1
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Sun C, Qi L, Cheng Y, Zhao Y, Gu C. Immediate induction of varicosities by transverse compression but not uniaxial stretch in axon mechanosensation. Acta Neuropathol Commun 2022; 10:7. [PMID: 35074017 PMCID: PMC8785443 DOI: 10.1186/s40478-022-01309-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/05/2022] [Indexed: 01/12/2023] Open
Abstract
Uniaxial stretch is believed to drive diffuse axonal injury (DAI) in mild traumatic brain injury (mTBI). Axonal varicosities are enlarged structures along axonal shafts and represent a hallmark feature of DAI. Here we report that axonal varicosities initiate in vivo immediately after head impact and are mainly induced by transverse compression but not uniaxial stretch. Vertical and lateral impacts to the mouse head induced axonal varicosities in distinct brain regions before any changes of microglial markers. Varicosities preferentially formed along axons perpendicular to impact direction. In cultured neurons, whereas 50% uniaxial strain was needed to rapidly induce axonal varicosities in a nanowrinkled stretch assay, physiologically-relevant transverse compression effectively induced axonal varicosities in a fluid puffing assay and can generate large but nonuniform deformation simulated by finite element analysis. Therefore, impact strength and direction may determine the threshold and spatial pattern of axonal varicosity initiation, respectively, partially resulting from intrinsic properties of axon mechanosensation.
Collapse
|
3
|
Khaitin A. Calcium in Neuronal and Glial Response to Axotomy. Int J Mol Sci 2021; 22:ijms222413344. [PMID: 34948141 PMCID: PMC8706492 DOI: 10.3390/ijms222413344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrauma assumes an instant or delayed disconnection of axons (axotomy), which affects not only neurons, but surrounding glia as well. Not only mechanically injured glia near the site of disconnection, especially transection, is subjected to the damage, but also glia that is remote from the lesion site. Glial cells, which surround the neuronal body, in turn, support neuron survival, so there is a mutual protection between neuron and glia. Calcium signaling is a central mediator of all post-axotomy events, both in neuron and glia, playing a critical role in their survival/regeneration or death/degeneration. The involvement of calcium in post-axotomy survival of the remote, mechanically intact glia is poorly studied. The purpose of this review is to sum up the calcium-involving mechanisms in responses of neurons and glial cells to axotomy to show their importance and to give some suggestions for future research of remote glia in this context.
Collapse
Affiliation(s)
- Andrey Khaitin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
4
|
Javeed F, Rehman L, Afzal A, Abbas A. Outcome of diffuse axonal injury in moderate and severe traumatic brain injury. Surg Neurol Int 2021; 12:384. [PMID: 34513151 PMCID: PMC8422474 DOI: 10.25259/sni_573_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Diffuse axonal injury (DAI) is a common presentation in neurotrauma. Prognosis is variable but can be dependent on the initial presentation of the patient. In our study, we evaluated the outcome of diffuse axonal injury. Methods: This study was conducted at a tertiary care center from September 2018 to December 2019 and included 133 adult patients with moderate or severe head injury (GCS ≤ 12) diagnosed to have the DAI on the basis of MRI. At 3 months, the result was assessed using the Extended Glasgow Outcome Scale (GOS-E). Results: There were a total of 97 (72.9%) males and 36 (27.1%) females with an average age of 32.4 ± 10 years with a mean GCS of 9 at admission. The most common mode of head trauma was road traffic accidents (RTAs) in 51.9% of patients followed by fall from height in 27.1%. Most patients were admitted with moderate traumatic brain injury (64.7%) and suffered Grade I diffuse axonal injury (41.4%). The average hospital stay was 9 days but majority of patients stayed in hospital for ≤ 11 days. At 3 months, mortality rate was 25.6% and satisfactory outcome observed in 48.1% of patients. The highest mortality was observed in the Grade III DAI. Conclusion: We conclude that the severity of the traumatic head injury and the grade of the DAI impact the outcome. Survivors require long-term hospitalization and rehabilitation to improve their chances of recovery.
