1
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
2
|
da Silva MDV, Bacarin CC, Machado CCA, Franciosi A, Mendes JDDL, da Silva Watanabe P, Miqueloto CA, Fattori V, Albarracin OYE, Verri WA, Aktar R, Peiris M, Aziz Q, Blackshaw LA, de Almeida Araújo EJ. Descriptive study of perineuronal net in enteric nervous system of humans and mice. J Neurochem 2024; 168:1956-1972. [PMID: 38970456 DOI: 10.1111/jnc.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Perineuronal nets (PNN) are highly specialized structures of the extracellular matrix around specific groups of neurons in the central nervous system (CNS). They play functions related to optimizing physiological processes and protection neurons against harmful stimuli. Traditionally, their existence was only described in the CNS. However, there was no description of the presence and composition of PNN in the enteric nervous system (ENS) until now. Thus, our aim was to demonstrate the presence and characterize the components of the PNN in the enteric nervous system. Samples of intestinal tissue from mice and humans were analyzed by RT-PCR and immunofluorescence assays. We used a marker (Wisteria floribunda agglutinin) considered as standard for detecting the presence of PNN in the CNS and antibodies for labeling members of the four main PNN-related protein families in the CNS. Our results demonstrated the presence of components of PNN in the ENS of both species; however its molecular composition is species-specific.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Cristiano Correia Bacarin
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Anelise Franciosi
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Joana Darc de Lima Mendes
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Paulo da Silva Watanabe
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | | |
Collapse
|
3
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
4
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Talwalkar A, Haden G, Duncan KA. Chondroitin sulfate proteoglycans mRNA expression and degradation in the zebra finch following traumatic brain injury. J Chem Neuroanat 2024; 138:102418. [PMID: 38621597 DOI: 10.1016/j.jchemneu.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. From minutes to months following damage, injury can result in a complex pathophysiology that can lead to temporary or permanent deficits including an array of neurodegenerative symptoms. These changes can include behavioral dysregulation, memory dysfunctions, and mood changes including depression. The nature and severity of impairments resulting from TBIs vary widely given the range of injury type, location, and extent of brain tissue involved. In response to the injury, the brain induces structural and functional changes to promote repair and minimize injury size. Despite its high prevalence, effective treatment strategies for TBI are limited. PNNs are part of the neuronal extracellular matrix (ECM) that mediate synaptic stabilization in the adult brain and thus neuroplasticity. They are associated mostly with inhibitory GABAergic interneurons and are thought to be responsible for maintaining the excitatory/inhibitory balance of the brain. The major structural components of PNNs include multiple chondroitin sulfate proteoglycans (CSPGs) as well as other structural proteins. Here we examine the effects of injury on CSPG expression, specifically around the changes in the side change moieties. To investigate CSPG expression following injury, adult male and female zebra finches received either a bilateral penetrating, or no injury and qPCR analysis and immunohistochemistry for components of the CSPGs were examined at 1- or 7-days post-injury. Next, to determine if CSPGs and thus PNNs should be a target for therapeutic intervention, CSPG side chains were degraded at the time of injury with chondroitinase ABC (ChABC) CSPGs moieties were examined. Additionally, GABA receptor mRNA and aromatase mRNA expression was quantified following CSPG degradation as they have been implicated in neuronal survival and neurogenesis. Our data indicate the CSPG moieties change following injury, potentially allowing for a brief period of synaptic reorganization, and that treatments that target CSPG side chains are successful in further targeting this brief critical period by decreasing GABA mRNA receptor expression, but also decreasing aromatase expression.
Collapse
Affiliation(s)
- Adam Talwalkar
- Program in Biochemistry, Vassar College, Poughkeepsie, NY 12604, USA
| | - Gage Haden
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA; Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
6
|
Belliveau C, Théberge S, Netto S, Rahimian R, Fakhfouri G, Hosdey C, Davoli MA, Hendrickson A, Hao K, Giros B, Turecki G, Alonge KM, Mechawar N. Chondroitin sulfate glycan sulfation patterns influence histochemical labeling of perineuronal nets: a comparative study of interregional distribution in human and mouse brain. Glycobiology 2024; 34:cwae049. [PMID: 38995945 PMCID: PMC11257773 DOI: 10.1093/glycob/cwae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Perineuronal nets (PNNs) are a condensed subtype of extracellular matrix that form a net-like coverings around certain neurons in the brain. PNNs are primarily composed of chondroitin sulfate (CS) proteoglycans from the lectican family that consist of CS-glycosaminoglycan side chains attached to a core protein. CS disaccharides can exist in various isoforms with different sulfation patterns. Literature suggests that CS disaccharide sulfation patterns can influence the function of PNNs as well as their labeling. This study was conducted to characterize such interregional CS disaccharide sulfation pattern differences in adult human (n = 81) and mouse (n = 19) brains. Liquid chromatography tandem mass spectrometry was used to quantify five different CS disaccharide sulfation patterns, which were then compared to immunolabeling of PNNs using Wisteria Floribunda Lectin (WFL) to identify CS-glycosaminoglycans and anti-aggrecan to identify CS proteoglycans. In healthy brains, significant regional and species-specific differences in CS disaccharide sulfation and single versus double-labeling pattern were identified. A secondary analysis to investigate how early-life stress impacts these PNN features discovered that although early-life stress increases WFL+ PNN density, the CS-glycosaminoglycan sulfation code and single versus double PNN-labeling distributions remained unaffected in both species. These results underscore PNN complexity in traditional research, emphasizing the need to consider their heterogeneity in future experiments.
Collapse
Affiliation(s)
- Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Stefanie Netto
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Clémentine Hosdey
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Aarun Hendrickson
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Street, Box 357610, Seattle, WA 98195, United States
| | - Kathryn Hao
- Health and Human Sciences, University of Southern California, Zonal Avenue, Biggy St, Los Angeles, CA 90033, United States
| | - Bruno Giros
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Kimberly M Alonge
- Department of Medicinal Chemistry, University of Washington, 1959 NE Pacific Street, Box 357610, Seattle, WA 98195, United States
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Blvd LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| |
Collapse
|
7
|
Belliveau C, Théberge S, Netto S, Rahimian R, Fakhfouri G, Hosdey C, Davoli MA, Hendrickson A, Hao K, Giros B, Turecki G, Alonge KM, Mechawar N. Chondroitin sulfate glycan sulfation patterns influence histochemical labeling of perineuronal nets: a comparative study of interregional distribution in human and mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579711. [PMID: 38948769 PMCID: PMC11212934 DOI: 10.1101/2024.02.09.579711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Perineuronal nets (PNNs) are a condensed subtype of extracellular matrix that form a net-like coverings around certain neurons in the brain. PNNs are primarily composed of chondroitin sulfate (CS) proteoglycans from the lectican family that consist of CS-glycosaminoglycan (CS-GAG) side chains attached to a core protein. CS disaccharides can exist in various isoforms with different sulfation patterns. Literature suggests that CS disaccharide sulfation patterns can influence the function of PNNs as well as their labeling. This study was conducted to characterize such interregional CS disaccharide sulfation pattern differences in adult human (N = 81) and mouse (N = 19) brains. Liquid chromatography tandem mass spectrometry was used to quantify five different CS disaccharide sulfation patterns, which were then compared to immunolabeling of PNNs using Wisteria Floribunda Lectin (WFL) to identify CS-GAGs and anti-aggrecan to identify CS proteoglycans. In healthy brains, significant regional and species-specific differences in CS disaccharide sulfation and single versus double-labeling pattern were identified. A secondary analysis to investigate how early-life stress (ELS) impacts these PNN features discovered that although ELS increases WFL+ PNN density, the CS-GAG sulfation code and single versus double PNN-labeling distributions remained unaffected in both species. These results underscore PNN complexity in traditional research, emphasizing the need to consider their heterogeneity in future experiments.
