "chronic kidney disease" and "expression." In addition, "macrophage," "fibrosis" and "omics" are potentially promising topics. CONCLUSION Our study comprehensively and visually summarized the important findings of global biomarker research in DN and revealed the structure, hotspots, and evolutionary trends in this field. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Qin Li
- Hunan University of Medicine, Huaihua, China
| | - Yafei Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Meiying Zuo
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fang Li
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
2
|
Wu Z, Wang XR, Gao Y, Chen XH, Li M, Jin XF, He TT, Zhu YG, Chen XM, Zhou XH, Gao WJ. Study on the Correlation Between Renal Blood Perfusion and Kidney Injury in Different Weekly-Aged Type 2 Diabetic Mice. Physiol Res 2024; 73:717-727. [PMID: 39530907 PMCID: PMC11629956 DOI: 10.33549/physiolres.935405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 11/21/2024] Open
Abstract
This study aims to explore the correlation between renal blood perfusion (RBP) and diabetic nephropathy (DN). METHODS A total of 72 mice included db/db and db/m mice at the ages of 6, 14, and 22 weeks, forming six groups. RBP was assessed using Laser Speckle Contrast Imaging (LSCI). Kidney function markers and the extent of pathological damage were evaluated. Pearson correlation analysis was employed to predict the relationship between RBP and various indicators of kidney damage. RESULTS Compared to db/m mice of all ages, 6-week-old db/db mice showed no significant difference in kidney function markers and had no apparent pathological damage. However, db/db mice at other ages showed deteriorating kidney functions and evident pathological damage, which worsened with age. The RBP in db/m mice of all ages and 6-week-old db/db mice showed no significant difference; however, RBP in db/db mice demonstrated a significant declining trend with age. The correlation between RBP and kidney damage indicators was as follows: 24 h urinary microalbumin (r=-0.728), urinary transferrin (r=-0.834), urinary beta2-microglobulin (r=-0.755), urinary monocyte chemoattractant protein-1 (r=-0.786), Masson's trichrome staining (r=-0.872), and Periodic Acid-Schiff staining (r=-0.908). CONCLUSION RBP is strongly correlated with the extent of diabetic kidney damage.
Collapse
Affiliation(s)
- Z Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China. and ; National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Karimi A, Dalir Abdollahinia E, Ostadrahimi S, Vajdi M, Mobasseri M, Bahrami A, Tutunchi H, Najafipour F. Effects of hydroalcoholic extract of Fumaria parviflora Lam on gene expression and serum levels of inflammatory and oxidative stress parameters in patients with type 2 diabetes: A randomized controlled clinical trial. J Funct Foods 2024; 122:106528. [DOI: 10.1016/j.jff.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Kilbo Edlund K, Xu Y, Andersson EM, Christensson A, Dehlin M, Forsblad-d'Elia H, Harari F, Ljunggren S, Molnár P, Oudin A, Svartengren M, Ljungman P, Stockfelt L. Long-term ambient air pollution exposure and renal function and biomarkers of renal disease. Environ Health 2024; 23:67. [PMID: 39123230 PMCID: PMC11313149 DOI: 10.1186/s12940-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Despite accumulating evidence of an association between air pollution and renal disease, studies on the association between long-term exposure to air pollution and renal function are still contradictory. This study aimed to investigate this association in a large population with relatively low exposure and with improved estimation of renal function as well as renal injury biomarkers. METHODS We performed a cross-sectional analysis in the middle-aged general population participating in the Swedish CardioPulmonary bioImaging Study (SCAPIS; n = 30 154). Individual 10-year exposure to total and locally emitted fine particulate matter (PM2.5), inhalable particulate matter (PM10), and nitrogen oxides (NOx) were modelled using high-resolution dispersion models. Linear regression models were used to estimate associations between exposures and estimated glomerular filtration rate (eGFR, combined creatinine and cystatin C) and serum levels of renal injury biomarkers (KIM-1, MCP-1, IL-6, IL-18, MMP-2, MMP-7, MMP-9, FGF-23, and uric acid), with consideration of potential confounders. RESULTS Median long-term PM2.5 exposure was 6.2 µg/m3. Almost all participants had a normal renal function and median eGFR was 99.2 mL/min/1.73 m2. PM2.5 exposure was associated with 1.3% (95% CI 0.6, 2.0) higher eGFR per 2.03 µg/m3 (interquartile range, IQR). PM2.5 exposure was also associated with elevated serum matrix metalloproteinase 2 (MMP-2) concentration, with 7.2% (95% CI 1.9, 12.8) higher MMP-2 per 2.03 µg/m3. There was a tendency towards an association between PM10 and higher levels of uric acid, but no associations were found with the other biomarkers. Associations with other air pollutants were null or inconsistent. CONCLUSION In this large general population sample at low exposure levels, we found a surprising association between PM2.5 exposure and a higher renal filtration. It seems unlikely that particle function would improve renal function. However, increased filtration is an early sign of renal injury and may be related to the relatively healthy population at comparatively low exposure levels. Furthermore, PM2.5 exposure was associated with higher serum concentrations of MMP-2, an early indicator of renal and cardiovascular pathology.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden.