Collapse
Affiliation(s)
- Farrukh Javeed
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Lal Rehman
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Ali Afzal
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Asad Abbas
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| |
Collapse
|
5
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
6
|
Gu C. Rapid and Reversible Development of Axonal Varicosities: A New Form of Neural Plasticity. Front Mol Neurosci 2021; 14:610857. [PMID: 33613192 PMCID: PMC7886671 DOI: 10.3389/fnmol.2021.610857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axonal varicosities are enlarged, heterogeneous structures along axonal shafts, profoundly affecting axonal conduction and synaptic transmission. They represent a key pathological feature believed to develop via slow accumulation of axonal damage that occurs during irreversible degeneration, for example in mild traumatic brain injury (mTBI), Alzheimer's and Parkinson's diseases, and multiple sclerosis. Here this review first discusses recent in vitro results showing that axonal varicosities can be rapidly and reversibly induced by mechanical stress in cultured primary neurons from the central nervous system (CNS). This notion is further supported by in vivo studies revealing the induction of axonal varicosities across various brain regions in different mTBI mouse models, as a prominent feature of axonal pathology. Limited progress in understanding intrinsic and extrinsic regulatory mechanisms of axonal varicosity induction and development is further highlighted. Rapid and reversible formation of axonal varicosities likely plays a key role in CNS neuron mechanosensation and is a new form of neural plasticity. Future investigation in this emerging research field may reveal how to reverse axonal injury, contributing to the development of new strategies for treating brain injuries and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Karlsson M, Yang Z, Chawla S, Delso N, Pukenas B, Elmér E, Hugerth M, Margulies SS, Ehinger J, Hansson MJ, Wang KKW, Kilbaugh TJ. Evaluation of Diffusion Tensor Imaging and Fluid Based Biomarkers in a Large Animal Trial of Cyclosporine in Focal Traumatic Brain Injury. J Neurotrauma 2021; 38:1870-1878. [PMID: 33191835 DOI: 10.1089/neu.2020.7317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All phase III trials evaluating medical treatments for traumatic brain injury (TBI), performed to date, have failed. To facilitate future success there is a need for novel outcome metrics that can bridge pre-clinical studies to clinical proof of concept trials. Our objective was to assess diffusion tensor imaging (DTI) and biofluid-based biomarkers as efficacy outcome metrics in a large animal study evaluating the efficacy of cyclosporine in TBI. This work builds on our previously published study that demonstrated a reduced volume of injury by 35% with cyclosporine treatment based on magnetic resonance imaging (MRI) results. A focal contusion injury was induced in piglets using a controlled cortical impact (CCI) device. Cyclosporine in a novel Cremophor/Kolliphor EL-free lipid emulsion, NeuroSTAT, was administered by continuous intravenous infusion for 5 days. The animals underwent DTI on day 5. Glial fibrillary acidic protein (GFAP), as a measure of astroglia injury, and neurofilament light (NF-L), as a measure of axonal injury, were measured in blood on days 1, 2, and 5, and in cerebrospinal fluid (CSF) on day 5 post-injury. Normalized fractional anisotropy (FA) was significantly (p = 0.027) higher in in the treatment group, indicating preserved tissue integrity with treatment. For the biomarkers, we observed a statistical trend of a decreased level of NF-L in CSF (p = 0.051), in the treatment group relative to placebo, indicating less axonal injury. Our findings suggest that DTI, and possibly CSF NF-L, may be feasible as translational end-points assessing neuroprotective drugs in TBI.
Collapse
Affiliation(s)
- Michael Karlsson
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Nile Delso
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Bryan Pukenas
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Abliva AB, Lund, Sweden
| | | | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Johannes Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Abliva AB, Lund, Sweden
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
8
|
Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien) 2021; 163:31-44. [PMID: 33006648 PMCID: PMC7778615 DOI: 10.1007/s00701-020-04594-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Introduction Traumatic axonal injury (TAI) is a condition defined as multiple, scattered, small hemorrhagic, and/or non-hemorrhagic lesions, alongside brain swelling, in a more confined white matter distribution on imaging studies, together with impaired axoplasmic transport, axonal swelling, and disconnection after traumatic brain injury (TBI). Ever since its description in the 1980s and the grading system by Adams et al., our understanding of the processes behind this entity has increased. Methods We performed a scoping systematic, narrative review by interrogating Ovid MEDLINE, Embase, and Google Scholar on the pathophysiology, biomarkers, and diagnostic tools of TAI patients until July 2020. Results We underline the misuse of the Adams classification on MRI without proper validation studies, and highlight the hiatus in the scientific literature and areas needing more research. In the past, the theory behind the pathophysiology relied on the inertial force exerted on the brain matter after severe TBI inducing a primary axotomy. This theory has now been partially abandoned in favor of a more refined theory involving biochemical processes such as protein cleavage and DNA breakdown, ultimately leading to an inflammation cascade and cell apoptosis, a process now described as secondary axotomy. Conclusion The difference in TAI definitions makes the comparison of studies that report outcomes, treatments, and prognostic factors a daunting task. An even more difficult task is isolating the outcomes of isolated TAI from the outcomes of severe TBI in general. Targeted bench-to-bedside studies are required in order to uncover further pathways involved in the pathophysiology of TAI and, ideally, new treatments.
