1
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
2
|
Lucaci AG, Brew WE, Lamanna J, Selberg A, Carnevale V, Moore AR, Kosakovsky Pond SL. The evolution of mammalian Rem2: unraveling the impact of purifying selection and coevolution on protein function, and implications for human disorders. FRONTIERS IN BIOINFORMATICS 2024; 4:1381540. [PMID: 38978817 PMCID: PMC11228553 DOI: 10.3389/fbinf.2024.1381540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Rad And Gem-Like GTP-Binding Protein 2 (Rem2), a member of the RGK family of Ras-like GTPases, is implicated in Huntington's disease and Long QT Syndrome and is highly expressed in the brain and endocrine cells. We examine the evolutionary history of Rem2 identified in various mammalian species, focusing on the role of purifying selection and coevolution in shaping its sequence and protein structural constraints. Our analysis of Rem2 sequences across 175 mammalian species found evidence for strong purifying selection in 70% of non-invariant codon sites which is characteristic of essential proteins that play critical roles in biological processes and is consistent with Rem2's role in the regulation of neuronal development and function. We inferred epistatic effects in 50 pairs of codon sites in Rem2, some of which are predicted to have deleterious effects on human health. Additionally, we reconstructed the ancestral evolutionary history of mammalian Rem2 using protein structure prediction of extinct and extant sequences which revealed the dynamics of how substitutions that change the gene sequence of Rem2 can impact protein structure in variable regions while maintaining core functional mechanisms. By understanding the selective pressures, protein- and gene - interactions that have shaped the sequence and structure of the Rem2 protein, we gain a stronger understanding of its biological and functional constraints.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, United States
| | - William E Brew
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Jason Lamanna
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, United States
| | - Avery Selberg
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, United States
| | - Anna R Moore
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
4
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
5
|
Allam S, Levenson-Palmer R, Chia Chang Z, Kaur S, Cernuda B, Raman A, Booth A, Dobbins S, Suppa G, Yang J, Buraei Z. Inactivation influences the extent of inhibition of voltage-gated Ca +2 channels by Gem-implications for channelopathies. Front Physiol 2023; 14:1155976. [PMID: 37654674 PMCID: PMC10466392 DOI: 10.3389/fphys.2023.1155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCC) directly control muscle contraction and neurotransmitter release, and slower processes such as cell differentiation, migration, and death. They are potently inhibited by RGK GTP-ases (Rem, Rem2, Rad, and Gem/Kir), which decrease Ca2+ channel membrane expression, as well as directly inhibit membrane-resident channels. The mechanisms of membrane-resident channel inhibition are difficult to study because RGK-overexpression causes complete or near complete channel inhibition. Using titrated levels of Gem expression in Xenopus oocytes to inhibit WT P/Q-type calcium channels by ∼50%, we show that inhibition is dependent on channel inactivation. Interestingly, fast-inactivating channels, including Familial Hemiplegic Migraine mutants, are more potently inhibited than WT channels, while slow-inactivating channels, such as those expressed with the Cavβ2a auxiliary subunit, are spared. We found similar results in L-type channels, and, remarkably, Timothy Syndrome mutant channels were insensitive to Gem inhibition. Further results suggest that RGKs slow channel recovery from inactivation and further implicate RGKs as likely modulating factors in channelopathies.
Collapse
Affiliation(s)
- Salma Allam
- Department of Biology, Pace University, New York, NY, United States
| | - Rose Levenson-Palmer
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | | | - Sukhjinder Kaur
- Department of Biology, Pace University, New York, NY, United States
| | - Bryan Cernuda
- Department of Biology, Pace University, New York, NY, United States
| | - Ananya Raman
- Department of Biology, Pace University, New York, NY, United States
| | - Audrey Booth
- Department of Biology, Pace University, New York, NY, United States
| | - Scott Dobbins
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Gabrielle Suppa
- Department of Biology, Pace University, New York, NY, United States
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Zafir Buraei
- Department of Biology, Pace University, New York, NY, United States
| |
Collapse
|
6
|
Helmbrecht H, Lin TJ, Janakiraman S, Decker K, Nance E. Prevalence and practices of immunofluorescent cell image processing: a systematic review. Front Cell Neurosci 2023; 17:1188858. [PMID: 37545881 PMCID: PMC10400723 DOI: 10.3389/fncel.2023.1188858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background We performed a systematic review that identified at least 9,000 scientific papers on PubMed that include immunofluorescent images of cells from the central nervous system (CNS). These CNS papers contain tens of thousands of immunofluorescent neural images supporting the findings of over 50,000 associated researchers. While many existing reviews discuss different aspects of immunofluorescent microscopy, such as image acquisition and staining protocols, few papers discuss immunofluorescent imaging from an image-processing perspective. We analyzed the literature to determine the image processing methods that were commonly published alongside the associated CNS cell, microscopy technique, and animal model, and highlight gaps in image processing documentation and reporting in the CNS research field. Methods We completed a comprehensive search of PubMed publications using Medical Subject Headings (MeSH) terms and other general search terms for CNS cells and common fluorescent microscopy techniques. Publications were found on PubMed using a combination of column description terms and row description terms. We manually tagged the comma-separated values file (CSV) metadata of each publication with the following categories: animal or cell model, quantified features, threshold techniques, segmentation techniques, and image processing software. Results Of the almost 9,000 immunofluorescent imaging papers identified in our search, only 856 explicitly include image processing information. Moreover, hundreds of the 856 papers are missing thresholding, segmentation, and morphological feature details necessary for explainable, unbiased, and reproducible results. In our assessment of the literature, we visualized current image processing practices, compiled the image processing options from the top twelve software programs, and designed a road map to enhance image processing. We determined that thresholding and segmentation methods were often left out of publications and underreported or underutilized for quantifying CNS cell research. Discussion Less than 10% of papers with immunofluorescent images include image processing in their methods. A few authors are implementing advanced methods in image analysis to quantify over 40 different CNS cell features, which can provide quantitative insights in CNS cell features that will advance CNS research. However, our review puts forward that image analysis methods will remain limited in rigor and reproducibility without more rigorous and detailed reporting of image processing methods. Conclusion Image processing is a critical part of CNS research that must be improved to increase scientific insight, explainability, reproducibility, and rigor.
