1
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
2
|
Martins-Costa C, Wiegers A, Pham VA, Sidhaye J, Doleschall B, Novatchkova M, Lendl T, Piber M, Peer A, Möseneder P, Stuempflen M, Chow SYA, Seidl R, Prayer D, Höftberger R, Kasprian G, Ikeuchi Y, Corsini NS, Knoblich JA. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. Cell Stem Cell 2024; 31:866-885.e14. [PMID: 38718796 DOI: 10.1016/j.stem.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.
Collapse
Affiliation(s)
- Catarina Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Balint Doleschall
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marielle Piber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Ku RY, Torii M. New Molecular Players in the Development of Callosal Projections. Cells 2020; 10:cells10010029. [PMID: 33375263 PMCID: PMC7824101 DOI: 10.3390/cells10010029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Cortical development in humans is a long and ongoing process that continuously modifies the neural circuitry into adolescence. This is well represented by the dynamic maturation of the corpus callosum, the largest white matter tract in the brain. Callosal projection neurons whose long-range axons form the main component of the corpus callosum are evolved relatively recently with a substantial, disproportionate increase in numbers in humans. Though the anatomy of the corpus callosum and cellular processes in its development have been intensively studied by experts in a variety of fields over several decades, the whole picture of its development, in particular, the molecular controls over the development of callosal projections, still has many missing pieces. This review highlights the most recent progress on the understanding of corpus callosum formation with a special emphasis on the novel molecular players in the development of axonal projections in the corpus callosum.
Collapse
Affiliation(s)
- Ray Yueh Ku
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
4
|
Putoux A, Baas D, Paschaki M, Morlé L, Maire C, Attié-Bitach T, Thomas S, Durand B. Altered GLI3 and FGF8 signaling underlies acrocallosal syndrome phenotypes in Kif7 depleted mice. Hum Mol Genet 2020; 28:877-887. [PMID: 30445565 DOI: 10.1093/hmg/ddy392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/14/2022] Open
Abstract
Acrocallosal syndrome (ACLS) is a rare genetic disorder characterized by agenesis or hypoplasia of corpus callosum (CC), polydactyly, craniofacial dysmorphism and severe intellectual deficiency. We previously identified KIF7, a key ciliary component of the Sonic hedgehog (SHH) pathway, as being a causative gene for this syndrome, thus including ACLS in the group of ciliopathies. In both humans and mice, KIF7 depletion leads to abnormal GLI3 processing and over-activation of SHH target genes. To understand the pathological mechanisms involved in CC defects in this syndrome, we took advantage of a previously described Kif7-/- mouse model to demonstrate that in addition to polydactyly and neural tube closure defects, these mice present CC agenesis with characteristic Probst bundles, thus recapitulating major ACLS features. We show that CC agenesis in these mice is associated with specific patterning defects of the cortical septum boundary leading to altered distribution of guidepost cells required to guide the callosal axons through the midline. Furthermore, by crossing Kif7-/- mice with Gli3Δ699 mice exclusively producing the repressive isoform of GLI3 (GLI3R), we demonstrate that decreased GLI3R signaling is fully responsible for the ACLS features in these mice, as all phenotypes are rescued by increasing GLI3R activity. Moreover, we show that increased FGF8 signaling is responsible in part for CC defects associated to KIF7 depletion, as modulating FGF8 signaling rescued CC formation anteriorly in Kif7-/- mice. Taken together our data demonstrate that ACLS features rely on defective GLI3R and FGF8 signaling.