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Christensson
- Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mats Dehlin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Helena Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, and, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Oudin
- Division of Occupational and Environmental MedicineDepartment of Laboratory MedicineFaculty of Medicine, Lund University, Lund, Sweden
- Division for Sustainable Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Magnus Svartengren
- Department of Medical Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Muglia L, Di Dio M, Filicetti E, Greco GI, Volpentesta M, Beccacece A, Fabbietti P, Lattanzio F, Corsonello A, Gembillo G, Santoro D, Soraci L. Biomarkers of chronic kidney disease in older individuals: navigating complexity in diagnosis. Front Med (Lausanne) 2024; 11:1397160. [PMID: 39055699 PMCID: PMC11269154 DOI: 10.3389/fmed.2024.1397160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic kidney disease (CKD) in older individuals is a matter of growing concern in the field of public health across the globe. Indeed, prevalence of kidney function impairment increases with advancing age and is often exacerbated by age-induced modifications of kidney function, presence of chronic diseases such as diabetes, hypertension, and cardiovascular disorders, and increased burden related to frailty, cognitive impairment and sarcopenia. Accurate assessment of CKD in older individuals is crucial for timely intervention and management and relies heavily on biomarkers for disease diagnosis and monitoring. However, the interpretation of these biomarkers in older patients may be complex due to interplays between CKD, aging, chronic diseases and geriatric syndromes. Biomarkers such as serum creatinine, estimated glomerular filtration rate (eGFR), and albuminuria can be significantly altered by systemic inflammation, metabolic changes, and medication use commonly seen in this population. To overcome the limitations of traditional biomarkers, several innovative proteins have been investigated as potential, in this review we aimed at consolidating the existing data concerning the geriatric aspects of CKD, describing the challenges and considerations in using traditional and innovative biomarkers to assess CKD in older patients, highlighting the need for integration of the clinical context to improve biomarkers' accuracy.
Collapse
Affiliation(s)
- Lucia Muglia
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Michele Di Dio
- Unit of Urology, Department of Surgery, Annunziata Hospital, Cosenza, Italy
| | - Elvira Filicetti
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Giada Ida Greco
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Mara Volpentesta
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Alessia Beccacece
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Paolo Fabbietti
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | - Andrea Corsonello
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Sciences, School of Medicine and Digital Technologies, University of Calabria, Arcavacata di Rende, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| |
Collapse
|
6
|
Cliff CL, Squires PE, Hills CE. Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal 2024; 22:351. [PMID: 38970061 PMCID: PMC11225428 DOI: 10.1186/s12964-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.
Collapse
Affiliation(s)
- C L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - P E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - C E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
7
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Bondi CD, Hartman HL, Rush BM, Tan RJ. Podocyte-Specific Deletion of MCP-1 Fails to Protect against Angiotensin II- or Adriamycin-Induced Glomerular Disease. Int J Mol Sci 2024; 25:4987. [PMID: 38732210 PMCID: PMC11084322 DOI: 10.3390/ijms25094987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.
Collapse
Affiliation(s)
- Corry D. Bondi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA; (H.L.H.); (B.M.R.); (R.J.T.)
| | | | | | | |
Collapse
|
9
|
Aizenshtadt A, Wang C, Abadpour S, Menezes PD, Wilhelmsen I, Dalmao‐Fernandez A, Stokowiec J, Golovin A, Johnsen M, Combriat TMD, Røberg‐Larsen H, Gadegaard N, Scholz H, Busek M, Krauss SJK. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. Adv Healthc Mater 2024; 13:e2303785. [PMID: 38221504 PMCID: PMC11468483 DOI: 10.1002/adhm.202303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM), obesity, and metabolic dysfunction-associated steatotic liver disease (MASLD) are epidemiologically correlated disorders with a worldwide growing prevalence. While the mechanisms leading to the onset and development of these conditions are not fully understood, predictive tissue representations for studying the coordinated interactions between central organs that regulate energy metabolism, particularly the liver and pancreatic islets, are needed. Here, a dual pump-less recirculating organ-on-chip platform that combines human pluripotent stem cell (sc)-derived sc-liver and sc-islet organoids is presented. The platform reproduces key aspects of the metabolic cross-talk between both organs, including glucose levels and selected hormones, and supports the viability and functionality of both sc-islet and sc-liver organoids while preserving a reduced release of pro-inflammatory cytokines. In a model of metabolic disruption in response to treatment with high lipids and fructose, sc-liver organoids exhibit hallmarks of steatosis and insulin resistance, while sc-islets produce pro-inflammatory cytokines on-chip. Finally, the platform reproduces known effects of anti-diabetic drugs on-chip. Taken together, the platform provides a basis for functional studies of obesity, T2DM, and MASLD on-chip, as well as for testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Chencheng Wang
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Shadab Abadpour
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
- Institute for Surgical ResearchOslo University HospitalOsloNorway
| | - Pedro Duarte Menezes
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Andrea Dalmao‐Fernandez