Collapse
Affiliation(s)
- Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Teng-Jui Lin
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Sanjana Janakiraman
- Paul G. Allen School of Computer Science & Engineering, Seattle, WA, United States
| | - Kaleb Decker
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Cline HT. Imaging Structural and Functional Dynamics in Xenopus Neurons. Cold Spring Harb Protoc 2021; 2022:pdb.top106773. [PMID: 34531329 DOI: 10.1101/pdb.top106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vivo time-lapse imaging has been a fruitful approach to identify structural and functional changes in the Xenopus nervous system in tadpoles and adult frogs. Structural imaging studies have identified fundamental aspects of brain connectivity, development, plasticity, and disease and have been instrumental in elucidating mechanisms regulating these events in vivo. Similarly, assessment of nervous system function using dynamic changes in calcium signals as a proxy for neuronal activity has demonstrated principles of neuron and circuit function and principles of information organization and transfer within the brain of living animals. Because of its many advantages as an experimental system, use of Xenopus has often been at the forefront of developing these imaging methods for in vivo applications. Protocols for in vivo structural and functional imaging-including cellular labeling strategies, image collection, and image analysis-will expand the use of Xenopus to understand brain development, function, and plasticity.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Center, La Jolla, California 92039, USA
| |
Collapse
|
8
|
Migliori AD, Patel LA, Neale C. The RIT1 C-terminus associates with lipid bilayers via charge complementarity. Comput Biol Chem 2021; 91:107437. [PMID: 33517146 DOI: 10.1016/j.compbiolchem.2021.107437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
RIT1 is a member of the Ras superfamily of small GTPases involved in regulation of cellular signaling. Mutations to RIT1 are involved in cancer and developmental disorders. Like many Ras subfamily members, RIT1 is localized to the plasma membrane. However, RIT1 lacks the C-terminal prenylation that helps many other subfamily members adhere to cellular membranes. We used molecular dynamics simulations to examine the mechanisms by which the C-terminal peptide (CTP) of RIT1 associates with lipid bilayers. We show that the CTP is unstructured and that its membrane interactions depend on lipid composition. While a 12-residue region of the CTP binds strongly to anionic bilayers containing phosphatidylserine lipids, the CTP termini fray from the membrane allowing for accommodation of the RIT1 globular domain at the membrane-water interface.
Collapse
Affiliation(s)
- Amy D Migliori
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Lara A Patel
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States.
| |
Collapse
|
9
|
Experience-Dependent Development of Dendritic Arbors in Mouse Visual Cortex. J Neurosci 2020; 40:6536-6556. [PMID: 32669356 DOI: 10.1523/jneurosci.2910-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
The dendritic arbor of neurons constrains the pool of available synaptic partners and influences the electrical integration of synaptic currents. Despite these critical functions, our knowledge of the dendritic structure of cortical neurons during early postnatal development and how these dendritic structures are modified by visual experience is incomplete. Here, we present a large-scale dataset of 849 3D reconstructions of the basal arbor of pyramidal neurons collected across early postnatal development in visual cortex of mice of either sex. We found that the basal arbor grew substantially between postnatal day 7 (P7) and P30, undergoing a 45% increase in total length. However, the gross number of primary neurites and dendritic segments was largely determined by P7. Growth from P7 to P30 occurred primarily through extension of dendritic segments. Surprisingly, comparisons of dark-reared and typically reared mice revealed that a net gain of only 15% arbor length could be attributed to visual experience; most growth was independent of experience. To examine molecular contributions, we characterized the role of the activity-regulated small GTPase Rem2 in both arbor development and the maintenance of established basal arbors. We showed that Rem2 is an experience-dependent negative regulator of dendritic segment number during the visual critical period. Acute deletion of Rem2 reduced directionality of dendritic arbors. The data presented here establish a highly detailed, quantitative analysis of basal arbor development that we believe has high utility both in understanding circuit development as well as providing a framework for computationalists wishing to generate anatomically accurate neuronal models.SIGNIFICANCE STATEMENT Dendrites are the sites of the synaptic connections among neurons. Despite their importance for neural circuit function, only a little is known about the postnatal development of dendritic arbors of cortical pyramidal neurons and the influence of experience. Here we show that the number of primary basal dendritic arbors is already established before eye opening, and that these arbors primarily grow through lengthening of dendritic segments and not through addition of dendritic segments. Surprisingly, visual experience has a modest net impact on overall arbor length (15%). Experiments in KO animals revealed that the gene Rem2 is positive regulator of dendritic length and a negative regulator of dendritic segments.