Collapse
Affiliation(s)
- Audrey Putoux
- Centre de Recherche en Neurosciences de Lyon, Équipe GENDEV, INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France.,Service de Génétique et Centre de Référence des Anomalies du Développement de la Région Auvergne-Rhône-Alpes, CHU de Lyon, France
| | - Dominique Baas
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Marie Paschaki
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Laurette Morlé
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Charline Maire
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Histology-Embryology and Cytogenetics, Necker Hospital, AP-HP, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| |
Collapse
|
5
|
Minocha S, Herr W. Cortical and Commissural Defects Upon HCF-1 Loss in Nkx2.1-Derived Embryonic Neurons and Glia. Dev Neurobiol 2019; 79:578-595. [PMID: 31207118 PMCID: PMC6771735 DOI: 10.1002/dneu.22704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Formation of the cerebral cortex and commissures involves a complex developmental process defined by multiple molecular mechanisms governing proliferation of neuronal and glial precursors, neuronal and glial migration, and patterning events. Failure in any of these processes can lead to malformations. Here, we study the role of HCF-1 in these processes. HCF-1 is a conserved metazoan transcriptional co-regulator long implicated in cell proliferation and more recently in human metabolic disorders and mental retardation. Loss of HCF-1 in a subset of ventral telencephalic Nkx2.1-positive progenitors leads to reduced numbers of GABAergic interneurons and glia, owing not to decreased proliferation but rather to increased apoptosis before cell migration. The loss of these cells leads to development of severe commissural and cortical defects in early postnatal mouse brains. These defects include mild and severe structural defects of the corpus callosum and anterior commissure, respectively, and increased folding of the cortex resembling polymicrogyria. Hence, in addition to its well-established role in cell proliferation, HCF-1 is important for organ development, here the brain.
Collapse
Affiliation(s)
- Shilpi Minocha
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| | - Winship Herr
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| |
Collapse
|
6
|
Abstract
The corpus callosum is the largest of the 3 telencephalic commissures in eutherian (placental) mammals. Although the anterior commissure, and the hippocampal commissure before being pushed dorsally by the expanding frontal lobes, cross through the lamina reuniens (upper part of the lamina terminalis), the callosal fibers need a transient interhemispheric cellular bridge to cross. This review describes the molecular pathways that initiate the specification of the cells comprising this bridge, the specification of the callosal neurons, and the repulsive and attractive guidance molecules that convey the callosal axons toward, across, and away from the midline to connect with their targets.
Collapse
|
7
|
Barbaresi P, Mensà E, Sagrati A, Graciotti L. Postnatal development of the distribution of nitric oxide-producing neurons in the rat corpus callosum. Neurosci Res 2019; 151:15-30. [PMID: 30796928 DOI: 10.1016/j.neures.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022]
Abstract
The postnatal development of nitric oxide (NO)-producing intracallosal neurons was studied in rats by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry from postnatal day 0 (P0) to P30. NADPH-d-positive neurons (NADPH-d+Ns) were detected already at P0, mainly in the rostral region of the corpus callosum (cc). Their location and the intensity of staining allowed them to be classified as type I NO-producing neurons. At P0, tufts of intensely labeled fibers, probably corresponding to the callosal septa described in the monkey and human cc, entered the ventral cc region and reached its dorsal portion. From P5, cell bodies and dendrites were often associated to blood vessels. The number of intracallosal NADPH-d+Ns rose in the first postnatal days to peak at P5, it declined until P10, and then remained almost constant until P30. Their size increased from P0 to P30, dramatically so (>65%) from P0 to P15. From P10 onward their distribution was adult-like, i.e. NADPH-d+Ns were more numerous in the lateral and intermediate portions of the cc and diminished close to the midline. In conjunction with previous data, these findings indicate that intracallosal NADPH-d+Ns could have a role in callosal axon guidance, myelination, refinement processes, and callosal blood flow regulation.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy.