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Department of PharmacyFaculty of Mathematics and Natural SciencesUniversity of OsloP.O. Box 1083Oslo0316Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Alexey Golovin
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mads Johnsen
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Thomas M. D. Combriat
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
| | - Hanne Røberg‐Larsen
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Section for Chemical Life SciencesDepartment of ChemistryUniversity of OsloP.O. Box 1033Oslo0315Norway
| | - Nikolaj Gadegaard
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- James Watt School of EngineeringUniversity of GlasgowRankine BuildingGlasgowG12 8LTUK
| | - Hanne Scholz
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Transplantation MedicineExperimental Cell Transplantation Research GroupOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Mathias Busek
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| | - Stefan J. K. Krauss
- Hybrid Technology Hub Centre of ExcellenceInstitute of Basic Medical ScienceUniversity of OsloP.O. Box 1110Oslo0317Norway
- Dep. of Immunology and Transfusion MedicineOslo University HospitalP.O. Box 4950Oslo0424Norway
| |
Collapse
|
10
|
El-Fatatry BM, El-Haggar SM, Ibrahim OM, Shalaby KH. Repurposing fexofenadine as a promising candidate for diabetic kidney disease: randomized clinical trial. Int Urol Nephrol 2024; 56:1395-1402. [PMID: 37741921 PMCID: PMC10923951 DOI: 10.1007/s11255-023-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus. Inflammation and histamine are potentially involved in the disease progression. This study aimed to evaluate the role of fexofenadine in patients with DKD. METHODS From January 2020 to February 2022, out of 123 patients screened for eligibility, 61 patients completed the study. Patients were randomized into two groups, the fexofenadine group (n = 30): received ramipril plus fexofenadine, and the control group (n = 31): received ramipril only for six months. Changes in urinary albumin to creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were considered primary outcomes. Measurements of urinary cyclophilin A, monocyte chemoattractant protein-1 (MCP-1), 8-hydroxy-2' deoxyguanosine (8-OHdG), and podocalyxin (PCX) were considered secondary outcomes. The study was prospectively registered on clinicaltrial.gov on January 13, 2020, with identification code NCT04224428. RESULTS At the end of the study, fexofenadine reduced UACR by 16% (95% CI, - 23.4% to - 9.3%) versus a noticeable rise of 11% (95% CI, 4.1% to 17.8%) in UACR in the control group, (p < 0.001). No significant difference in eGFR was revealed between the two groups. However, the control group showed a significant decrease of - 3.5% (95% CI, - 6.6% to - 0.3%) in eGFR, compared to its baseline value. This reduction was not reported in the fexofenadine group. Fexofenadine use was associated with a significant decline in MCP-1, 8-OHdG, and PCX compared to baseline values. CONCLUSION Fexofenadine is a possible promising adjuvant therapy in patients with DKD. Further large-scale trials are needed to confirm our preliminary results.
Collapse
Affiliation(s)
- Basma Mahrous El-Fatatry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Al-Guiesh Street, Tanta, 31527, Egypt.
| | - Sahar Mohamed El-Haggar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Professor of Clinical Pharmacy, Tanta University, Al-Geish Street, Tanta, Egypt
| | - Osama Mohamed Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Professor of Clinical Pharmacy, Tanta University, Al-Geish Street, Tanta, Egypt
| | - Khaled Hamed Shalaby
- Department of Internal Medicine, Faculty of Medicine, Lecturer of Internal Medicine, Tanta University, Al-Geish Street, Tanta, Egypt
| |
Collapse
|
11
|
Yu J, Da J, Yu F, Yuan J, Zha Y. HMGN1 down-regulation in the diabetic kidney attenuates tubular cells injury and protects against renal inflammation via suppressing MCP-1 and KIM-1 expression through TLR4. J Endocrinol Invest 2024; 47:1015-1027. [PMID: 38409569 DOI: 10.1007/s40618-023-02292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Renal tubular injury, accompanied by damaging inflammation, has been identified to drive diabetic kidney disease (DKD) toward end-stage renal disease. However, it is unclear how damage-associated molecular patterns (DAMPs) activate innate immunity to mediate tubular epithelial cell (TEC) injury, which in turn causes with subsequent sterile inflammation in diabetic kidneys. High mobility group nucleosome-binding protein 1 (HMGN1) is a novel DAMP that contributes to generating the innate immune response. In this study, we focused on determining whether HMGN1 is involved in DKD progression. METHODS Streptozotocin (STZ)-induced diabetic mice model was established. Then we downrergulated HMGN1 expression in kidney with or without HMGN1 administration. The renal dysfunction and morphological lesions in the kidneys were evaluated. The expressions of KIM-1, MCP-1, F4/80, CD68, and HMGN1/TLR4 signaling were examined in the renal tissue. In vitro, HK2 cells were exposed in the high glucose with or without HMGN1, and further pre-incubated with TAK242 was applied to elucidate the underlying mechanism. RESULTS We demonstrated that HMGN1 was upregulated in the tubular epithelial cells of streptozotocin (STZ)-induced type 1 and type 2 diabetic mouse kidneys compared to controls, while being positively correlated with increased TLR4, KIM-1, and MCP-1. Down-regulation of renal HMGN1 attenuated diabetic kidney injury, decreased the TLR4, KIM-1, and MCP-1 expression levels, and reduced interstitial infiltrating macrophages. However, these phenotypes were reversed after administration of HMGN1. In HK-2 cells, HMGN1 promoted the expression of KIM-1 and MCP-1 via regulating MyD88/NF-κB pathway; inhibition of TLR4 effectively diminished the in vitro response to HMGN1. CONCLUSIONS Our study provides novel insight into HMGN1 signaling mechanisms that contribute to tubular sterile injury and low-grade inflammation in DKD. The study findings may help to develop new HMGN1-targeted approaches as therapy for immune-mediated kidney damage rather than as an anti-infection treatments.