Collapse
Affiliation(s)
- Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Stefanie Netto
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Clémentine Hosdey
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
| | - Aarun Hendrickson
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Kathryn Hao
- Health and Human Sciences, University of Southern California, Los Angeles, USA
| | - Bruno Giros
- Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
- Department of Psychiatry, McGill University, Montreal, Qc, Canada
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Qc, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Qc, Canada
- Department of Psychiatry, McGill University, Montreal, Qc, Canada
| |
Collapse
|
8
|
Cheung SW, Bhavnani E, Simmons DG, Bellingham MC, Noakes PG. Perineuronal nets are phagocytosed by MMP-9 expressing microglia and astrocytes in the SOD1 G93A ALS mouse model. Neuropathol Appl Neurobiol 2024; 50:e12982. [PMID: 38742276 DOI: 10.1111/nan.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
AIMS Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.
Collapse
Affiliation(s)
- Sang Won Cheung
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Ekta Bhavnani
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
9
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Sánchez-Ventura J, Lago N, Penas C, Navarro X, Udina E. Link Protein 1 Is Involved in the Activity-Dependent Modulation of Perineuronal Nets in the Spinal Cord. Int J Mol Sci 2024; 25:4267. [PMID: 38673852 PMCID: PMC11050079 DOI: 10.3390/ijms25084267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.
Collapse
Affiliation(s)
| | | | | | - Xavier Navarro
- Department Cell Biology, Physiology and Immunology, Institute of Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (N.L.); (C.P.)
| | - Esther Udina
- Department Cell Biology, Physiology and Immunology, Institute of Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (N.L.); (C.P.)
| |
Collapse
|
11
|
Paveliev M, Egorchev AA, Musin F, Lipachev N, Melnikova A, Gimadutdinov RM, Kashipov AR, Molotkov D, Chickrin DE, Aganov AV. Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence. Int J Mol Sci 2024; 25:4227. [PMID: 38673819 PMCID: PMC11049984 DOI: 10.3390/ijms25084227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.
Collapse
Affiliation(s)
- Mikhail Paveliev
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anton A. Egorchev
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Foat Musin
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Nikita Lipachev
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| | - Anastasiia Melnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karl Marx 74, Kazan 420015, Tatarstan, Russia;
| | - Rustem M. Gimadutdinov
- Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kremlyovskaya 35, Kazan 420008, Tatarstan, Russia; (A.A.E.); (F.M.); (R.M.G.)
| | - Aidar R. Kashipov
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Dmitry Molotkov
- Biomedicum Imaging Unit, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland;
| | - Dmitry E. Chickrin
- Institute of Artificial Intelligence, Robotics and Systems Engineering, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Tatarstan, Russia; (A.R.K.); (D.E.C.)
| | - Albert V. Aganov
- Institute of Physics, Kazan Federal University, Kremlyovskaya 16a, Kazan 420008, Tatarstan, Russia; (N.L.); (A.V.A.)
| |
Collapse
|
12
|
Li X, Wu X, Lu T, Kuang C, Si Y, Zheng W, Li Z, Xue Y. Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3412. [PMID: 38542386 PMCID: PMC10970535 DOI: 10.3390/ijms25063412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xue Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianwen Wu
- Department of Laboratory Animal Sciences, Peking University Health Sciences Center, Beijing 100191, China;
| | - Tangsheng Lu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yue Si
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Zhonghao Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
| |
Collapse
|
13
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
14
|
Mohd Sahini SN, Mohd Nor Hazalin NA, Srikumar BN, Jayasingh Chellammal HS, Surindar Singh GK. Environmental enrichment improves cognitive function, learning, memory and anxiety-related behaviours in rodent models of dementia: Implications for future study. Neurobiol Learn Mem 2024; 208:107880. [PMID: 38103676 DOI: 10.1016/j.nlm.2023.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Environmental enrichment (EE) is a process of brain stimulation by modifying the surroundings, for example, by changing the sensory, social, or physical conditions. Rodents have been used in such experimental strategies through exposure to diverse physical, social, and exploration conditions. The present study conducted an extensive analysis of the existing literature surrounding the impact of EE on dementia rodent models. The review emphasised the two principal aspects that are very closely related to dementia: cognitive function (learning and memory) as well as psychological factors (anxiety-related behaviours such as phobias and unrealistic worries). Also highlighted were the mechanisms involved in the rodent models of dementia showing EE effects. Two search engines, PubMed and Science Direct, were used for data collection using the following keywords: environmental enrichment, dementia, rodent model, cognitive performance, and anxiety-related behaviour. Fifty-five articles were chosen depending on the criteria for inclusion and exclusion. The rodent models with dementia demonstrated improved learning and memory in the form of hampered inflammatory responses, enhanced neuronal plasticity, and sustained neuronal activity. EE housing also prevented memory impairment through the prevention of amyloid beta (Aβ) seeding formation, an early stage of Aβ plaque formation. The rodents subjected to EE were observed to present increased exploratory activity and exert less anxiety-related behaviour, compared to those in standard housing. However, some studies have proposed that EE intervention through exercise would be too mild to counteract the anxiety-related behaviour and risk assessment behaviour deficits in the Alzheimer's disease rodent model. Future studies should be conducted on old-aged rodents and the duration of EE exposure that would elicit the greatest benefits since the existing studies have been conducted on a range of ages and EE durations. In summary, EE had a considerable effect on dementia rodent models, with the most evident being improved cognitive function.