| | - Emanuela Mensà
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy; Department of Clinical and Molecular Sciences, Section of Experimental Pathology, Marche Polytechnic University, I-60020, Ancona, Italy
| | - Andrea Sagrati
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Section of Experimental Pathology, Marche Polytechnic University, I-60020, Ancona, Italy
| |
Collapse
|
8
|
Mire E, Hocine M, Bazellières E, Jungas T, Davy A, Chauvet S, Mann F. Developmental Upregulation of Ephrin-B1 Silences Sema3C/Neuropilin-1 Signaling during Post-crossing Navigation of Corpus Callosum Axons. Curr Biol 2018; 28:1768-1782.e4. [PMID: 29779877 DOI: 10.1016/j.cub.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circuit, which raises a key developmental question, is that the outgoing trajectory of post-crossing CCAs is mirror-symmetric with the incoming trajectory of pre-crossing axons. Here, we show that post-crossing CCAs switch off their response to axon guidance cues, among which the secreted Semaphorin-3C (Sema3C), that act as attractants for pre-crossing axons on their way to the midline. This change is concomitant with an upregulation of the surface protein Ephrin-B1, which acts in CCAs to inhibit Sema3C signaling via interaction with the Neuropilin-1 (Nrp1) receptor. This silencing activity is independent of Eph receptors and involves a N-glycosylation site (N-139) in the extracellular domain of Ephrin-B1. Together, our results reveal a molecular mechanism, involving interaction between the two unrelated guidance receptors Ephrin-B1 and Nrp1, that is used to control the navigation of post-crossing axons in the corpus callosum.
Collapse
Affiliation(s)
- Erik Mire
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| | | | | | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| |
Collapse
|
9
|
Minocha S, Valloton D, Arsenijevic Y, Cardinaux JR, Guidi R, Hornung JP, Lebrand C. Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Sci Rep 2017; 7:43093. [PMID: 28266561 PMCID: PMC5339799 DOI: 10.1038/srep43093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1−/−) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors.
Collapse
Affiliation(s)
- Shilpi Minocha
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Delphine Valloton
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Av. de France 15, CH-1004 Lausanne, Switzerland
| | - Jean-René Cardinaux
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, CH-1008 Lausanne, Switzerland
| | - Raffaella Guidi
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, CH-1008 Lausanne, Switzerland
| | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Cécile Lebrand
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| |
Collapse
|
10
|
Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci 2015; 47:206-15. [PMID: 26397040 DOI: 10.1016/j.ijdevneu.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Corpus callosum (CC) is the largest commissural tract in mammalian brain and it acts to coordinate information between the two cerebral hemispheres. During brain development CC forms at the boundary area between the cortex and the septum and special transient neural and glial guidepost structures in this area are thought to be critical for CC formation. In addition, it is thought that the fusion of the two hemispheres in the septum area is a prerequisite for CC formation. However, very little is known of the molecular mechanisms behind the fusion of the two hemispheres. Netrin1 (NTN1) acts as an axon guidance molecule in the developing central nervous system and Ntn1 deficiency leads to the agenesis of CC in mouse. Here we have analyzed Ntn1 deficient mice to better understand the reasons behind the observed lack of CC. We show that Ntn1 deficiency leads to defects in neural, but not in glial guidepost structures that may contribute to the agenesis of CC. In addition, Nnt1 was expressed by the leptomeningeal cells bordering the two septal walls prior to fusion. Normally these cells are removed when the septal fusion occurs. At the same time, the Laminin containing basal lamina produced by the leptomeningeal cells is disrupted in the midline area to allow the cells to mix and the callosal axons to cross. In Ntn1 deficient embryos however, the leptomeninges and the basal lamina were not removed properly from the midline area and the septal fusion did not occur. Thus, NTN1 contributes to the formation of the CC by promoting the preceding removal of the midline leptomeningeal cells and interhemispheric fusion.
Collapse
Affiliation(s)
- Janne Hakanen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
11
|
Commissural axonal corridors instruct neuronal migration in the mouse spinal cord. Nat Commun 2015; 6:7028. [DOI: 10.1038/ncomms8028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
|
12
|
Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation. Nat Commun 2015; 6:6887. [PMID: 25904499 PMCID: PMC4423212 DOI: 10.1038/ncomms7887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures. Guidepost cells provide guidance cues that orient growing axons in the brain but little is known about the midline guidepost cells that populate the mouse anterior commissure (AC). Here, the authors show that the transcription factor Nkx2.1 regulates the differentiation of astroglia and neurons that cooperate to guide AC axons through the expression of Slit2.