Collapse
Affiliation(s)
- J Yu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - J Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - F Yu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - J Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Y Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
12
|
Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, Chatzikyrkou C. Endostatin, soluble tumour necrosis factor receptor 1 and soluble tumour necrosis factor receptor 2 cannot predict new onset of microalbuminuria in patients with type 2 diabetes. Diabetes Metab Res Rev 2024; 40:e3753. [PMID: 38050450 DOI: 10.1002/dmrr.3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023]
Abstract
AIMS Inflammation and angiogenesis play an important role in the development of early diabetic kidney disease. We investigated the association of soluble Tumour Necrosis Factor Receptor 1 (sTNF-R1), sTNF-R2 and endostatin with new onset microalbuminuria in normoalbuminuric patients with diabetes mellitus type 2. METHODS We conducted a case control study to assess serum levels of sTNF-R1, sTNF-R2 and endostatin in 169 patients with new onset microalbuminuria and in 188 matched normoalbuminuric, diabetic controls. Baseline serum samples from participants of the ROADMAP (Randomized Olmesartan and Diabetes Microalbuminuria Prevention) and observational follow-up (ROADMAP-OFU) studies were used. RESULTS Endostatin and sTNF-R1 but not sTNF-R2 were increased at baseline in patients with future microalbuminuria. In the multivariate analysis, each log2 increment in endostatin levels was associated with an increase of only 6% in the risk of development of microalbuminuria (adjusted HR (95% CI) 1.006 (1.001-1011). sTNF-R1 and sTNF-R2 levels were conversely associated with microalbuminuria, but the results did not reach statistical significance. The respective adjusted HRs (95% CI) were 1.305 (0.928-1.774) and 0.874 (0.711-1.074). CONCLUSIONS sTNF-R1 and sTNF-R2 failed to predict the occurrence of microalbuminuria in normoalbuminuric patients with type 2 diabetes. Likewise, the utility of endostatin in predicting new onset proteinuria is limited.
Collapse
Affiliation(s)
- Florian G Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jan Menne
- Department of Nephrology, KRH Hospital Siloah, Klinikum Region Hannover GmbH, Hanover, Germany
| | - Sabine Brandt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hermann Haller
- Department of Nephrology, Hanover Medical School, Hanover, Germany
| | - Christos Chatzikyrkou
- Department of Nephrology, Hanover Medical School, Hanover, Germany
- PHV-Dialysis Center Halberstadt, Halberstadt, Germany
| |
Collapse
|
13
|
Fang Y, Wang B, Pang B, Zhou Z, Xing Y, Pang P, Zheng D, Zhang G, Yang B. Exploring the relations of NLR, hsCRP and MCP-1 with type 2 diabetic kidney disease: a cross-sectional study. Sci Rep 2024; 14:3211. [PMID: 38332001 PMCID: PMC10853504 DOI: 10.1038/s41598-024-53567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Type 2 diabetic kidney disease (T2DKD) is a common microvascular complication of type 2 diabetes mellitus (T2DM), and its incidence is significantly increasing. Microinflammation plays an important role in the development of T2DKD. Based on this, this study investigated the value of inflammatory markers including neutrophil-lymphocyte ratio (NLR), high-sensitivity C-reactive protein (hs-CRP), monocyte chemoattractant protein-1 (MCP-1) in the prediction of T2DKD. This was a cross-sectional survey study. A total of 90 patients with T2DM, who were hospitalized in the nephrology and endocrinology departments of the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine from June 2021 to January 2022, were included and divided into three groups (A1, A2, A3) according to the urinary albumin-to-creatinine ratio (UACR). Observe and compare the basic information, clinical and laboratory data, and the inflammatory markers NLR, hs-CRP, MCP-1. Results revealed that high levels of NLR (OR = 6.562, 95% CI 2.060-20.902, P = 0.001) and MCP-1 (OR = 1.060, 95% CI 1.026-1.095, P < 0.001) were risk factors in the development of T2DKD. Receiver operating characteristic curve analysis showed that the area under curve of NLR and MCP-1 in diagnosing T2DKD were 0.760 (95% CI 0.6577-0.863, P < 0.001) and 0.862 (95% CI 0.7787-0.937, P < 0.001). Therefore, the inflammatory markers NLR and MCP-1 are risk factors affecting the development of T2DKD, which of clinical value may be used as novel markers of T2DKD.
Collapse
Affiliation(s)
- Yaxuan Fang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Liqizhuang Street, Xiqing District, Tianjin, 300380, China
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bin Wang
- Department of Endocrinology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Endocrinology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bo Pang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zijun Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Liqizhuang Street, Xiqing District, Tianjin, 300380, China
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunze Xing
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Liqizhuang Street, Xiqing District, Tianjin, 300380, China
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pai Pang
- Department of Endocrinology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Endocrinology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dingyuan Zheng
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Liqizhuang Street, Xiqing District, Tianjin, 300380, China
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Gang Zhang
- The Community Health Service Center of Hangzhou Road Street in Tianjin Binhai New Area, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Liqizhuang Street, Xiqing District, Tianjin, 300380, China.