Collapse
Affiliation(s)
- Gavin F Bruggeman
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Iain K Haitsma
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor Volovici
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Li Y, Li C, Gan C, Zhao K, Chen J, Song J, Lei T. A Precise, Controllable in vitro Model for Diffuse Axonal Injury Through Uniaxial Stretch Injury. Front Neurosci 2019; 13:1063. [PMID: 31680808 PMCID: PMC6811664 DOI: 10.3389/fnins.2019.01063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023] Open
Abstract
Regarding the determination of the biomechanical parameters in a reliable in vitro cell model for diffuse axonal injury (DAI), our study aimed to demonstrate connections between those parameters and secondary axotomy through examination of morphological alterations under a variety of traumatic conditions. An in vitro cell model for DAI was established in primary cultured mouse neurons by uniaxial mechanical stretching of non-myelinated axons under various traumatic conditions: strain (ε) = 5, 10, 20, and 50%; strain time (t) = 500, 100, and 20 ms; strain rate ranging between 0.1 and 25 s-1. Axonal real strains (strainaxon) were measured as 4.53 ± 0.27, 9.02 ± 0.91, 17.75 ± 1.65, and 41.8 ± 4.4%. Axonal real strain rates (SRaxon) ranged between 0.096 ± 0.0054 and 20.9 ± 2.2 s-1. Results showed there was no obvious abnormality of axons with a lower strain condition (strainaxon < 17.75 ± 1.65%) during the acute phase within 30 min after injury. In contrast, acute axonal degeneration (AAD) was observed in the axons following injury with a higher strain condition (SRaxon > 17.75 ± 1.65%). In addition, the incidence and degree of AAD were closely correlated with strain rate. Specifically, AAD occurred to all axons that were examined, when ε = 50% (strainaxon = 41.8 ± 4.4%) for 20 ms, while no spontaneous rupture was observed in those axons. Besides, the concentration of Ca2+ within the axonal process was significantly increased under such traumatic conditions. Moreover, the continuity of axon cytoskeleton was interrupted, eventually resulting in neuronal death during subacute stage following injury. In this study, we found that there is a minimum strain threshold for the occurrence of AAD in non-myelinated axons of primary cultured mouse neurons, which ranges between 9.02 ± 0.91 and 17.75 ± 1.65%. Basically, the severity of axonal secondary axotomy post DAI is strain rate dependent under a higher strain above the threshold. Hence, a reliable and reproducible in vitro cell model for DAI was established, when ε = 50% (strainaxon = 41.8 ± 4.4%) for 20 ms.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Chaoxi Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Karlsson M, Pukenas B, Chawla S, Ehinger JK, Plyler R, Stolow M, Gabello M, Hugerth M, Elmér E, Hansson MJ, Margulies S, Kilbaugh T. Neuroprotective Effects of Cyclosporine in a Porcine Pre-Clinical Trial of Focal Traumatic Brain Injury. J Neurotrauma 2018; 36:14-24. [PMID: 29929438 PMCID: PMC6306685 DOI: 10.1089/neu.2018.5706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is thought to be a hallmark of traumatic brain injury (TBI) and plays a pivotal role in the resulting cellular injury. Cyclophilin D-mediated activation of the mitochondrial permeability transition pore has been suggested to contribute to this secondary injury cascade. Cyclosporine possesses neuroprotective properties that have been attributed to the desensitization of mitochondrial permeability transition pore activation. In vivo animal experiments have demonstrated neuroprotective effects of cyclosporine in more than 20 independent experimental studies in a multitude of different experimental models. However, the majority of these studies have been carried out in rodents. The aim of the present study was to evaluate the efficacy of a novel and cremophor/kolliphor EL-free lipid emulsion formulation of cyclosporine in a translational large animal model of TBI. A mild-to-moderate focal contusion injury was induced in piglets using a controlled cortical impact device. After initial step-wise analyses of pharmacokinetics and comparing with exposure of cyclosporine in clinical TBI trials, a 5-day dosing regimen with continuous intravenous cyclosporine infusion (20 mg/kg/day) was evaluated in a randomized and blinded placebo-controlled setting. Cyclosporine reduced the volume of parenchymal injury by 35%, as well as improved markers of neuronal injury, as measured with magnetic resonance spectroscopic imaging. Further, a consistent trend toward positive improvements in brain metabolism and mitochondrial function was observed in the pericontusional tissue. In this study, we have demonstrated efficacy using a novel cyclosporine formulation in clinically relevant and translatable outcome metrics in a large animal model of focal TBI.