Collapse
|
10
|
Herzog JJ, Xu W, Deshpande M, Rahman R, Suib H, Rodal AA, Rosbash M, Paradis S. TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression. Proc Natl Acad Sci U S A 2020; 117:11760-11769. [PMID: 32393629 PMCID: PMC7260973 DOI: 10.1073/pnas.1917038117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative diseases that present with similar TDP-43 pathology in patient tissue. TDP-43 is an RNA-binding protein which forms aggregates in neurons of ALS and FTD patients as well as in a subset of patients diagnosed with other neurodegenerative diseases. Despite our understanding that TDP-43 is essential for many aspects of RNA metabolism, it remains obscure how TDP-43 dysfunction contributes to neurodegeneration. Interestingly, altered neuronal dendritic morphology is a common theme among several neurological disorders and is thought to precede neurodegeneration. We previously found that both TDP-43 overexpression (OE) and knockdown (KD) result in reduced dendritic branching of cortical neurons. In this study, we used TRIBE (targets of RNA-binding proteins identified by editing) as an approach to identify signaling pathways that regulate dendritic branching downstream of TDP-43. We found that TDP-43 RNA targets are enriched for pathways that signal to the CREB transcription factor. We further found that TDP-43 dysfunction inhibits CREB activation and CREB transcriptional output, and restoring CREB signaling rescues defects in dendritic branching. Finally, we demonstrate, using RNA sequencing, that TDP-43 OE and KD cause similar changes in the abundance of specific messenger RNAs, consistent with their ability to produce similar morphological defects. Our data therefore provide a mechanism by which TDP-43 dysfunction interferes with dendritic branching, and may define pathways for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Josiah J Herzog
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Weijin Xu
- Department of Biology, Brandeis University, Waltham, MA 02453
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Mugdha Deshpande
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Reazur Rahman
- Department of Biology, Brandeis University, Waltham, MA 02453
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Hannah Suib
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Michael Rosbash
- Department of Biology, Brandeis University, Waltham, MA 02453;
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02453;
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| |
Collapse
|
11
|
Seelke AMH, Bond JM, Simmons TC, Joshi N, Settles ML, Stolzenberg D, Rhemtulla M, Bales KL. Fatherhood alters gene expression within the MPOA. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy026. [PMID: 30568805 PMCID: PMC6305489 DOI: 10.1093/eep/dvy026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Female parenting is obligate in mammals, but fathering behavior among mammals is rare. Only 3-5% of mammalian species exhibit biparental care, including humans, and mechanisms of fathering behavior remain sparsely studied. However, in species where it does exist, paternal care is often crucial to the survivorship of offspring. The present study is the first to identify new gene targets linked to the experience of fathering behavior in a biparental species using RNA sequencing. In order to determine the pattern of gene expression within the medial preoptic area that is specifically associated with fathering behavior, we identified genes in male prairie voles (Microtus ochrogaster) that experienced one of three social conditions: virgin males, pair bonded males, and males with fathering experience. A list of genes exhibiting different expression patterns in each comparison (i.e. Virgin vs Paired, Virgin vs Fathers, and Paired vs Fathers) was evaluated using the gene ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathways analysis to reveal metabolic pathways associated with specific genes. Using these tools, we generated a filtered list of genes that exhibited altered patterns of expression in voles with different amounts of social experience. Finally, we used NanoString to quantify differences in the expression of these selected genes. These genes are involved in a variety of processes, with enrichment in genes associated with immune function, metabolism, synaptic plasticity, and the remodeling of dendritic spines. The identification of these genes and processes will lead to novel insights into the biological basis of fathering behavior.