Collapse
Affiliation(s)
- Siti Norhafizah Mohd Sahini
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Outpatient Pharmacy Department, Hospital Raja Permaisuri Bainun, 30450 Ipoh, Perak, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru - 560029, India
| | - Hanish Singh Jayasingh Chellammal
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
15
|
Zhang Z, Song Z, Luo L, Zhu Z, Zuo X, Ju C, Wang X, Ma Y, Wu T, Yao Z, Zhou J, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation inhibits the expression of chondroitin sulfate proteoglycans after spinal cord injury via the Sox9 pathway. Neural Regen Res 2024; 19:180-189. [PMID: 37488865 PMCID: PMC10479858 DOI: 10.4103/1673-5374.374136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 07/26/2023] Open
Abstract
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment. The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair. These proteins are thus candidate targets for spinal cord injury therapy. Our previous studies demonstrated that 810 nm photobiomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals. However, the specific mechanism and potential targets involved remain to be clarified. In this study, to investigate the therapeutic effect of photobiomodulation, we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm2 for 50 minutes once a day for 7 consecutive days. We found that photobiomodulation greatly restored motor function in mice and downregulated chondroitin sulfate proteoglycan expression in the injured spinal cord. Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury, and versican, a type of proteoglycan, was one of the most markedly changed molecules. Immunofluorescence staining showed that after spinal cord injury, versican was present in astrocytes in spinal cord tissue. The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction, whereas photobiomodulation inhibited the expression of versican. Furthermore, we found that the increased levels of p-Smad3, p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204, (E)-SIS3, and SB 202190. This suggests that Smad3/Sox9 and MAPK/Sox9 pathways may be involved in the effects of photobiomodulation. In summary, our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans, and versican is one of the key target molecules of photobiomodulation. MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photobiomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Beiyu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
16
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
18
|
Coutens B, Lejards C, Bouisset G, Verret L, Rampon C, Guiard BP. Enriched environmental exposure reduces the onset of action of the serotonin norepinephrin reuptake inhibitor venlafaxine through its effect on parvalbumin interneurons plasticity in mice. Transl Psychiatry 2023; 13:227. [PMID: 37365183 DOI: 10.1038/s41398-023-02519-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Guillaume Bouisset
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| |
Collapse
|
19
|
Michel-Flutot P, Lane MA, Lepore AC, Vinit S. Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation. Cells 2023; 12:1519. [PMID: 37296640 PMCID: PMC10252981 DOI: 10.3390/cells12111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
High spinal cord injuries (SCIs) lead to permanent functional deficits, including respiratory dysfunction. Patients living with such conditions often rely on ventilatory assistance to survive, and even those that can be weaned continue to suffer life-threatening impairments. There is currently no treatment for SCI that is capable of providing complete recovery of diaphragm activity and respiratory function. The diaphragm is the main inspiratory muscle, and its activity is controlled by phrenic motoneurons (phMNs) located in the cervical (C3-C5) spinal cord. Preserving and/or restoring phMN activity following a high SCI is essential for achieving voluntary control of breathing. In this review, we will highlight (1) the current knowledge of inflammatory and spontaneous pro-regenerative processes occurring after SCI, (2) key therapeutics developed to date, and (3) how these can be harnessed to drive respiratory recovery following SCIs. These therapeutic approaches are typically first developed and tested in relevant preclinical models, with some of them having been translated into clinical studies. A better understanding of inflammatory and pro-regenerative processes, as well as how they can be therapeutically manipulated, will be the key to achieving optimal functional recovery following SCIs.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Michael A. Lane
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Angelo C. Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
20
|
Gandhi T, Canepa CR, Adeyelu TT, Adeniyi PA, Lee CC. Neuroanatomical Alterations in the CNTNAP2 Mouse Model of Autism Spectrum Disorder. Brain Sci 2023; 13:891. [PMID: 37371370 DOI: 10.3390/brainsci13060891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with neurodevelopmental alterations, including atypical forebrain cellular organization. Mutations in several ASD-related genes often result in cerebral cortical anomalies, such as the abnormal developmental migration of excitatory pyramidal cells and the malformation of inhibitory neuronal circuitry. Notably here, mutations in the CNTNAP2 gene result in ectopic superficial cortical neurons stalled in lower cortical layers and alterations to the balance of cortical excitation and inhibition. However, the broader circuit-level implications of these findings have not been previously investigated. Therefore, we assessed whether ectopic cortical neurons in CNTNAP2 mutant mice form aberrant connections with higher-order thalamic nuclei, potentially accounting for some autistic behaviors, such as repetitive and hyperactive behaviors. Furthermore, we assessed whether the development of parvalbumin-positive (PV) cortical interneurons and their specialized matrix support structures, called perineuronal nets (PNNs), were altered in these mutant mice. We found alterations in both ectopic neuronal connectivity and in the development of PNNs, PV neurons and PNNs enwrapping PV neurons in various sensory cortical regions and at different postnatal ages in the CNTNAP2 mutant mice, which likely lead to some of the cortical excitation/inhibition (E/I) imbalance associated with ASD. These findings suggest neuroanatomical alterations in cortical regions that underlie the emergence of ASD-related behaviors in this mouse model of the disorder.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Cade R Canepa
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Tolulope T Adeyelu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Philip A Adeniyi
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70806, USA
| |
Collapse
|
21
|
Soles A, Selimovic A, Sbrocco K, Ghannoum F, Hamel K, Moncada EL, Gilliat S, Cvetanovic M. Extracellular Matrix Regulation in Physiology and in Brain Disease. Int J Mol Sci 2023; 24:7049. [PMID: 37108212 PMCID: PMC10138624 DOI: 10.3390/ijms24087049] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on "omic" approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling.
Collapse
Affiliation(s)
- Alyssa Soles
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Adem Selimovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Ferris Ghannoum
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Emmanuel Labrada Moncada
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Gandhi T, Liu CC, Adeyelu TT, Canepa CR, Lee CC. Behavioral regulation by perineuronal nets in the prefrontal cortex of the CNTNAP2 mouse model of autism spectrum disorder. Front Behav Neurosci 2023; 17:1114789. [PMID: 36998537 PMCID: PMC10043266 DOI: 10.3389/fnbeh.2023.1114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Autism spectrum disorders (ASDs) arise from altered development of the central nervous system, and manifest behaviorally as social interaction deficits and restricted and repetitive behaviors. Alterations to parvalbumin (PV) expressing interneurons have been implicated in the neuropathological and behavioral deficits in autism. In addition, perineuronal nets (PNNs), specialized extracellular matrix structures that enwrap the PV-expressing neurons, also may be altered, which compromises neuronal function and susceptibility to oxidative stress. In particular, the prefrontal cortex (PFC), which regulates several core autistic traits, relies on the normal organization of PNNs and PV-expressing cells, as well as other neural circuit elements. Consequently, we investigated whether PNNs and PV-expressing cells were altered in the PFC of the CNTNAP2 knockout mouse model of ASD and whether these contributed to core autistic-like behaviors in this model system. We observed an overexpression of PNNs, PV-expressing cells, and PNNs enwrapping PV-expressing cells in adult CNTNAP2 mice. Transient digestion of PNNs from the prefrontal cortex (PFC) by injection of chondroitinase ABC in CNTNAP2 mutant mice rescued some of the social interaction deficits, but not the restricted and repetitive behaviors. These findings suggest that the neurobiological regulation of PNNs and PVs in the PFC contribute to social interaction behaviors in neurological disorders including autism.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Tolulope T. Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Cade R. Canepa
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
23
|
The Biological Behaviors of Neural Stem Cell Affected by Microenvironment from Host Organotypic Brain Slices under Different Conditions. Int J Mol Sci 2023; 24:ijms24044182. [PMID: 36835592 PMCID: PMC9964775 DOI: 10.3390/ijms24044182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Therapeutic strategies based on neural stem cells (NSCs) transplantation bring new hope for neural degenerative disorders, while the biological behaviors of NSCs after being grafted that were affected by the host tissue are still largely unknown. In this study, we engrafted NSCs that were isolated from a rat embryonic cerebral cortex onto organotypic brain slices to examine the interaction between grafts and the host tissue both in normal and pathological conditions, including oxygen-glucose deprivation (OGD) and traumatic injury. Our data showed that the survival and differentiation of NSCs were strongly influenced by the microenvironment of the host tissue. Enhanced neuronal differentiation was observed in normal conditions, while significantly more glial differentiation was observed in injured brain slices. The process growth of grafted NSCs was guided by the cytoarchitecture of host brain slices and showed the distinct difference between the cerebral cortex, corpus callosum and striatum. These findings provided a powerful resource for unraveling how the host environment determines the fate of grafted NSCs, and raise the prospect of NSCs transplantation therapy for neurological diseases.