Collapse
Affiliation(s)
- Michael Karlsson
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 3 Department of Neurosurgery, Rigshospitalet , Copenhagen, Denmark
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Bryan Pukenas
- 5 Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Sanjeev Chawla
- 5 Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Johannes K Ehinger
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Ross Plyler
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Madeline Stolow
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Melissa Gabello
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Eskil Elmér
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Magnus J Hansson
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Susan Margulies
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Todd Kilbaugh
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Servello D, Gu Y, Gu C. A Microbiomechanical System for Studying Varicosity Formation and Recovery in Central Neuron Axons. J Vis Exp 2018. [PMID: 29757278 DOI: 10.3791/57202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Axonal varicosities are enlarged structures along the shafts of axons with a high degree of heterogeneity. They are present not only in brains with neurodegenerative diseases or injuries, but also in the normal brain. Here, we describe a newly-established micromechanical system to rapidly, reliably, and reversibly induce axonal varicosities, allowing us to understand the mechanisms governing varicosity formation and heterogeneous protein composition. This system represents a novel means to evaluate the effects of compression and shear stress on different subcellular compartments of neurons, different from other in vitro systems that mainly focus on the effect of stretching. Importantly, owing to the unique features of our system, we recently made a novel discovery showing that the application of pressurized fluid can rapidly and reversibly induce axonal varicosities through the activation of a transient receptor potential channel. Our biomechanical system can be utilized conveniently in combination with drug perfusion, live cell imaging, calcium imaging, and patch clamp recording. Therefore, this method can be adopted for studying mechanosensitive ion channels, axonal transport regulation, axonal cytoskeleton dynamics, calcium signaling, and morphological changes related to traumatic brain injury.
Collapse
Affiliation(s)
- Dustin Servello
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University
| | - Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University; Biogen
| | - Chen Gu
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University; Department of Biological Chemistry and Pharmacology, The Ohio State University;
| |
Collapse
|
12
|
Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury. Neuroimaging Clin N Am 2018; 28:1-13. [DOI: 10.1016/j.nic.2017.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18122600. [PMID: 29207487 PMCID: PMC5751203 DOI: 10.3390/ijms18122600] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.
Collapse
|
14
|
Gu Y, Jukkola P, Wang Q, Esparza T, Zhao Y, Brody D, Gu C. Polarity of varicosity initiation in central neuron mechanosensation. J Cell Biol 2017; 216:2179-2199. [PMID: 28606925 PMCID: PMC5496611 DOI: 10.1083/jcb.201606065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/17/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Little is known about mechanical regulation of morphological and functional polarity of central neurons. In this study, we report that mechanical stress specifically induces varicosities in the axons but not the dendrites of central neurons by activating TRPV4, a Ca2+/Na+-permeable mechanosensitive channel. This process is unexpectedly rapid and reversible, consistent with the formation of axonal varicosities in vivo induced by mechanical impact in a mouse model of mild traumatic brain injury. In contrast, prolonged stimulation of glutamate receptors induces varicosities in dendrites but not in axons. We further show that axonal varicosities are induced by persistent Ca2+ increase, disassembled microtubules (MTs), and subsequently reversible disruption of axonal transport, and are regulated by stable tubulin-only polypeptide, an MT-associated protein. Finally, axonal varicosity initiation can trigger action potentials to antidromically propagate to the soma in retrograde signaling. Therefore, our study demonstrates a new feature of neuronal polarity: axons and dendrites preferentially respond to physical and chemical stresses, respectively.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH
| | - Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Qian Wang
- Biomedical Engineering Department, The Ohio State University, Columbus, OH
| | - Thomas Esparza
- Department of Neurology, Washington University, St. Louis, MO
| | - Yi Zhao
- Biomedical Engineering Department, The Ohio State University, Columbus, OH
| | - David Brody
- Department of Neurology, Washington University, St. Louis, MO
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| |
Collapse
|
15
|
Progress of Research on Diffuse Axonal Injury after Traumatic Brain Injury. Neural Plast 2016; 2016:9746313. [PMID: 28078144 PMCID: PMC5204088 DOI: 10.1155/2016/9746313] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 12/02/2022] Open
Abstract
The current work reviews the concept, pathological mechanism, and process of diagnosing of DAI. The pathological mechanism underlying DAI is complicated, including axonal breakage caused by axonal retraction balls, discontinued protein transport along the axonal axis, calcium influx, and calpain-mediated hydrolysis of structural protein, degradation of axonal cytoskeleton network, the changes of transport proteins such as amyloid precursor protein, and changes of glia cells. Based on the above pathological mechanism, the diagnosis of DAI is usually made using methods such as CT, traditional and new MRI, biochemical markers, and neuropsychological assessment. This review provides a basis in literature for further investigation and discusses the pathological mechanism. It may also facilitate improvement of the accuracy of diagnosis for DAI, which may come to play a critical role in breaking through the bottleneck of the clinical treatment of DAI and improving the survival and quality of life of patients through clear understanding of pathological mechanisms and accurate diagnosis.