Collapse
Affiliation(s)
- Adele M H Seelke
- Department of Psychology, University of California, Davis, Davis, USA
| | - Jessica M Bond
- Department of Psychology, University of California, Davis, Davis, USA
| | - Trent C Simmons
- Department of Psychology, University of California, Davis, Davis, USA
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California, Davis, Davis, USA
| | - Matthew L Settles
- Bioinformatics Core Facility, University of California, Davis, Davis, USA
| | | | - Mijke Rhemtulla
- Department of Psychology, University of California, Davis, Davis, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, USA
- California National Primate Research Center, University of California, Davis, Davis, USA
| |
Collapse
|
12
|
McDermott JE, Goldblatt D, Paradis S. Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus. Mol Cell Neurosci 2018; 92:50-66. [PMID: 29981480 PMCID: PMC6191356 DOI: 10.1016/j.mcn.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
To understand how proper circuit formation and function is established in the mammalian brain, it is necessary to define the genes and signaling pathways that instruct excitatory and inhibitory synapse development. We previously demonstrated that the ligand-receptor pair, Sema4D and Plexin-B1, regulates inhibitory synapse development on an unprecedentedly fast time-scale while having no effect on excitatory synapse development. Here, we report previously undescribed synaptogenic roles for Sema4A and Plexin-B2 and provide new insight into Sema4D and Plexin-B1 regulation of synapse development in rodent hippocampus. First, we show that Sema4a, Sema4d, Plxnb1, and Plxnb2 have distinct and overlapping expression patterns in neurons and glia in the developing hippocampus. Second, we describe a requirement for Plexin-B1 in both the presynaptic axon of inhibitory interneurons as well as the postsynaptic dendrites of excitatory neurons for Sema4D-dependent inhibitory synapse development. Third, we define a new synaptogenic activity for Sema4A in mediating inhibitory and excitatory synapse development. Specifically, we demonstrate that Sema4A signals through the same pathway as Sema4D, via the postsynaptic Plexin-B1 receptor, to promote inhibitory synapse development. However, Sema4A also signals through the Plexin-B2 receptor to promote excitatory synapse development. Our results shed new light on the molecular cues that promote the development of either inhibitory or excitatory synapses in the mammalian hippocampus.
Collapse
Affiliation(s)
| | - Dena Goldblatt
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
13
|
Royer L, Herzog JJ, Kenny K, Tzvetkova B, Cochrane JC, Marr MT, Paradis S. The Ras-like GTPase Rem2 is a potent inhibitor of calcium/calmodulin-dependent kinase II activity. J Biol Chem 2018; 293:14798-14811. [PMID: 30072381 DOI: 10.1074/jbc.ra118.003560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Indexed: 02/05/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a well-characterized, abundant protein kinase that regulates a diverse set of functions in a tissue-specific manner. For example, in heart muscle, CaMKII regulates Ca2+ homeostasis, whereas in neurons, CaMKII regulates activity-dependent dendritic remodeling and long-term potentiation (LTP), a neurobiological correlate of learning and memory. Previously, we identified the GTPase Rem2 as a critical regulator of dendrite branching and homeostatic plasticity in the vertebrate nervous system. Here, we report that Rem2 directly interacts with CaMKII and potently inhibits the activity of the intact holoenzyme, a previously unknown Rem2 function. Our results suggest that Rem2 inhibition involves interaction with both the CaMKII hub domain and substrate recognition domain. Moreover, we found that Rem2-mediated inhibition of CaMKII regulates dendritic branching in cultured hippocampal neurons. Lastly, we report that substitution of two key amino acid residues in the Rem2 N terminus (Arg-79 and Arg-80) completely abolishes its ability to inhibit CaMKII. We propose that our biochemical findings will enable further studies unraveling the functional significance of Rem2 inhibition of CaMKII in cells.
Collapse
Affiliation(s)
| | | | | | | | - Jesse C Cochrane
- Department of Molecular Biology and Genetics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Michael T Marr
- From the Department of Biology, .,Rosenstiel Basic Medical Sciences Research Center
| | - Suzanne Paradis
- From the Department of Biology, .,Volen Center for Complex Systems, and.,National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454 and
| |
Collapse
|
14
|
Moore AR, Richards SE, Kenny K, Royer L, Chan U, Flavahan K, Van Hooser SD, Paradis S. Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits. eLife 2018; 7:e33092. [PMID: 29809135 PMCID: PMC6010341 DOI: 10.7554/elife.33092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.