- Department of Nephrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
14
|
Swaminathan SM, Rao IR, Bhojaraja MV, Attur RP, Nagri SK, Rangaswamy D, Shenoy SV, Nagaraju SP. Role of novel biomarker monocyte chemo-attractant protein-1 in early diagnosis & predicting progression of diabetic kidney disease: A comprehensive review. J Natl Med Assoc 2024; 116:33-44. [PMID: 38195327 DOI: 10.1016/j.jnma.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Diabetic kidney disease (DKD) is the most devastating complication of diabetes mellitus. Identification of patients at the early stages of progression may reduce the disease burden. The limitation of conventional markers such as serum creatinine and proteinuria intensify the need for novel biomarkers. The traditional paradigm of DKD pathogenesis has expanded to the activation of the immune system and inflammatory pathways. Monocyte chemo-attractant protein-1 (MCP-1) is extensively studied, as a key inflammatory mediator that modulates the development of DKD. Recent evidence supports the diagnostic role of MCP-1 in patients with or without proteinuria in DKD, as well as a significant role in the early prediction and risk stratification of DKD. In this review, we will summarize and update present evidence for MCP-1 for diagnostic ability and predicting the progression of DKD.
Collapse
Affiliation(s)
- Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ravindra Prabhu Attur
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shivashankara Kaniyoor Nagri
- Department of Medicine, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
15
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Abdo Yahya M. Protective effect of eriodictyol against hyperglycemia-induced diabetic nephropathy in rats entails antioxidant and anti-inflammatory effects mediated by activating Nrf2. Saudi Pharm J 2023; 31:101817. [PMID: 37915829 PMCID: PMC10616554 DOI: 10.1016/j.jsps.2023.101817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The pathogenesis of diabetic nephropathy (DN) involves cellular activation of oxidative stress and inflammation. Eriodictyol is a citrus-derived flavonoid with multiple pharmacological and protective effects in various conditions. The protective role of Eriodictyol against diabetes and diabetic nephropathy is less investigated. The current research aimed to explore the role of eriodictyol in protecting against DN prompted by streptozotocin in male rats and investigate some possible mechanisms of action. Diabetes was brought about in rats by an i.p injection of a lone dose (65 mg/kg). Five groups of rats were included (n = 8 each) as control (non-diabetic), eriodictyol (20 mg/kg, orally), STZ-diabetic, STZ + eriodictyol (20 mg/kg, orally), and STZ + eriodictyol (20 mg/kg, orally) + ML385 (30 µg/kg, i.p.). Kidney histology and the levels of some markers of kidney function, renal oxidative stress, and renal inflammation were analyzed in all groups of rats. Treatment with eriodictyol prevented the damage in the renal glomeruli and tubules and reduced renal immune cell infiltration in STZ-treated animals. It also spiked urinary creatinine excretion and reduced urine volume and urinary levels of albumin, monocyte chemoattractant protein 1 (MCP-1), urinary kidney injury molecule-1 (KIM-1), and nephrin in these diabetic rats. In addition, eriodictyol stimulated the nuclear protein accumulation of Nrf2 and boosted the expression of superoxide dismutase (SOD), glutathione (GSH), heme oxygenase-1 (HO-1), and catalase (CAT) in the diabetic rat kidneys. In concomitance, it reduced the nuclear levels of NF-κB and levels of interleukine-6 (IL-6), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) and attenuated the reduction in renal ATP levels and the increase in the mitochondria transition pore opening (mtTPT). However, the administration of eriodictyol did not affect rats' body weights and fasting glucose and insulin levels but significantly reduced serum levels of cholesterol, triglycerides, LDL-c, and oxidized LDL-c (ox-LDL-c). In conclusion, eriodictyol prevents STZ-induced nephropathy by a hypolipidemic effect and concomitant antioxidant and anti-inflammatory effects mediated by activating Nrf2/NF-κB/antioxidant axis.