Collapse
|
16
|
Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 2016; 39:311-324. [PMID: 27040729 PMCID: PMC5405046 DOI: 10.1016/j.tins.2016.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Traumatic axonal injury (TAI) is an important pathoanatomical subgroup of traumatic brain injury (TBI) and a major driver of mortality and functional impairment. Experimental models have provided insights into the effects of mechanical deformation on the neuronal cytoskeleton and the subsequent processes that drive axonal injury. There is also increasing recognition that axonal or white matter loss may progress for years post-injury and represent one mechanistic framework for progressive neurodegeneration after TBI. Previous trials of novel therapies have failed to make an impact on clinical outcome, in both TBI in general and TAI in particular. Recent advances in understanding the cellular and molecular mechanisms of injury have the potential to translate into novel therapeutic targets. Multiple therapeutic targets are emerging that offer the potential to reduce secondary brain injury at a cellular level. These include cytoskeletal and membrane stabilisation, control of calcium flux and calpain activation, optimisation of cellular energetics, and modulation of the inflammatory response. Wallerian degeneration, as occurs following an axonal injury, is an active, cell-autonomous death pathway that involves failure of axonal transport to deliver key enzymes involved in NAD biosynthesis. Chronic microglial activation occurs following traumatic brain injury (TBI) and may persist for decades afterwards. This ongoing response has been linked to long-term neurodegeneration, particularly of white matter tracts. Phagoptosis is the process whereby physiologically stressed but otherwise viable neurons are phagocytosed by microglia in response to a range of eat-me signals induced by tissue injury.
Collapse
|
17
|
Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury. Front Mol Neurosci 2016; 9:4. [PMID: 26858599 PMCID: PMC4727241 DOI: 10.3389/fnmol.2016.00004] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.
Collapse
Affiliation(s)
- Bing Gong
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA
| | - Miroslav Radulovic
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, and the Graduate School and University Center, The City University of New York New York, NY, USA
| | - Christopher Cardozo
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| |
Collapse
|
18
|
Abstract
Traumatic brain injury (TBI) is a significant public-health concern. TBI is defined as an acute brain injury resulting from mechanical energy to the head from external physical forces. Some of the leading causes of TBI include falls, assaults, motor vehicle or traffic accidents, and sport-related concussion. Two of the most common identified risk factors are sex (males are nearly three times more likely to suffer a TBI than females); and a bimodal age pattern (persons 65 years and older, and children under 14 years old). It is estimated that approximately 1.5-2 million Americans suffer from TBI annually. TBIs account for around 1.4 million emergency room visits, 275 000 hospital admissions, and 52 000 deaths in the USA each year. TBI contributes to approximately 30% of all deaths in the USA annually. In Australia, it is estimated that approximately 338 700 individuals (1.9% of the population) suffer from a disability related to TBI. Of these, 160 200 were severely or profoundly affected by acquired brain injury, requiring daily support. In the UK, TBI accounted for 3.4% of all emergency department attendances annually. An overall rate of 453 per 100 000 was found for all TBI severities, of which 40 per 100 000 (10.9%) were moderate to severe. TBI often results in residual symptoms that affect an individual's cognition, movement, sensation, and/or emotional functioning. Recovery and rehabilitation from TBI may require considerable resources and may take years. Some individuals never fully recover, and some require lifetime ongoing care and support. TBI has an enormous social and financial cost, with estimates of the annual financial burden associated with TBI ranging between 9 and 10 billion US dollars.