Collapse
Affiliation(s)
- Anna R Moore
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Sarah E Richards
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Katelyn Kenny
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| | - Leandro Royer
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Urann Chan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Kelly Flavahan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Suzanne Paradis
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| |
Collapse
|
15
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
16
|
Herzog JJ, Deshpande M, Shapiro L, Rodal AA, Paradis S. TDP-43 misexpression causes defects in dendritic growth. Sci Rep 2017; 7:15656. [PMID: 29142232 PMCID: PMC5688077 DOI: 10.1038/s41598-017-15914-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) share overlapping genetic causes and disease symptoms, and are linked neuropathologically by the RNA binding protein TDP-43 (TAR DNA binding protein-43 kDa). TDP-43 regulates RNA metabolism, trafficking, and localization of thousands of target genes. However, the cellular and molecular mechanisms by which dysfunction of TDP-43 contributes to disease pathogenesis and progression remain unclear. Severe changes in the structure of neuronal dendritic arbors disrupt proper circuit connectivity, which in turn could contribute to neurodegenerative disease. Although aberrant dendritic morphology has been reported in non-TDP-43 mouse models of ALS and in human ALS patients, this phenotype is largely unexplored with regards to TDP-43. Here we have employed a primary rodent neuronal culture model to study the cellular effects of TDP-43 dysfunction in hippocampal and cortical neurons. We show that manipulation of TDP-43 expression levels causes significant defects in dendritic branching and outgrowth, without an immediate effect on cell viability. The effect on dendritic morphology is dependent on the RNA-binding ability of TDP-43. Thus, this model system will be useful in identifying pathways downstream of TDP-43 that mediate dendritic arborization, which may provide potential new avenues for therapeutic intervention in ALS/FTD.
Collapse
Affiliation(s)
- Josiah J Herzog
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Mugdha Deshpande
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Leah Shapiro
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Avital A Rodal
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Suzanne Paradis
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA.
| |
Collapse
|
17
|
Kenny K, Royer L, Moore AR, Chen X, Marr MT, Paradis S. Rem2 signaling affects neuronal structure and function in part by regulation of gene expression. Mol Cell Neurosci 2017; 85:190-201. [PMID: 29066292 DOI: 10.1016/j.mcn.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The central nervous system has the remarkable ability to convert changes in the environment in the form of sensory experience into long-term alterations in synaptic connections and dendritic arborization, in part through changes in gene expression. Surprisingly, the molecular mechanisms that translate neuronal activity into changes in neuronal connectivity and morphology remain elusive. Rem2, a member of the Rad/Rem/Rem2/Gem/Kir (RGK) subfamily of small Ras-like GTPases, is a positive regulator of synapse formation and negative regulator of dendritic arborization. Here we identify that one output of Rem2 signaling is the regulation of gene expression. Specifically, we demonstrate that Rem2 signaling modulates the expression of genes required for a variety of cellular processes from neurite extension to synapse formation and synaptic function. Our results highlight Rem2 as a unique molecule that transduces changes in neuronal activity detected at the cell membrane to morphologically relevant changes in gene expression in the nucleus.
Collapse
Affiliation(s)
- Katelyn Kenny
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Leandro Royer
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Anna R Moore
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Xiao Chen
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
18
|
Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase. J Neurosci 2017; 37:5496-5510. [PMID: 28416593 DOI: 10.1523/jneurosci.3648-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/12/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact.SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila, Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation.
Collapse
|
19
|
Parent C, Wen X, Dhir SK, Ryan R, Diorio J, Zhang TY. Maternal care associates with differences in morphological complexity in the medial preoptic area. Behav Brain Res 2017; 326:22-32. [PMID: 28259675 DOI: 10.1016/j.bbr.2017.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
The medial preoptic area (MPOA) is implicated in the expression of maternal behavior including the frequency of pup licking/grooming (LG) in the rat. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is a transcription factor that regulates the expression of many genes. We found that lactating rats that are more maternal towards their pups showing increased licking/grooming (i.e. high-LG mothers) had increased levels of phosphorylated CREB (pCREB) in the MPOA following a nursing bout and they displayed a reduced population of greater dendritic complexity index (DCI) neurons compared to less maternal rats showing decreased licking/grooming (i.e. low-LG mothers). CREB overexpression in MPOA neuronal cultures associated with a decrease in dendritic complexity and an increase in the expression of Rem2 and brain-derived neurotrophic factor (BDNF), genes implicated in dendritic pruning. While there were no differences in Rem2 expression in virgin high and low-LG female rats, Rem2 was significantly increased in the MPOA of high-LG compared to low-LG lactating rats. CREB activity in the MPOA associates with maternal behavior and reduced dendritic complexity possibly by increasing Rem2 expression.
Collapse
Affiliation(s)
- Carine Parent
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Xianglan Wen
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Sabine K Dhir
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Richard Ryan
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Josie Diorio
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Tie-Yuan Zhang
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
20
|
Downs AG, Scholles KR, Hollis DM. Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss). J Chem Neuroanat 2016; 78:87-95. [PMID: 27600327 DOI: 10.1016/j.jchemneu.2016.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022]
Abstract
Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca2+ entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system.