Collapse
|
24
|
Reduced expression of perineuronal nets in the normotopic somatosensory cortex of the tish rat. Brain Res 2023; 1800:148179. [PMID: 36511312 DOI: 10.1016/j.brainres.2022.148179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The tish (telencephalic internal structural heterotopia) rat is a naturally occurring and unique model of a malformation of cortical development (MCD) arising from a sponeantous mutation in the Eml1 gene. Tish rats are characterized by a macroscopic bilateral heterotopic dysplastic cortex (HDCx) and an overlaying, intact normotopic neocortex (NNCx). These two cortices are functional and have been reported to innervate and establish connections with subcortical regions including the thalamus, resulting in a dual-cortical representation. Additionally, impaired GABAergic neurotransmission and early-onset spike wave discharge bursts have been reported in developing tish rats. Perineuronal nets (PNNs) are specialized extraceullar matrix structures that predominately surround and stabilize parvalbumin-positive (PV+) GABAergic interneurons and are essential components of the neural landscape. Here, we report a significant reduction in the average number of WFA+-PNNs in the normotopic somatosensory cortex (NSSCx) of the tish rat at two developmental time points, P16 and P35, corresponding to a decrease in the number of PV+ interneurons ensheathed by a PNN in the NSSCx. Compared with control animals, PNN expression was partially, but significantly restored following treatment with insulin-like growth factor 1 (IGF-1). These data suggest that the 'dual cortical representation' in the setting of an MCD reduces the cortical activation necessary for proper PNN expression likely contributing to the impairments in GABAergic neurotransmission and network excitability previously identified in the tish rat.
Collapse
|
25
|
Distribution and postnatal development of chondroitin sulfate proteoglycans in the perineuronal nets of cholinergic motoneurons innervating extraocular muscles. Sci Rep 2022; 12:21606. [PMID: 36517521 PMCID: PMC9751140 DOI: 10.1038/s41598-022-25692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Fine control of extraocular muscle fibers derives from two subpopulations of cholinergic motoneurons in the oculomotor-, trochlear- and abducens nuclei. Singly- (SIF) and multiply innervated muscle fibers (MIF) are supplied by the SIF- and MIF motoneurons, respectively, representing different physiological properties and afferentation. SIF motoneurons, as seen in earlier studies, are coated with chondroitin sulfate proteoglycan rich perineuronal nets (PNN), whereas MIF motoneurons lack those. Fine distribution of individual lecticans in the composition of PNNs and adjacent neuropil, as well as the pace of their postnatal accumulation is, however, still unknown. Therefore, the present study aims, by using double immunofluorescent identification and subsequent morphometry, to describe local deposition of lecticans in the perineuronal nets and neuropil of the three eye movement nuclei. In each nucleus PNNs were consequently positive only with WFA and aggrecan reactions, suggesting the dominating role of aggrecan is PNN establishment. Brevican, neurocan and versican however, did not accumulate at all in PNNs but were evenly and moderately present throughout the neuropils. The proportion of PNN bearing motoneurons appeared 76% in oculomotor-, 72.2% in trochlear- and 78.3% in the abducens nucleus. We also identified two morphological subsets of PNNs, the focal and diffuse nets of SIF motoneurons. The process of CSPG accumulation begins just after birth, although considerable PNNs occur at week 1 age around less than half of the motoneurons, which ratio doubles until 2-month age. These findings may be related to the postnatal establishment of the oculokinetic network, performing different repertoires of voluntary eye movements in functionally afoveolate and foveolate animals.
Collapse
|
26
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|
27
|
John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Res Bull 2022; 190:179-194. [DOI: 10.1016/j.brainresbull.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
28
|
Anwar MM, Özkan E, Gürsoy-Özdemir Y. The role of extracellular matrix alterations in mediating astrocyte damage and pericyte dysfunction in Alzheimer's disease: A comprehensive review. Eur J Neurosci 2022; 56:5453-5475. [PMID: 34182602 DOI: 10.1111/ejn.15372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The brain is a highly vascularized tissue protected by the blood-brain barrier (BBB), a complex structure allowing only necessary substances to pass through into the brain while limiting the entrance of harmful toxins. The BBB comprises several components, and the most prominent features are tight junctions between endothelial cells (ECs), which are further wrapped in a layer of pericytes. Pericytes are multitasked cells embedded in a thick basement membrane (BM) that consists of a fibrous extracellular matrix (ECM) and are surrounded by astrocytic endfeet. The primary function of astrocytes and pericytes is to provide essential blood supply and vital nutrients to the brain. In Alzheimer's disease (AD), long-term neuroinflammatory cascades associated with infiltration of harmful neurotoxic proteins may lead to BBB dysfunction and altered ECM components resulting in brain homeostatic imbalance, synaptic damage, and declined cognitive functions. Moreover, BBB structure and functional integrity may be lost due to induced ECM alterations, astrocyte damage, and pericytes dysfunction, leading to amyloid-beta (Aβ) hallmarks deposition in different brain regions. Herein, we highlight how BBB, ECM, astrocytes, and pericytes dysfunction can play a leading role in AD's pathogenesis and discuss their impact on brain functions.