Collapse
Affiliation(s)
- Jozaa Z. AlTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 84428, Riyadh 11451, Saudi Arabia
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 84428, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Chen J, Peng L, Sun J, Liu J, Chu L, Yi B, Gui M, Zhang H, Tang J. Upregulation of the protein kinase Lyn is associated with renal injury in type 2 diabetes patients. Ren Fail 2023; 45:2272717. [PMID: 37870491 PMCID: PMC11001359 DOI: 10.1080/0886022x.2023.2272717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The role of inflammation in the pathogenesis of type 2 diabetes mellitus (T2DM) is well established. Lyn, a member of the nonreceptor protein tyrosine kinase Src family, has been reported to modulate inflammatory signaling pathways. METHODS Lyn expression was assessed in kidney biopsies of 11 patients with diabetic kidney disease (DKD) and in kidney tissues of streptozotocin (STZ)-induced DKD mice. 102 recruited T2DM patients were divided into three groups: normoalbuminuria, microalbuminuria and macroalbuminuria. Twenty-one healthy volunteers were recruited as a control group. Clinical data, blood and urine samples of all individuals were collected for analysis. RESULTS Lyn expression was augmented in the kidneys of DKD patients and STZ-induced diabetic mice. Compared with control and normoalbuminuria groups, both mRNA and protein expression of Lyn in peripheral blood mononuclear cells (PBMCs) in the macroalbuminuria group were significantly increased (p < .05). Elevated Lyn levels were independently related to urine albumin/urine creatinine ratio and were positively associated with key inflammatory factors, namely interleukin-1β, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Additionally, Lyn exhibited a noteworthy connection with renal tubular injury indicators, specifically urinary neutrophil gelatinase-associated lipocalin and urinary retinol binding protein. ROC curve analysis showed that Lyn could predict albuminuria in diabetic patients with an area under the curve of 0.844 (95% CI: 0.764-0.924). CONCLUSION Lyn levels in PBMCs exhibited a positive correlation with the severity of albuminuria, renal tubular damage, and inflammatory responses. Hence, Lyn may be a compelling candidate for predicting albuminuria levels in diabetes.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Lingfeng Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Jian Sun
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Ling Chu
- Department of pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Ming Gui
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China and Clinical Research Center for Critical Kidney Disease in Hunan Province
| |
Collapse
|
17
|
He S, Yao L, Li J. Role of MCP-1/CCR2 axis in renal fibrosis: Mechanisms and therapeutic targeting. Medicine (Baltimore) 2023; 102:e35613. [PMID: 37861543 PMCID: PMC10589562 DOI: 10.1097/md.0000000000035613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Renal fibrosis is a common pathological manifestation in various chronic kidney diseases. Inflammation plays a central role in renal fibrosis development. Owing to their significant participation in inflammation and autoimmunity, chemokines have always been the hot spot and focus of scientific research and clinical intervention. Among the chemokines, monocyte chemoattractant protein-1 (MCP-1), also known as C-C motif chemokine ligand 2, together with its main receptor C-C chemokine receptor type 2 (CCR2) are important chemokines in renal fibrosis. The MCP-1/CCR2 axis is activated when MCP-1 binds to CCR2. Activation of MCP-1/CCR2 axis can induce chemotaxis and activation of inflammatory cells, and initiate a series of signaling cascades in renal fibrosis. It mediates and promotes renal fibrosis by recruiting monocyte, promoting the activation and transdifferentiation of macrophages. This review summarizes the complex physical processes of MCP-1/CCR2 axis in renal fibrosis and addresses its general mechanism in renal fibrosis by using specific examples, together with the progress of targeting MCP-1/CCR2 in renal fibrosis with a view to providing a new direction for renal fibrosis treatment.
Collapse
Affiliation(s)
- Shiyang He
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- Basic and Applied Laboratory of Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Lan Yao
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Li
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- Basic and Applied Laboratory of Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| |
Collapse
|
18
|
Grasselli C, Bombelli S, D'Esposito V, Di Tolla MF, L'Imperio V, Rocchio F, Miscione MS, Formisano P, Pagni F, Novelli R, Ruffini PA, Aramini A, Allegretti M, Perego R, De Filippis L. The therapeutic potential of an allosteric non-competitive CXCR1/2 antagonist for diabetic nephropathy. Diabetes Metab Res Rev 2023; 39:e3694. [PMID: 37470287 DOI: 10.1002/dmrr.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
AIMS Diabetic nephropathy is a major consequence of inflammation developing in type 1 diabetes, with interleukin-8 (IL-8)-CXCR1/2 axis playing a key role in kidney disease progression. In this study, we investigated the therapeutic potential of a CXCR1/2 non-competitive allosteric antagonist (Ladarixin) in preventing high glucose-mediated injury in human podocytes and epithelial cells differentiated from renal stem/progenitor cells (RSC) cultured as nephrospheres. MATERIALS AND METHODS We used human RSCs cultured as nephrospheres through a sphere-forming functional assay to investigate hyperglycemia-mediated effects on IL-8 signalling in human podocytes and tubular epithelial cells. RESULTS High glucose impairs RSC self-renewal, induces an increase in IL-8 transcript expression and protein secretion and induces DNA damage in RSC-differentiated podocytes, while exerting no effect on RSC-differentiated epithelial cells. Accordingly, the supernatant from epithelial cells or podocytes cultured in high glucose was able to differentially activate leucocyte-mediated secretion of pro-inflammatory cytokines, suggesting that the crosstalk between immune and non-immune cells may be involved in disease progression in vivo. CONCLUSIONS Treatment with Ladarixin during RSC differentiation prevented high glucose-mediated effects on podocytes and modulated either podocyte or epithelial cell-dependent leucocyte secretion of pro-inflammatory cytokines, suggesting CXCR1/2 antagonists as possible pharmacological approaches for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Chiara Grasselli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Vittoria D'Esposito