Collapse
|
21
|
Henty-Ridilla JL, Rankova A, Eskin JA, Kenny K, Goode BL. Accelerated actin filament polymerization from microtubule plus ends. Science 2016; 352:1004-9. [PMID: 27199431 DOI: 10.1126/science.aaf1709] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Microtubules (MTs) govern actin network remodeling in a wide range of biological processes, yet the mechanisms underlying this cytoskeletal cross-talk have remained obscure. We used single-molecule fluorescence microscopy to show that the MT plus-end-associated protein CLIP-170 binds tightly to formins to accelerate actin filament elongation. Furthermore, we observed mDia1 dimers and CLIP-170 dimers cotracking growing filament ends for several minutes. CLIP-170-mDia1 complexes promoted actin polymerization ~18 times faster than free-barbed-end growth while simultaneously enhancing protection from capping proteins. We used a MT-actin dynamics co-reconstitution system to observe CLIP-170-mDia1 complexes being recruited to growing MT ends by EB1. The complexes triggered rapid growth of actin filaments that remained attached to the MT surface. These activities of CLIP-170 were required in primary neurons for normal dendritic morphology. Thus, our results reveal a cellular mechanism whereby growing MT plus ends direct rapid actin assembly.
Collapse
Affiliation(s)
| | - Aneliya Rankova
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Julian A Eskin
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Katelyn Kenny
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
22
|
Liput DJ, Lu VB, Davis MI, Puhl HL, Ikeda SR. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep 2016; 6:25137. [PMID: 27118437 PMCID: PMC4846870 DOI: 10.1038/srep25137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Van B. Lu
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Margaret I. Davis
- Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Henry L. Puhl
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Stephen R. Ikeda
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| |
Collapse
|
23
|
Klinman E, Holzbaur ELF. Comparative analysis of axonal transport markers in primary mammalian neurons. Methods Cell Biol 2015; 131:409-24. [PMID: 26794526 DOI: 10.1016/bs.mcb.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Axonal transport is important for neuronal development and the maintenance of effective neuronal function in mature cells. Observing the active transport of organelles and vesicles along the axons of living neurons has emerged as a valuable tool for probing the health of the neuron, and assessing changes associated with stress and neurodegenerative disease. Transport relies on two families of motor proteins: kinesins and dynein. Using these motors, a diverse set of cargos are transported toward the axon tip, the cell body, or anywhere in between. Of particular interest are organelles and cargos associated with disease and the changes in motility that these cargos undergo during pathogenesis. Here, we describe the factors that should be considered when studying different cargos, and the imaging parameters associated with optimal tracking of various organelles and proteins. Ultimately, the ideal cargo to investigate depends on the question being asked and the limitations of individual microscopes available for imaging.
Collapse
Affiliation(s)
- Eva Klinman
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Puhl HL, Lu VB, Won YJ, Sasson Y, Hirsch JA, Ono F, Ikeda SR. Ancient origins of RGK protein function: modulation of voltage-gated calcium channels preceded the protostome and deuterostome split. PLoS One 2014; 9:e100694. [PMID: 24992013 PMCID: PMC4081519 DOI: 10.1371/journal.pone.0100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022] Open
Abstract
RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein–Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein – Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.
Collapse
Affiliation(s)
- Henry L. Puhl
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Van B. Lu
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yu-Jin Won
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yehezkel Sasson
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Joel A. Hirsch
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Fumihito Ono
- Laboratory of Molecular Physiology, Section on Model Synaptic Systems, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen R. Ikeda
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
26
|
Li J, Gu J, Wang B, Xie M, Huang L, Liu Y, Zhang L, Xue J, Guo F, Zhang L, Zhang L. Activation of Dopamine D1 Receptors Regulates Dendritic Morphogenesis Through Rac1 and RhoA in Prefrontal Cortex Neurons. Mol Neurobiol 2014; 51:1024-37. [PMID: 24915967 DOI: 10.1007/s12035-014-8762-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
Abstract
Dopamine (DA) is an important regulator of neuronal plasticity in the prefrontal cortex (PFC) and plays a critical role in addiction-related neuroadaptation. The Rho GTPases, including Rac1, RhoA and Cdc42, are key regulators of actin cytoskeleton rearrangement that play important roles in dendritic morphogenesis. The goal of the current study was to use cultures of primary PFC neurons to gain a better understanding of the molecular mechanisms underlying DA-induced dendritic morphogenesis, a phenomenon that mimics the increase in DA synaptic transmission observed in the PFC of in vivo cocaine administration. We investigated the effects of repeated DA treatments on dendritic morphology changes in PFC neurons, and identified Rac1 and RhoA as downstream effectors of D1 receptors during the regulation of dendritic morphogenesis. Importantly, we found that D1 receptor-regulated Rac1 and RhoA have distinct roles in the regulation of dendritic morphogenesis after repeated DA treatments. Our data provide the first evidence that Rac1 and RhoA are effectors of D1 receptor signaling during dendritic morphogenesis and represent new signaling molecules involved in long-lasting neuroadaptation in the PFC.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, 510515, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
DeRocher MM, Armaly FH, Lepore CJ, Hollis DM. Rem2 in the bullfrog (Rana catesbeiana): Patterns of expression within the central nervous system and brain expression at different ontogenetic stages. Gene 2014; 540:37-45. [PMID: 24576576 DOI: 10.1016/j.gene.2014.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Rem2 is a member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins. In mammals, Rem2 has been found to be unique in not only its structure, but also its tissue specificity, as it is the first member to be found at high levels in neuronal tissue. Because Rem2 has previously been implicated in neuronal cell proliferation, and amphibians maintain relatively high neuronal proliferative activity as adults, we sought to isolate and acquire the full-length sequence of the rem2 gene from the brain of the bullfrog (Rana catesbeiana). Furthermore, we used real time PCR (rtPCR) to characterize its tissue specificity, regional brain expression, and brain expression levels at different stages of development. Deduced amino acid sequence analysis showed that the bullfrog Rem2 protein possesses the unique 5' extension characteristic of mammalian Rem2 and the RGK subfamily to which it belongs. Tissue specificity of the bullfrog rem2 gene showed that the bullfrog is similar to both mammals and fish in that the levels of rem2 gene expression were significantly greater in the brain than all other tissues assayed. In the brain itself, differential rem2 expression patterns were observed between six major brain areas assayed and the spinal cord, with expression significantly high in the cerebrum and low in the cerebellum. Finally, examination of whole brain rem2 expression levels in bullfrogs at different stages of development revealed greater expression after metamorphic climax.