Collapse
Affiliation(s)
- Mai M Anwar
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
29
|
3D biocomposite culture enhances differentiation of dopamine-like neurons from SH-SY5Y cells: A model for studying Parkinson's disease phenotypes. Biomaterials 2022; 290:121858. [PMID: 36272218 DOI: 10.1016/j.biomaterials.2022.121858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
Abstract
Studies of underlying neurodegenerative processes in Parkinson's Disease (PD) have traditionally utilized cell cultures grown on two-dimensional (2D) surfaces. Biomimetic three-dimensional (3D) cell culture platforms have been developed to better emulate features of the brain's natural microenvironment. We here use our bioengineered brain-like tissue model, composed of a silk-hydrogel composite, to study the 3D microenvironment's contributions on the development and performance of dopaminergic-like neurons (DLNs). Compared with 2D culture, SH-SY5Y cells differentiated in 3D microenvironments were enriched for DLNs concomitant with a reduction in proliferative capacity during the neurodevelopmental process. Additionally, the 3D DLN cultures were more sensitive to oxidative stresses elicited by the PD-related neurotoxin 1-methyl-4-phenylpyridinium (MPP). MPP induced transcriptomic profile changes specific to 3D-differentiated DLN cultures, replicating the dysfunction of neuronal signaling pathways and mitochondrial dynamics implicated in PD. Overall, this physiologically-relevant 3D platform resembles a useful tool for studying dopamine neuron biology and interrogating molecular mechanisms underlying neurodegeneration in PD.
Collapse
|
30
|
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022; 16:1022754. [PMID: 36339816 PMCID: PMC9630365 DOI: 10.3389/fncel.2022.1022754] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.
Collapse
|
31
|
Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 2022; 311:224-233. [PMID: 35451082 PMCID: PMC9790650 DOI: 10.1111/imr.13081] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) also known by its official gene designation secreted phosphoprotein-1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell types that functions not only in intercellular communication, but also in the extracellular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduction functions by virtue of modular structural motifs that provide interaction surfaces for integrins and CD44-variant receptors. In humans, there are three experimentally verified splice variants of OPN/SPP1 and CD44's ten exons are also alternatively spiced in a cell/tissue-specific manner, although very little is known about how this is regulated in the central nervous system (CNS). Post-translational modifications of phosphorylation, glycosylation, and localized cleavage by specific proteases in the cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 function more complex. Flexibility in OPN/SPP1 structure and its engagement with integrins having the ability to transmit signals in inside-out and outside-in direction, is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infection, and neurodegeneration, processes that impair tissue homeostasis. This review will focus on what is currently known about OPN/SPP1 function in the brain.
Collapse
Affiliation(s)
- Ashley Yim
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christian Smith
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
32
|
Sánchez-Ventura J, Canal C, Hidalgo J, Penas C, Navarro X, Torres-Espin A, Fouad K, Udina E. Aberrant perineuronal nets alter spinal circuits, impair motor function, and increase plasticity. Exp Neurol 2022; 358:114220. [PMID: 36064003 DOI: 10.1016/j.expneurol.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
Perineuronal nets (PNNs) are a specialized extracellular matrix that have been extensively studied in the brain. Cortical PNNs are implicated in synaptic stabilization, plasticity inhibition, neuroprotection, and ionic buffering. However, the role of spinal PNNs, mainly found around motoneurons, is still unclear. Thus, the goal of this study is to elucidate the role of spinal PNNs on motor function and plasticity in both intact and spinal cord injured mice. We used transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice), which is implicated in PNN assembly. Crtl1 KO mice showed disorganized PNNs with an altered proportion of their components in both motor cortex and spinal cord. Behavioral and electrophysiological tests revealed motor impairments and hyperexcitability of spinal reflexes in Crtl1 KO compared to WT mice. These functional outcomes were accompanied by an increase in excitatory synapses around spinal motoneurons. Moreover, following spinal lesions of the corticospinal tract, Crtl1 KO mice showed increased contralateral sprouting compared to WT mice. Altogether, the lack of Crtl1 generates aberrant PNNs that alter excitatory synapses and change the physiological properties of motoneurons, overall altering spinal circuits and producing motor impairment. This disorganization generates a permissive scenario for contralateral axons to sprout after injury.
Collapse
Affiliation(s)
- J Sánchez-Ventura
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - C Canal
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - J Hidalgo
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - C Penas
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - X Navarro
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - A Torres-Espin
- Weill Institute for Neuroscience, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - K Fouad
- Neuroscience and Mental Health Institute, Department of Physical Therapy, Faculty of Rehabilitative Medicine, University of Alberta, Edmonton, AB, Canada
| | - E Udina
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
33
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Zhang G, Jin LQ, Rodemer W, Hu J, Root ZD, Medeiros DM, Selzer ME. The Composition and Cellular Sources of CSPGs in the Glial Scar After Spinal Cord Injury in the Lamprey. Front Mol Neurosci 2022; 15:918871. [PMID: 35832392 PMCID: PMC9271930 DOI: 10.3389/fnmol.2022.918871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Axon regrowth after spinal cord injury (SCI) is inhibited by several types of inhibitory extracellular molecules in the central nervous system (CNS), including chondroitin sulfate proteoglycans (CSPGs), which also are components of perineuronal nets (PNNs). The axons of lampreys regenerate following SCI, even though their spinal cords contain CSPGs, and their neurons are enwrapped by PNNs. Previously, we showed that by 2 weeks after spinal cord transection in the lamprey, expression of CSPGs increased in the lesion site, and thereafter, decreased to pre-injury levels by 10 weeks. Enzymatic digestion of CSPGs in the lesion site with chondroitinase ABC (ChABC) enhanced axonal regeneration after SCI and reduced retrograde neuronal death. Lecticans (aggrecan, versican, neurocan, and brevican) are the major CSPG family in the CNS. Previously, we cloned a cDNA fragment that lies in the most conserved link-domain of the lamprey lecticans and found that lectican mRNAs are expressed widely in lamprey glia and neurons. Because of the lack of strict one-to-one orthology with the jawed vertebrate lecticans, the four lamprey lecticans were named simply A, B, C, and D. Using probes that distinguish these four lecticans, we now show that they all are expressed in glia and neurons but at different levels. Expression levels are relatively high in embryonic and early larval stages, gradually decrease, and are upregulated again in adults. Reductions of lecticans B and D are greater than those of A and C. Levels of mRNAs for lecticans B and D increased dramatically after SCI. Lectican D remained upregulated for at least 10 weeks. Multiple cells, including glia, neurons, ependymal cells and microglia/macrophages, expressed lectican mRNAs in the peripheral zone and lesion center after SCI. Thus, as in mammals, lamprey lecticans may be involved in axon guidance and neuroplasticity early in development. Moreover, neurons, glia, ependymal cells, and microglia/macrophages, are responsible for the increase in CSPGs during the formation of the glial scar after SCI.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Li-Qing Jin
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
| | - Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Department of Neural Sciences, Philadelphia, PA, United States
- Department of Neurology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- *Correspondence: Michael E. Selzer
| |
Collapse
|
35
|
Sánchez-Ventura J, Lane MA, Udina E. The Role and Modulation of Spinal Perineuronal Nets in the Healthy and Injured Spinal Cord. Front Cell Neurosci 2022; 16:893857. [PMID: 35669108 PMCID: PMC9163449 DOI: 10.3389/fncel.2022.893857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Rather than being a stable scaffold, perineuronal nets (PNNs) are a dynamic and specialized extracellular matrix involved in plasticity modulation. They have been extensively studied in the brain and associated with neuroprotection, ionic buffering, and neural maturation. However, their biological function in the spinal cord and the effects of disrupting spinal PNNs remain elusive. The goal of this review is to summarize the current knowledge of spinal PNNs and their potential in pathological conditions such as traumatic spinal cord injury (SCI). We also highlighted interventions that have been used to modulate the extracellular matrix after SCI, targeting the glial scar and spinal PNNs, in an effort to promote regeneration and stabilization of the spinal circuits, respectively. These concepts are discussed in the framework of developmental and neuroplastic changes in PNNs, drawing similarities between immature and denervated neurons after an SCI, which may provide a useful context for future SCI research.