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Vincenzo L'Imperio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pathology Department, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | | | | | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pathology Department, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Rubina Novelli
- Research and Development, Dompé Farmaceutici S.p.A., Milano, Italy
| | | | | | | | - Roberto Perego
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | |
Collapse
|
19
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
20
|
Jin J, Wang L, Liu Y, He W, Zheng D, Ni Y, He Q. Depiction of immune heterogeneity of peripheral blood from patients with type II diabetic nephropathy based on mass cytometry. Front Endocrinol (Lausanne) 2023; 13:1018608. [PMID: 36686486 PMCID: PMC9853014 DOI: 10.3389/fendo.2022.1018608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy (DN) is the most prominent cause of chronic kidney disease and end-stage renal failure. However, the pathophysiology of DN, especially the risk factors for early onset remains elusive. Increasing evidence has revealed the role of the innate immune system in developing DN, but relatively little is known about early immunological change that proceeds from overt DN. Herein, this work aims to investigate the immune-driven pathogenesis of DN using mass cytometry (CyTOF). The peripheral blood mononuclear lymphocytes (PBMC) from 6 patients with early-stage nephropathy and 7 type II diabetes patients without nephropathy were employed in the CyTOF test. A panel that contains 38 lineage markers was designed to monitor immune protein levels in PBMC. The unsupervised clustering analysis was performed to profile the proportion of individual cells. t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize the differences in DN patients' immune phenotypes. Comprehensive immune profiling revealed substantial immune system alterations in the early onset of DN, including the significant decline of B cells and the marked increase of monocytes. The level of CXCR3 was dramatically reduced in the different immune cellular subsets. The CyTOF data classified the fine-grained differential immune cell subsets in the early stage of DN. Innovatively, we identified several significant changed T cells, B cell, and monocyte subgroups in the early-stage DN associated with several potential biomarkers for developing DN, such as CTLA-4, CXCR3, PD-1, CD39, CCR4, and HLA-DR. Correlation analysis further demonstrated the robust relationship between above immune cell biomarkers and clinical parameters in the DN patients. Therefore, we provided a convincible view of understanding the immune-driven early pathogenesis of DN. Our findings exhibited that patients with DN are more susceptible to immune system disorders. The classification of fine-grained immune cell subsets in this present research might provide novel targets for the immunotherapy of DN.
Collapse
Affiliation(s)
- Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Longqiang Wang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Gomułka K, Ruta M. The Role of Inflammation and Therapeutic Concepts in Diabetic Retinopathy-A Short Review. Int J Mol Sci 2023; 24:ijms24021024. [PMID: 36674535 PMCID: PMC9864095 DOI: 10.3390/ijms24021024] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Diabetic retinopathy (DR) as a microangiopathy is the most common complication in patients with diabetes mellitus (DM) and remains the leading cause of blindness among adult population. DM in its complicated pathomechanism relates to chronic hyperglycemia, hypoinsulinemia, dyslipidemia and hypertension-all these components in molecular pathways maintain oxidative stress, formation of advanced glycation end-products, microvascular changes, inflammation, and retinal neurodegeneration as one of the key players in diabetes-associated retinal perturbations. In this current review, we discuss the natural history of DR with special emphasis on ongoing inflammation and the key role of vascular endothelial growth factor (VEGF). Additionally, we provide an overview of the principles of diabetic retinopathy treatments, i.e., in laser therapy, anti-VEGF and steroid options.
Collapse
Affiliation(s)
- Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
- Correspondence:
| | - Michał Ruta
- Clinical Department of Ophthalmology, 4th Military Clinical Hospital with Polyclinic, ul. Rudolfa Weigla 5, 50-981 Wrocław, Poland
| |
Collapse
|
22
|
van der Velden AIM, van den Berg BM, van den Born BJ, Galenkamp H, Ijpelaar DHT, Rabelink TJ. Ethnic differences in urinary monocyte chemoattractant protein-1 and heparanase-1 levels in individuals with type 2 diabetes: the HELIUS study. BMJ Open Diabetes Res Care 2022; 10:10/6/e003003. [PMID: 36564084 PMCID: PMC9791388 DOI: 10.1136/bmjdrc-2022-003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION We aimed to investigate ethnic differences in two urinary inflammatory markers in participants with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS We included 55 Dutch, 127 South-Asian Surinamese, 92 African Surinamese, 62 Ghanaian, 74 Turkish and 88 Moroccan origin participants with T2DM from the HEalthy LIfe in an Urban Setting study. Using linear regression analyses, we investigated differences in urinary monocyte chemoattractant protein-1 (MCP-1) and heparanase-1 (HPSE-1) levels across ethnic minorities compared with Dutch. Associations between the urinary markers and albuminuria (albumin:creatinine ratio (ACR)) was investigated per ethnicity. RESULTS Urinary MCP-1 levels were higher in the Moroccan participants (0.15 log ng/mmol, 95% CI 0.05 to 0.26) compared with Dutch after multiple adjustments. Urinary HPSE-1 levels were