Collapse
|
28
|
Abstract
A key feature of the CNS is structural plasticity, the ability of neurons to alter their morphology and connectivity in response to sensory experience and other changes in the environment. How this structural plasticity is achieved at the molecular level is not well understood. We provide evidence that changes in sensory experience simultaneously trigger multiple signaling pathways that either promote or restrict growth of the dendritic arbor; structural plasticity is achieved through a balance of these opposing signals. Specifically, we have uncovered a novel, activity-dependent signaling pathway that restricts dendritic arborization. We demonstrate that the GTPase Rem2 is regulated at the transcriptional level by calcium influx through L-VGCCs and inhibits dendritic arborization in cultured rat cortical neurons and in the Xenopus laevis tadpole visual system. Thus, our results demonstrate that changes in neuronal activity initiate competing signaling pathways that positively and negatively regulate the growth of the dendritic arbor. It is the balance of these opposing signals that leads to proper dendritic morphology.
Collapse
|
29
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
30
|
Moore AR, Ghiretti AE, Paradis S. A loss-of-function analysis reveals that endogenous Rem2 promotes functional glutamatergic synapse formation and restricts dendritic complexity. PLoS One 2013; 8:e74751. [PMID: 23991227 PMCID: PMC3753333 DOI: 10.1371/journal.pone.0074751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/28/2022] Open
Abstract
Rem2 is a member of the RGK family of small Ras-like GTPases whose expression and function is regulated by neuronal activity in the brain. A number of questions still remain as to the endogenous functions of Rem2 in neurons. RNAi-mediated Rem2 knockdown leads to an increase in dendritic complexity and a decrease in functional excitatory synapses, though a recent report challenged the specificity of Rem2-targeted RNAi reagents. In addition, overexpression in a number of cell types has shown that Rem2 can inhibit voltage-gated calcium channel (VGCC) function, while studies employing RNAi-mediated knockdown of Rem2 have failed to observe a corresponding enhancement of VGCC function. To further investigate these discrepancies and determine the endogenous function of Rem2, we took a comprehensive, loss-of-function approach utilizing two independent, validated Rem2-targeted shRNAs to analyze Rem2 function. We sought to investigate the consequence of endogenous Rem2 knockdown by focusing on the three reported functions of Rem2 in neurons: regulation of synapse formation, dendritic morphology, and voltage-gated calcium channels. We conclude that endogenous Rem2 is a positive regulator of functional, excitatory synapse development and a negative regulator of dendritic complexity. In addition, while we are unable to reach a definitive conclusion as to whether the regulation of VGCCs is an endogenous function of Rem2, our study reports important data regarding RNAi reagents for use in future investigation of this issue.
Collapse
Affiliation(s)
- Anna R. Moore
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Amy E. Ghiretti
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
CaMKII-dependent phosphorylation of the GTPase Rem2 is required to restrict dendritic complexity. J Neurosci 2013; 33:6504-15. [PMID: 23575848 DOI: 10.1523/jneurosci.3861-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The morphogenesis of the dendritic arbor is a critical aspect of neuronal development, ensuring that proper neural networks are formed. However, the molecular mechanisms that underlie this dendritic remodeling remain obscure. We previously established the activity-regulated GTPase Rem2 as a negative regulator of dendritic complexity. In this study, we identify a signaling pathway whereby Rem2 regulates dendritic arborization through interactions with Ca(2+)/calmodulin-dependent kinases (CaMKs) in rat hippocampal neurons. Specifically, we demonstrate that Rem2 functions downstream of CaMKII but upstream of CaMKIV in a pathway that restricts dendritic complexity. Furthermore, we show that Rem2 is a novel substrate of CaMKII and that phosphorylation of Rem2 by CaMKII regulates Rem2 function and subcellular localization. Overall, our results describe a unique signal transduction network through which Rem2 and CaMKs function to restrict dendritic complexity.