Collapse
Affiliation(s)
- A J Gardner
- Hunter New England Local Health District Sports Concussion Program; Priority Research Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.
| | - R Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital; MassGeneral Hospital for Children Sport Concussion Program and Red Sox Foundation and Massachusetts General Hospital Home Base Program, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Siedler DG, Chuah MI, Kirkcaldie MTK, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci 2014; 8:429. [PMID: 25565963 PMCID: PMC4269130 DOI: 10.3389/fncel.2014.00429] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/29/2014] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability. In this regard, diffuse axonal injury (DAI) is a major neuronal pathophenotype of TBI and is associated with a complex set of cytoskeletal changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which may also be important contributors to the tensile strength of axons. This has significant implications with respect to how axons may respond to TBI. It is not known, however, whether neurofilament compaction and the cytoskeletal changes that evolve following axonal injury represent a component of a protective mechanism following damage, or whether they serve to augment degeneration and progression to secondary axotomy. Here we review the structure and role of neurofilament proteins in normal neuronal function. We also discuss the processes that characterize DAI and the resultant alterations in neurofilaments, highlighting potential clues to a possible protective or degenerative influence of specific neurofilament alterations within injured neurons. The potential utility of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into the complex alterations in neurofilaments will contribute to future efforts in developing therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the central nervous system (CNS) following traumatic injury.
Collapse
Affiliation(s)
- Declan G Siedler
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Meng Inn Chuah
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
20
|
Yap YC, Dickson TC, King AE, Breadmore MC, Guijt RM. Microfluidic culture platform for studying neuronal response to mild to very mild axonal stretch injury. BIOMICROFLUIDICS 2014; 8:044110. [PMID: 25379095 PMCID: PMC4189213 DOI: 10.1063/1.4891098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/13/2014] [Indexed: 05/14/2023]
Abstract
A new model for studying localised axonal stretch injury is presented, using a microfluidic device to selectively culture axons on a thin, flexible poly (dimethylsiloxane) membrane which can be deflected upward to stretch the axons. A very mild (0.5% strain) or mild stretch injury (5% strain) was applied to primary cortical neurons after 7 days growth in vitro. The extent of distal degeneration was quantified using the degenerative index (DI, the ratio of fragmented axon area to total axon area) of axons fixed at 24 h and 72 h post injury (PI), and immunolabelled for the axon specific, microtubule associated protein-tau. At 24 h PI following very mild injuries (0.5%), the majority of the axons remained intact and healthy with no significant difference in DI when compared to the control, but at 72 h PI, the DI increased significantly (DI = 0.11 ± 0.03). Remarkably, dendritic beading in the somal compartment was observed at 24 h PI, indicative of dying back degeneration. When the injury level was increased (5% stretch, mild injury), microtubule fragmentation along the injured axons was observed, with a significant increase in DI at 24 h PI (DI = 0.17 ± 0.02) and 72 h PI (DI = 0.18 ± 0.01), relative to uninjured axons. The responses observed for both mild and very mild injuries are similar to those observed in the in vivo models of traumatic brain injury, suggesting that this model can be used to study neuronal trauma and will provide new insights into the cellular and molecular alterations characterizing the neuronal response to discrete axonal injury.