lower in the African Surinamese and Ghanaian participants compared with the Dutch, with a difference of -0.16 log mU/mmol (95% CI -0.29 to -0.02) in African Surinamese and -0.16 log mU/mmol (95% CI -0.31 to -0.00) in Ghanaian after multiple adjustments. In all ethnic groups except the Dutch and Ghanaian participants, MCP-1 was associated with ACR. This association remained strongest after multiple adjustment in South-Asian and African Surinamese participants, with an increase in log ACR of 1.03% (95% CI 0.58 to 1.47) and 1.23% (95% CI 0.52 to 1.94) if log MCP-1 increased 1%. Only in the Dutch participants, an association between HPSE-1 and ACR was found, with increase in log ACR of 0.40% (95% CI 0.04 to 0.76) if log HPSE-1 increased 1%. CONCLUSIONS We found ethnic differences in urinary MCP-1 and HPSE-1 levels, in a multi-ethnic cohort of participants with T2DM. In addition, we found ethnic differences in the association of MCP-1 and HPSE-1 levels with albuminuria. These findings suggest differences in renal inflammation across ethnic groups.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - B J van den Born
- Internal Medicine, Amsterdam UMC-Locatie AMC, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Public and Occupational Health, Amsterdam UMC-Locatie AMC, Amsterdam, The Netherlands
| | - Daphne H T Ijpelaar
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine and Nephrology, Groene Hart Hospital, Gouda, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Gu J, Wu Y, Huang W, Fan X, Chen X, Zhou B, Lin Z, Feng X. Effect of vitamin D on oxidative stress and serum inflammatory factors in the patients with type 2 diabetes. J Clin Lab Anal 2022; 36:e24430. [PMID: 35403296 PMCID: PMC9102501 DOI: 10.1002/jcla.24430] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
The type 2 diabetes mellitus (T2DM) is an urgent global health problem. T2DM patients are in a state of high oxidative stress and inflammation. Vitamin D and glutathione (GSH) play crucial roles in antioxidation and anti-inflammation. However, T2DM patients have lower vitamin D and GSH levels than healthy persons. A randomized controlled trial was conducted to see the effect of the vitamin D supplementation on oxidative stress and inflammatory factors in T2DM patients. In this study, a total of 178 T2DM patients were randomly enrolled, 92 patients received regular treatment (T2DM group) and 86 patients in Vitamin D group received extra vitamin D 400 IU per day in addition to regular treatment. Serum vitamin D, GSH, GSH metabolic enzyme GCLC and GR, inflammatory factor MCP-1, and IL-8 levels were investigated. We found that the T2DM group has significantly higher concentrations of MCP-1 and IL-8 than those in the healthy donor group. After vitamin D supplementation for 90 days, T2DM patients had a 2-fold increase of GSH levels, from 2.72 ± 0.84 to 5.76 ± 3.19 μmol/ml, the concentration of MCP-1 decreased from 51.11 ± 20.86 to 25.42 ± 13.06 pg/ml, and IL-8 also decreased from 38.21 ± 21.76 to 16.05 ± 8.99 pg/ml. In conclusion, our study demonstrated that vitamin D could regulate the production of GSH, thereby reducing the serum levels of MCP-1 and IL-8, alleviating oxidative stress and inflammation, providing evidence of the necessity and feasibility of adjuvant vitamin D treatment among patients with T2DM. On the other hand, vitamin D and GSH levels have important diagnostic and prognostic values in T2DM patients.
Collapse
Affiliation(s)
- Jie‐Chao Gu
- Department of Laboratory MedicineThe People's Hospital of JiangmenJiangmenChina
| | - Yue‐Guan Wu
- Department of EndocrinologyThe People's Hospital of JiangmenJiangmenChina
| | - Wei‐Gang Huang
- Department of Laboratory MedicineThe People's Hospital of JiangmenJiangmenChina
| | - Xiu‐Jing Fan
- Department of Laboratory MedicineThe People's Hospital of JiangmenJiangmenChina
| | - Xin‐Hao Chen
- Department of Laboratory MedicineThe People's Hospital of JiangmenJiangmenChina
| | - Biao Zhou
- Department of Laboratory MedicineThe People's Hospital of JiangmenJiangmenChina
| | - Zhi‐Jun Lin
- Department of Laboratory MedicineThe People's Hospital of JiangmenJiangmenChina
| | - Xiu‐Lan Feng
- Department of Blood TransfusionThe People's Hospital of JiangmenJiangmenChina
| |
Collapse
|
24
|
An N, Wu BT, Yang YW, Huang ZH, Feng JF. Re-understanding and focusing on normoalbuminuric diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1077929. [PMID: 36531487 PMCID: PMC9757068 DOI: 10.3389/fendo.2022.1077929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetes mellitus (DM) has grown up to be an important issue of global public health because of its high incidence rate. About 25% of DM patients can develop diabetic foot/ulcers (DF/DFU). Diabetic kidney disease (DKD) is the main cause of end-stage kidney disease (ESKD). DF/DFU and DKD are serious complications of DM. Therefore, early diagnosis and timely prevention and treatment of DF/DFU and DKD are essential for the progress of DM. The clinical diagnosis and staging of DKD are mostly based on the urinary albumin excretion rate (UAER) and EGFR. However, clinically, DKD patients show normoalbuminuric diabetic kidney disease (NADKD) instead of clinical proteinuria. The old NADKD concept is no longer suitable and should be updated accordingly with the redefinition of normal proteinuria by NKF/FDA. Based on the relevant guidelines of DM and CKD and combined with the current situation of clinical research, the review described NADKD from the aspects of epidemiology, pathological mechanism, clinical characteristics, biomarkers, disease diagnosis, and the relationship with DF/DFU to arouse the new understanding of NADKD in the medical profession and pay attention to it.
Collapse
Affiliation(s)
- Na An
- National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bi-tao Wu
- National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yu-wei Yang
- National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zheng-hong Huang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-fu Feng
- National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang, China
- Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- *Correspondence: Jia-fu Feng, ;
| |
Collapse
|