Collapse
|
32
|
Yang T, Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1644-54. [PMID: 23063948 DOI: 10.1016/j.bbamem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/28/2022]
Abstract
RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members - Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca²⁺ (Ca(V)1 and Ca(V)2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of Ca(V)1/Ca(V)2 channels. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
33
|
Activity-dependent subcellular cotrafficking of the small GTPase Rem2 and Ca2+/CaM-dependent protein kinase IIα. PLoS One 2012; 7:e41185. [PMID: 22815963 PMCID: PMC3399833 DOI: 10.1371/journal.pone.0041185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022] Open
Abstract
Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity.
Collapse
|
34
|
Isolation and molecular characterization of Rem2 isoforms in the rainbow trout (Oncorhynchus mykiss): Tissue and central nervous system expression. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:93-101. [PMID: 21983188 DOI: 10.1016/j.cbpb.2011.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 12/17/2022]
Abstract
REM2 is a member of the REM, RAD, and GEM/KIR (RGK) subfamily of RAS superfamily proteins and plays an important role in brain development and function. In this study, two Rem2 isoforms were isolated from the rainbow trout (Oncorhynchus mykiss). The two genes, designated O. mykiss rem2a and rem2b, both encode 304 amino acid proteins with 61% and 62% identities to zebrafish (Danio rerio) Rem2, respectively, and each with 43% identity to mammalian (human) REM2. To our knowledge, this is the first incidence of Rem2 isoforms in a species that are the result of gene duplication. Both isoforms possessed similar tissue expression profiles with the highest levels in the brain. The rem2a gene has significantly higher expression levels than rem2b in all tissues assayed except the brain and head kidney. In the central nervous system, both isoforms showed similar expression levels with the highest levels occurring in the olfactory bulb, cerebrum, and midbrain, though rem2a expression is significantly higher in the spinal cord. Based on known functional roles of Rem2 in synapse development and stem cell proliferation, the characterization of Rem2 in rainbow trout could shed light on its role in adult vertebrate neurogenesis and brain regeneration.
Collapse
|
35
|
Wang HG, Wang C, Pitt GS. Rem2-targeted shRNAs reduce frequency of miniature excitatory postsynaptic currents without altering voltage-gated Ca²⁺ currents. PLoS One 2011; 6:e25741. [PMID: 21980534 PMCID: PMC3183078 DOI: 10.1371/journal.pone.0025741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/09/2011] [Indexed: 02/02/2023] Open
Abstract
Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays important roles in neuronal cell development and function. Rem2 is a member of the RGK (Rad, Rem, Rem2, Gem/Kir) subfamily of small GTPases that confers potent inhibition upon VGCCs. The physiologic roles of RGK proteins, particularly in the brain, are poorly understood. Rem2 was implicated in synaptogenesis through an RNAi screen and proposed to regulate Ca2+ homeostasis in neurons. To test this hypothesis and uncover physiological roles for Rem2 in the brain, we investigated the molecular mechanisms by which Rem2 knockdown affected synaptogenesis and Ca2+ homeostasis in cultured rat hippocampal neurons. Expression of a cocktail of shRNAs targeting rat Rem2 (rRem2) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) measured 10 d after transfection (14 d in vitro), but did not affect mEPSC amplitude. VGCC current amplitude after rRem2-targeted knockdown was not different from that in control cells, however, at either 4 or 10 d post transfection. Co-expression of a human Rem2 that was insensitive to the shRNAs targeting rRem2 was unable to prevent the reduction in mEPSC frequency after rRem2-targeted knockdown. Over-expression of rRem2 resulted in 50% reduction in VGCC current, but neither the mEPSC frequency nor amplitude was affected. Taken together, the observed effects upon synaptogenesis after shRNA treatment are more likely due to mechanisms other than modulation of VGCCs and Ca2+ homeostasis, and may be independent of Rem2. In addition, our results reveal a surprising lack of contribution of VGCCs to synaptogenesis during early development in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Hong-Gang Wang
- Division of Cardiology, Department of Medicine, and the Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chuan Wang
- Division of Cardiology, Department of Medicine, and the Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Geoffrey S. Pitt
- Division of Cardiology, Department of Medicine, and the Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kuzirian MS, Paradis S. Emerging themes in GABAergic synapse development. Prog Neurobiol 2011; 95:68-87. [PMID: 21798307 DOI: 10.1016/j.pneurobio.2011.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 12/25/2022]
Abstract
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.
Collapse
Affiliation(s)
- Marissa S Kuzirian
- Brandeis Univeristy, Department of Biology, National Center for Behavioral Genomics, Volen Center for Complex Systems, Waltham, MA 02453, USA
| | | |
Collapse
|