Collapse
Affiliation(s)
- Judith Sánchez-Ventura
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Michael A. Lane
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
- The Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Esther Udina
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- *Correspondence: Esther Udina
| |
Collapse
|
36
|
Stancanelli E, Liu W, Wander R, Li J, Wang Z, Arnold K, Su G, Kanack A, Pham TQ, Pagadala V, Padmanabhan A, Xu Y, Liu J. Chemoenzymatic Synthesis of Homogeneous Heparan Sulfate and Chondroitin Sulfate Chimeras. ACS Chem Biol 2022; 17:1207-1214. [PMID: 35420777 DOI: 10.1021/acschembio.2c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are two structurally distinct natural polysaccharides. Here, we report the synthesis of a library of seven structurally homogeneous HS and CS chimeric dodecasaccharides (12-mers). The synthesis was accomplished using six HS biosynthetic enzymes and four CS biosynthetic enzymes. The chimeras contain a CS domain on the reducing end and a HS domain on the nonreducing end. The synthesized chimeras display anticoagulant activity as measured by both in vitro and ex vivo experiments. Furthermore, the anticoagulant activity of H/C 12-mer 5 is reversible by protamine, a U.S. Food and Drug Administration-approved polypeptide to neutralize anticoagulant drug heparin. Our findings demonstrate the synthesis of unnatural HS-CS chimeric oligosaccharides using natural biosynthetic enzymes, offering a new class of glycan molecules for biological research.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Adam Kanack
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Truong Quang Pham
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Anand Padmanabhan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Benedetti B, Weidenhammer A, Reisinger M, Couillard-Despres S. Spinal Cord Injury and Loss of Cortical Inhibition. Int J Mol Sci 2022; 23:5622. [PMID: 35628434 PMCID: PMC9144195 DOI: 10.3390/ijms23105622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent deficits in motor functions, which correlates with the severity and location of the lesion. Despite being disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and these neurons can therefore be a resource for functional recovery, provided that they are properly reconnected and retuned to a physiological state. However, inappropriate re-integration of cortical neurons or aberrant activity of corticospinal networks may worsen the long-term outcomes of SCI. In this review, we revisit recent studies addressing the relation between cortical disinhibition and functional recovery after SCI. Evidence suggests that cortical disinhibition can be either beneficial or detrimental in a context-dependent manner. A careful examination of clinical data helps to resolve apparent paradoxes and explain the heterogeneity of treatment outcomes. Additionally, evidence gained from SCI animal models indicates probable mechanisms mediating cortical disinhibition. Understanding the mechanisms and dynamics of cortical disinhibition is a prerequisite to improve current interventions through targeted pharmacological and/or rehabilitative interventions following SCI.
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Annika Weidenhammer
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Maximilian Reisinger
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
38
|
Kulesskaya N, Mugantseva E, Minkeviciene R, Acosta N, Rouhiainen A, Kuja-Panula J, Kislin M, Piirainen S, Paveliev M, Rauvala H. Low-Molecular Weight Protamine Overcomes Chondroitin Sulfate Inhibition of Neural Regeneration. Front Cell Dev Biol 2022; 10:865275. [PMID: 35547817 PMCID: PMC9084902 DOI: 10.3389/fcell.2022.865275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Protamine is an arginine-rich peptide that replaces histones in the DNA-protein complex during spermatogenesis. Protamine is clinically used in cardiopulmonary bypass surgery to neutralize the effects of heparin that is required during the treatment. Here we demonstrate that protamine and its 14–22 amino acid long fragments overcome the neurite outgrowth inhibition by chondroitin sulfate proteoglycans (CSPGs) that are generally regarded as major inhibitors of regenerative neurite growth after injuries of the adult central nervous system (CNS). Since the full-length protamine was found to have toxic effects on neuronal cells we used the in vitro neurite outgrowth assay to select a protamine fragment that retains the activity to overcome the neurite outgrowth inhibition on CSPG substrate and ended up in the 14 amino acid fragment, low-molecular weight protamine (LMWP). In contrast to the full-length protamine, LMWP displays very low or no toxicity in our assays in vitro and in vivo. We therefore started studies on LMWP as a possible drug lead in treatment of CNS injuries, such as the spinal cord injury (SCI). LMWP mimicks HB-GAM (heparin-binding growth-associated molecule; pleiotrophin) in that it overcomes the CSPG inhibition on neurite outgrowth in primary CNS neurons in vitro and inhibits binding of protein tyrosine phosphatase (PTP) sigma, an inhibitory receptor in neurite outgrowth, to its CSPG ligand. Furthermore, the chondroitin sulfate (CS) chains of the cell matrix even enhance the LMWP-induced neurite outgrowth on CSPG substrate. In vivo studies using the hemisection and hemicontusion SCI models in mice at the cervical level C5 revealed that LMWP enhances recovery when administered through intracerebroventricular or systemic route. We suggest that LMWP is a promising drug lead to develop therapies for CNS injuries.
Collapse
Affiliation(s)
- Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ekaterina Mugantseva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rimante Minkeviciene
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Natalia Acosta
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ari Rouhiainen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Juha Kuja-Panula
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikhail Kislin
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sami Piirainen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikhail Paveliev
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
40
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
41
|
Schmidt S, Holzer M, Arendt T, Sonntag M, Morawski M. Tau Protein Modulates Perineuronal Extracellular Matrix Expression in the TauP301L-acan Mouse Model. Biomolecules 2022; 12:biom12040505. [PMID: 35454094 PMCID: PMC9027016 DOI: 10.3390/biom12040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological signs of several tau-associated dementias. Types of neurons in the CNS are spared of tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective function by forming an external shield preventing the internalization of misfolded tau. We recently demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have been associated with changes of PN structure and protein signature. In this study, we hypothesized that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau. Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans of the PN.