Collapse
Affiliation(s)
| | - Tracey C Dickson
- Menzies Research Institute, University of Tasmania , Private Bag 23, Hobart, Tasmania 7000, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania , Private Bag 23, Hobart, Tasmania 7000, Australia
| | - Michael C Breadmore
- Australian Center for Research on Separation Science (ACROSS), School of Physical Sciences, University of Tasmania , Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Rosanne M Guijt
- Pharmacy School of Medicine, ACROSS, University of Tasmania , Private Bag 26, Hobart, Tasmania 7001, Australia
| |
Collapse
|
21
|
Blizzard CA, King AE, Vickers J, Dickson T. Cortical murine neurons lacking the neurofilament light chain protein have an attenuated response to injury in vitro. J Neurotrauma 2014; 30:1908-18. [PMID: 23802559 DOI: 10.1089/neu.2013.2850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neurofilaments (NFs) have been proposed to have a significant role in attempted axonal regeneration following a variety of forms of injury. The NF triplet proteins of the central nervous system are comprised of light (NF-L), medium (NF-M) and heavy (NF-H) chains and are part of the type IV intermediate filament family. We sought to define the role of NF-L in the neuronal response to trauma and regeneration by examining the effect of total absence of the NF-L protein on neuronal maturation and response to axotomy. This study utilized an in vitro model comprising relatively mature cortical murine neurons derived from either wild-type embryonic (E15) mice or mice with a genetic knockout of NF-L (NF-L KO). Whilst NF-L KO neurons developed to relative maturity at a comparable rate to wild-type control neurons, NF-L KO neurons demonstrated relatively increased expression of α-internexin and decreased expression of NF-M. Further, we demonstrate that α-internexin co-immunoprecipitates with the NF binding protein NDel1 in NFL-KO cortical neurons in vitro. Following localized axotomy, NF-L KO neurons demonstrated reduced amyloid precursor protein accumulation in damaged neurites as well as a significant reduction in the number of axons regenerating (4.79+/-0.58 sprouts) in comparison to control preparations (10.47+/-1.11 sprouts) (p<0.05). These studies indicate that NFs comprising NF-L have a dynamic role in the reactive and regenerative changes in axons following injury.
Collapse
Affiliation(s)
- Catherine A Blizzard
- 1 Menzies Research Institute Tasmania, School of Medicine, University of Tasmania , Tasmania, Australia
| | | | | | | |
Collapse
|
22
|
Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 2013; 60:61-79. [PMID: 23969238 PMCID: PMC3882011 DOI: 10.1016/j.nbd.2013.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.
Collapse
Affiliation(s)
- Marek Ma
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Lin Y, Wen L. Inflammatory response following diffuse axonal injury. Int J Med Sci 2013; 10:515-21. [PMID: 23532682 PMCID: PMC3607236 DOI: 10.7150/ijms.5423] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/06/2013] [Indexed: 12/12/2022] Open
Abstract
DAI is a leading cause of the patient's death or lasting vegetable state following severe TBI, and up to now the detailed mechanism of axonal injury after head trauma is still unclear. Inflammatory responses have been proved to be an important mechanism of neural injury after TBI. However, most of these studies are concerned with focal cerebral injury following head trauma. In contrast to focal injury, studies on the inflammatory reaction following DAI are only beginning. And in this article, we aimed to review such studies. From the studies reviewed, immune response cells would become reactive around the sites of axonal injury after DAI. Besides, the concentrations of several important inflammatory factors, such as IL-1 family, IL-6 and TNF-ɑ, increased after DAI as well, which implies the participation of inflammatory responses. It can be concluded that inflammatory responses probably participate in the neural injury in DAI, but at present the study of inflammatory responses following DAI is still limited and the clear effects of inflammatory response on axonal injury remain to be more explored.
Collapse
Affiliation(s)
- Yu Lin
- School of Medicine, Zhejiang University City College, China
| | | |
Collapse
|
24
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
25
|
Staal JA, Vickers JC. Selective Vulnerability of Non-Myelinated Axons to Stretch Injury in an In Vitro Co-Culture System. J Neurotrauma 2011; 28:841-7. [DOI: 10.1089/neu.2010.1658] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jerome A. Staal
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - James C. Vickers
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Prilloff S, Henrich-Noack P, Kropf S, Sabel BA. Experience-Dependent Plasticity and Vision Restoration in Rats after Optic Nerve Crush. J Neurotrauma 2010; 27:2295-307. [DOI: 10.1089/neu.2010.1439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Sylvia Prilloff
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Bernhard A. Sabel
- Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Wang HC, Ma YB. Experimental models of traumatic axonal injury. J Clin Neurosci 2009; 17:157-62. [PMID: 20042337 DOI: 10.1016/j.jocn.2009.07.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in people under 45 years of age worldwide. Such injury is characterized by a wide spectrum of mechanisms of injury and pathologies. Traumatic axonal injury (TAI), originally described as diffuse axonal injury, is one of the most common pathological features of TBI and is thought to be responsible for the long-lasting neurological impairments following TBI. Since the late 1980s a series of in vivo and in vitro experimental models of TAI have been developed to better understand the complex mechanisms of axonal injury and to define the relationship between mechanical forces and the structural and functional changes of injured axons. These models are designed to mimic as closely as possible the clinical condition of human TAI and have greatly improved our understanding of different aspects of TAI. The present review summarizes the most widely used experimental models of TAI. Focusing in particular on in vivo models, this survey aims to provide a broad overview of current knowledge and controversies in the development and use of the experimental models of TAI.