Collapse
|
42
|
Magyar A, Racz E, Matesz C, Wolf E, Kiss P, Gaal B. Lesion-induced changes of brevican expression in the perineuronal net of the superior vestibular nucleus. Neural Regen Res 2022; 17:649-654. [PMID: 34380906 PMCID: PMC8504393 DOI: 10.4103/1673-5374.320988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Damage to the vestibular sense organs evokes static and dynamic deficits in the eye movements, posture and vegetative functions. After a shorter or longer period of time, the vestibular function is partially or completely restored via a series of processes such as modification in the efficacy of synaptic inputs. As the plasticity of adult central nervous system is associated with the alteration of extracellular matrix, including its condensed form, the perineuronal net, we studied the changes of brevican expression in the perineuronal nets of the superior vestibular nucleus after unilateral labyrinth lesion. Our results demonstrated that the unilateral labyrinth lesion and subsequent compensation are accompanied by the changing of brevican staining pattern in the perineuronal nets of superior vestibular nucleus of the rat. The reduction of brevican in the perineuronal nets of superior vestibular nucleus may contribute to the vestibular plasticity by suspending the non-permissive role of brevican in the restoration of perineuronal net assembly. After a transitory decrease, the brevican expression restored to the control level parallel to the partial restoration of impaired vestibular function. The bilateral changing in the brevican expression supports the involvement of commissural vestibular fibers in the vestibular compensation. All experimental procedures were approved by the ‘University of Debrecen – Committee of Animal Welfare’ (approval No. 6/2017/DEMAB) and the ‘Scientific Ethics Committee of Animal Experimentation’ (approval No. HB/06/ÉLB/2270-10/2017; approved on June 6, 2017).
Collapse
Affiliation(s)
- Agnes Magyar
- Pediatrics Clinic, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Racz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen; MTA-DE Neuroscience Research Group, Debrecen, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Kiss
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Botond Gaal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
43
|
Takiguchi M, Akaike T, Shindo K, Sakuyama R, Koganemaru R, Funakoshi K. Chondroitin sulfate expression around motoneurons changes after complete spinal transection of neonatal rats. Neurosci Lett 2022; 766:136324. [PMID: 34740772 DOI: 10.1016/j.neulet.2021.136324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Hind limb locomotor activity spontaneously recovers after complete spinal transection (CST) in neonatal rats, but the mechanisms underlying the recovery are poorly understood. The perineuronal net (PNN) surrounding the neuronal cell bodies comprises an extracellular matrix that regulates neuronal plasticity during development. Here, we examined the expression of chondroitin sulfate (CS), a major component of the PNN, on motoneurons after CST in neonatal rats, and compared it with that in juvenile rats, in which hindlimb locomotor activity does not recover spontaneously. The spinal cord was transected at the mid-thoracic level in neonatal (postnatal day 5 [P5] and P10) and juvenile (P15 and P20) rats. Two weeks after CST, the percentage of motoneurons surrounded by chondroitin sulfate C (CS-C) - positive structures was significantly lower in rats with CST at P10 than in intact rats, and tended to be higher in rats with CST at P15 than in intact rats. The percentage of motoneurons with CS-A - positive structures was significantly lower in rats with CST at P15 than in intact rats. These findings suggest that CS-A and CS-C are differentially expressed in the PNNs in rats with CST. The decrease in CS-C - positive PNNs might facilitate the formation of new synaptic contacts to motoneurons, resulting in the recovery of the hindlimb locomotor activity in rats with CST during the neonatal period.
Collapse
Affiliation(s)
- Masahito Takiguchi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Takashi Akaike
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kaoru Shindo
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Risa Sakuyama
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Ran Koganemaru
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan.
| |
Collapse
|
44
|
Dubisova J, Burianova JS, Svobodova L, Makovicky P, Martinez-Varea N, Cimpean A, Fawcett JW, Kwok JCF, Kubinova S. Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice. Brain Res Bull 2022; 181:144-156. [PMID: 35066096 PMCID: PMC8867078 DOI: 10.1016/j.brainresbull.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. Adult C57BL/6 mice were fed with chow containing 5% (w/w) 4-MU for 6 months, at a dose ~6.7 mg/g/day. The oral administration of 4-MU reduced the glycosaminoglycan level in the brain to 72% and the spinal cord to 50% when compared to the controls. Spontaneous object recognition test (SOR) performed at 2, 3, 6 and 7 months showed a significant increase in SOR score in the 6-months treatment group 24 h after object presentation. The effect however did not persist in the washout group (1-month post treatment). Immunohistochemistry confirmed a reduction of PNNs, with shorter and less arborization of aggrecan staining around dendrites in hippocampus after 6 months of 4-MU treatment. Histopathological examination revealed mild atrophy in articular cartilage but it did not affect the motor performance as demonstrated in rotarod test. In conclusion, systemic oral administration of 4-MU for 6 months reduced PNN formation around neurons and enhanced memory retention in mice. However, the memory enhancement was not sustained despite the reduction of PNNs, possibly due to the lack of memory enhancement training during the washout period. Our results suggest that 4-MU treatment might offer a strategy for PNN modulation in memory enhancement. Removal of perineuronal nets (PNNs) reactivates neuroplasticity. Oral administration of 4-methylumbelliferone (4-MU) reduces PNNs. PNN reduction leads to enhancement in recognition memory in mice. The memory effect is not sustained likely due to a lack of memory training.
Collapse
Affiliation(s)
- Jana Dubisova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Jana Svobodova Burianova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lucie Svobodova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pavol Makovicky
- Department of Biology, Faculty of Education, J. Selye University, Slovakia
| | - Noelia Martinez-Varea
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Anda Cimpean
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; 2nd Medical Faculty, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic
| | - James W Fawcett
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C F Kwok
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom.
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
45
|
Kulesskaya N, Molotkov D, Sliepen S, Mugantseva E, Garcia Horsman A, Paveliev M, Rauvala H. Heparin-Binding Growth-Associated Molecule (Pleiotrophin) Affects Sensory Signaling and Selected Motor Functions in Mouse Model of Anatomically Incomplete Cervical Spinal Cord Injury. Front Neurol 2021; 12:738800. [PMID: 34938257 PMCID: PMC8685413 DOI: 10.3389/fneur.2021.738800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models. In vivo imaging of blood-oxygen-level-dependent (BOLD) signals associated with functional activity in the somatosensory cortex was used to assess the sensory functions during vibrotactile hind paw stimulation. The signal displays an exaggerated response in animals with lateral hemisection that recovers to the level seen in the sham-operated mice by injection of HB-GAM to the trauma site. The effect of HB-GAM treatment on sensory-motor functions was assessed by performance in demanding behavioral tests requiring integration of afferent and efferent signaling with central coordination. Administration of HB-GAM either by direct injection into the trauma site or by intrathecal injection improves the climbing abilities in animals with cervical hemisection and in addition enhances the grip strength in animals with lateral hemicontusion without affecting the spontaneous locomotor activity. Recovery of sensory signaling in the sensorimotor cortex by HB-GAM to the level of sham-operated mice may contribute to the improvement of skilled locomotion requiring integration of spatiotemporal signals in the somatosensory cortex.
Collapse
Affiliation(s)
- Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dmitry Molotkov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sonny Sliepen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ekaterina Mugantseva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Arturo Garcia Horsman
- Real-time Imaging Laboratory, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikhail Paveliev
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Mahmud KAHA, Hasan F, Khan MI, Adnan A. Shock-Induced Damage Mechanism of Perineuronal Nets. Biomolecules 2021; 12:biom12010010. [PMID: 35053158 PMCID: PMC8774183 DOI: 10.3390/biom12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
The perineuronal net (PNN) region of the brain’s extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to shock loading and to understand the mechanical properties of different PNN components such as glycan, GAG, and protein. In this study, we evaluated the mechanical strength of PNN molecules and the interfacial strength between the PNN components. Afterward, we assessed the PNN molecules’ damage efficiency under various conditions such as shock speed, preexisting bubble, and boundary conditions. The secondary structure altercation of the protein molecules of the PNN was analyzed to evaluate damage intensity under varying shock speeds. At a higher shock speed, damage intensity is more elevated, and hyaluronan (glycan molecule) is most likely to break at the rigid junction. The primary structure of the protein molecules is least likely to fail. Instead, the molecules’ secondary bonds will be altered. Our study suggests that the number of hydrogen bonds during the shock wave propagation is reduced, which leads to the change in protein conformations and damage within the PNN structure. As such, we found a direct connection between shock wave intensity and PNN damage.
Collapse
|
47
|
Landeck L, Kaiser ME, Hefter D, Draguhn A, Both M. Enriched Environment Modulates Sharp Wave-Ripple (SPW-R) Activity in Hippocampal Slices. Front Neural Circuits 2021; 15:758939. [PMID: 34924964 PMCID: PMC8678456 DOI: 10.3389/fncir.2021.758939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Behavioral flexibility depends on neuronal plasticity which forms and adapts the central nervous system in an experience-dependent manner. Thus, plasticity depends on interactions between the organism and its environment. A key experimental paradigm for studying this concept is the exposure of rodents to an enriched environment (EE), followed by studying differences to control animals kept under standard conditions (SC). While multiple changes induced by EE have been found at the cellular-molecular and cognitive-behavioral levels, little is known about EE-dependent alterations at the intermediate level of network activity. We, therefore, studied spontaneous network activity in hippocampal slices from mice which had previously experienced EE for 10–15 days. Compared to control animals from standard conditions (SC) and mice with enhanced motor activity (MC) we found several differences in sharp wave-ripple complexes (SPW-R), a memory-related activity pattern. Sharp wave amplitude, unit firing during sharp waves, and the number of superimposed ripple cycles were increased in tissue from the EE group. On the other hand, spiking precision with respect to the ripple oscillations was reduced. Recordings from single pyramidal cells revealed a reduction in synaptic inhibition during SPW-R together with a reduced inhibition-excitation ratio. The number of inhibitory neurons, including parvalbumin-positive interneurons, was unchanged. Altered activation or efficacy of synaptic inhibition may thus underlie changes in memory-related network activity patterns which, in turn, may be important for the cognitive-behavioral effects of EE exposure.
Collapse
Affiliation(s)
- Lucie Landeck
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin E Kaiser
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
48
|
Alonge KM, Herbert MJ, Yagi M, Cook DG, Banks WA, Logsdon AF. Changes in Brain Matrix Glycan Sulfation Associate With Reactive Gliosis and Motor Coordination in Mice With Head Trauma. Front Behav Neurosci 2021; 15:745288. [PMID: 34776892 PMCID: PMC8581466 DOI: 10.3389/fnbeh.2021.745288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) structures that enmesh and regulate neurocircuits involved in motor and sensory function. Maladaptive changes to the composition and/or abundance of PNNs have been implicated in preclinical models of neuroinflammation and neurocircuit destabilization. The central nervous system (CNS) is limited in its capacity to repair and reorganize neural networks following traumatic brain injury (TBI) and little is known about mechanisms of ECM repair in the adult brain after TBI. In this study, adult male C57BL/6 mice were subjected to a TBI via a controlled cortical impact (CCI) to the right motor and somatosensory cortices. At 7 days following CCI, histological analysis revealed a loss of Wisteria floribunda agglutinin (WFA) positive PNN matrices in the ipsilateral cortex. PNNs are comprised of chondroitin sulfate (CS) and dermatan sulfate (DS)-glycosaminoglycans (GAGs), the composition of which are known to influence neuronal integrity and repair. Using an innovative liquid chromatography tandem mass spectrometry (LC-MS/MS) method, we analyzed the relative abundance of six specific CS/DS-GAG isomers (Δ4S-, Δ6S-, Δ4S6S-, Δ2S6S-, Δ0S-CS, and Δ2S4S-DS) from fixed-brain sections after CCI injury. We report a significant shift in CS/DS-GAG sulfation patterns within the rostro-caudal extent of the injury site from mice exposed to CCI at 7 days, but not at 1 day, post-CCI. In the ipsilateral thalamus, the appearance of WFA+ puncta occurred in tandem with gliosis at 7 days post-CCI, but weakly colocalized with markers of gliosis. Thalamic WFA+ puncta showed moderate colocalization with neuronal ubiquitin C-terminal hydrolase L1 (UCHL1), a clinical biomarker for TBI injury. A shift in CS/DS-GAG sulfation was also present in the thalamus including an increase of 6S-CS, which is a specific isomer that associates with the presence of glial scarring. Upregulation of the 6S-CS-specific sulfotransferase (CHST3) gene expression was accompanied by reactive gliosis in both the ipsilateral cortex and thalamus. Moreover, changes in 6S-CS extracted from the thalamus positively correlated with deficits in motor coordination after CCI. Collectively, these data argue that CCI alters CS/DS-GAG sulfation in association with the spatiotemporal progression of neurorepair. Therapeutic interventions targeting restoration of CS/DS-GAG sulfation patterns may improve outcomes from TBI.
Collapse
Affiliation(s)
- Kimberly M Alonge
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Melanie J Herbert
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Mayumi Yagi
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - David G Cook
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Aric F Logsdon
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
49
|
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) assemblies of
polyanionic chondroitin sulfate proteoglycans, hyaluronan, and tenascins that
primarily wrap around GABAergic parvalbumin (PV) interneurons. During
development, PNN formation terminates the critical period of neuroplasticity, a
process that can be reversed by experimental disruption of PNNs. Perineuronal
nets also regulate the intrinsic properties of the enclosed PV neurons thereby
maintaining their inhibitory activity. Recent studies have implicated PNNs in
central nervous system diseases as well as PV neuron dysfunction; consequently,
they have further been associated with altered inhibition, particularly in the
genesis of epilepsy. A wide range of seizure presentations in human and rodent
models exhibit ECM remodeling with PNN disruption due to elevated protease
activity. Inhibition of PNN proteolysis reduces seizure activity suggesting that
PNN degrading enzymes may be potential novel therapeutic targets.
Collapse
Affiliation(s)
- Lata Chaunsali
- School of Neuroscience Graduate Program, Virginia Tech, Blacksburg, VA, USA.,Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Bhanu P Tewari
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| |
Collapse
|
50
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|