Collapse
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan, Shanghai 201900, China
| | | |
Collapse
|
28
|
Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem 2009; 112:1147-55. [PMID: 19968758 DOI: 10.1111/j.1471-4159.2009.06531.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute axonal shear and stretch in the brain induces an evolving form of axonopathy and is a major cause of ongoing motor, cognitive and emotional dysfunction. We have utilized an in vitro model of mild axon bundle stretch injury, in cultured primary cortical neurons, to determine potential early critical cellular alterations leading to secondary axonal degeneration. We determined that transient axonal stretch injury induced an initial acute increase in intracellular calcium, principally derived from intracellular stores, which was followed by a delayed increase in calcium over 48 h post-injury (PI). This progressive and persistent increase in intracellular calcium was also associated with increased frequency of spontaneous calcium fluxes as well as cytoskeletal abnormalities. Additionally, at 48 h post-injury, stretch-injured axon bundles demonstrated filopodia-like sprout formation that preceded secondary axotomy and degeneration. Pharmacological inhibition of the calcium-activated phosphatase, calcineurin, resulted in reduced secondary axotomy (p < 0.05) and increased filopodial sprout length. In summary, these results demonstrate that stretch injury of axons induced an initial substantial release of calcium from intracellular stores with elevated intracellular calcium persisting over 2 days. These long-lasting calcium alterations may provide new insight into the earliest neuronal abnormalities that follow traumatic brain injury as well as the key cellular changes that lead to the development of diffuse axonal injury and secondary degeneration.
Collapse
Affiliation(s)
- Jerome A Staal
- NeuroRepair Group and Wicking Dementia Research and Education Centre, Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Staal JA, Dickson TC, Chung RS, Vickers JC. Disruption of the ubiquitin proteasome system following axonal stretch injury accelerates progression to secondary axotomy. J Neurotrauma 2009; 26:781-8. [PMID: 19416018 DOI: 10.1089/neu.2008.0669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a vital role in the regulation of protein degradation. Ubiquitination of proteins has been implicated in the pathological cascade associated with neuronal degeneration in both neurodegenerative disease and following acquired central nervous system (CNS) injury. In the present study, we have investigated the role of the UPS following mild to moderate in vitro axonal stretch injury to mature primary cortical neurons, a model of the evolving axonal pathology characteristic of diffuse axonal injury following brain trauma. Transient axonal stretch injury in this model does not involve primary axotomy. However, delayed accumulation of ubiquitin in neuritic swellings at 48 h post-injury (PI) was present in axonal bundles, followed by approximately 60% of axonal bundles progressing to secondary axotomy at 72 h PI. This delayed accumulation of ubiquitin was temporally and spatially associated with cytoskeletal damage. Pharmacological inhibition of the UPS with both MG132 and lactacystin prior to axonal injury resulted in a significant (p < 0.05) increase in the number of axonal bundles progressing to secondary axotomy at 48 and 72 h PI. These results demonstrate that, following mild to moderate transient axonal stretch injury, UPS activity may assist structural reorganization within axons, potentially impeding secondary axotomy. Protein ubiquitination in the axon may therefore have a protective role relative to the diffuse axonal changes that follow traumatic brain injury.
Collapse
Affiliation(s)
- Jerome A Staal
- NeuroRepair Group, Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | |
Collapse
|
30
|
Li XY, Feng DF. Diffuse axonal injury: novel insights into detection and treatment. J Clin Neurosci 2009; 16:614-9. [PMID: 19285410 DOI: 10.1016/j.jocn.2008.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 01/25/2023]
Abstract
Diffuse axonal injury (DAI) is one of the most common and important pathologic features of traumatic brain injury. The definitive diagnosis of DAI, especially in its early stage, is difficult. In addition, most therapeutic agents for patients with DAI are non-specific. The CT scan is widely used to identify signs of DAI. Although its sensitivity is limited to moderate to severe DAI, it remains a useful first-line imaging tool that may also identify co-morbid injuries such as intracerebral hemorrhage. Recently, investigations have sought to apply advanced imaging techniques and laboratory techniques to detect DAI. Meanwhile, some potential specific treatments that may protect injured axons or stimulate axonal regeneration have been developed. We review some new diagnostic technologies and specific therapeutic strategies for DAI.
Collapse
Affiliation(s)
- Xue-Yuan Li
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University College of Medicine, Shanghai 201900, China
| | | |
Collapse
|