Collapse
|
13
|
Transient Sp8+ handlebar-like interneuron structure traversing the corpus callosum during the second postnatal week. Neuroreport 2015; 26:216-22. [DOI: 10.1097/wnr.0000000000000331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Luzzati F, Nato G, Oboti L, Vigna E, Rolando C, Armentano M, Bonfanti L, Fasolo A, Peretto P. Quiescent neuronal progenitors are activated in the juvenile guinea pig lateral striatum and give rise to transient neurons. Development 2014; 141:4065-75. [DOI: 10.1242/dev.107987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the adult brain, active stem cells are a subset of astrocytes residing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Whether quiescent neuronal progenitors occur in other brain regions is unclear. Here, we describe a novel neurogenic system in the external capsule and lateral striatum (EC-LS) of the juvenile guinea pig that is quiescent at birth but becomes active around weaning. Activation of neurogenesis in this region was accompanied by the emergence of a neurogenic-like niche in the ventral EC characterized by chains of neuroblasts, intermediate-like progenitors and glial cells expressing markers of immature astrocytes. Like neurogenic astrocytes of the SVZ and DG, these latter cells showed a slow rate of proliferation and retained BrdU labeling for up to 65 days, suggesting that they are the primary progenitors of the EC-LS neurogenic system. Injections of GFP-tagged lentiviral vectors into the SVZ and the EC-LS of newborn animals confirmed that new LS neuroblasts originate from the activation of local progenitors and further supported their astroglial nature. Newborn EC-LS neurons existed transiently and did not contribute to neuronal addition or replacement. Nevertheless, they expressed Sp8 and showed strong tropism for white matter tracts, wherein they acquired complex morphologies. For these reasons, we propose that EC-LS neuroblasts represent a novel striatal cell type, possibly related to those populations of transient interneurons that regulate the development of fiber tracts during embryonic life.
Collapse
Affiliation(s)
- Federico Luzzati
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
| | - Giulia Nato
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
| | - Livio Oboti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
| | - Elisa Vigna
- Department of Oncology, University of Turin, c/o Institute for Cancer Research and Treatment (IRCC), Candiolo 10060, Italy
| | - Chiara Rolando
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
- Department of Neuroscience, University of Turin, Turin 10126, Italy
| | - Maria Armentano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Aldo Fasolo
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano 10010, Italy
| |
Collapse
|
15
|
Thorwarth A, Schnittert-Hübener S, Schrumpf P, Müller I, Jyrch S, Dame C, Biebermann H, Kleinau G, Katchanov J, Schuelke M, Ebert G, Steininger A, Bönnemann C, Brockmann K, Christen HJ, Crock P, deZegher F, Griese M, Hewitt J, Ivarsson S, Hübner C, Kapelari K, Plecko B, Rating D, Stoeva I, Ropers HH, Grüters A, Ullmann R, Krude H. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet 2014; 51:375-87. [PMID: 24714694 DOI: 10.1136/jmedgenet-2013-102248] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND NKX2-1 encodes a transcription factor with large impact on the development of brain, lung and thyroid. Germline mutations of NKX2-1 can lead to dysfunction and malformations of these organs. Starting from the largest coherent collection of patients with a suspected phenotype to date, we systematically evaluated frequency, quality and spectrum of phenotypic consequences of NKX2-1 mutations. METHODS After identifying mutations by Sanger sequencing and array CGH, we comprehensively reanalysed the phenotype of affected patients and their relatives. We employed electrophoretic mobility shift assay (EMSA) to detect alterations of NKX2-1 DNA binding. Gene expression was monitored by means of in situ hybridisation and compared with the expression level of MBIP, a candidate gene presumably involved in the disorders and closely located in close genomic proximity to NKX2-1. RESULTS Within 101 index patients, we detected 17 point mutations and 10 deletions. Neurological symptoms were the most consistent finding (100%), followed by lung affection (78%) and thyroidal dysfunction (75%). Novel symptoms associated with NKX2-1 mutations comprise abnormal height, bouts of fever and cardiac septum defects. In contrast to previous reports, our data suggest that missense mutations in the homeodomain of NKX2-1 not necessarily modify its DNA binding capacity and that this specific type of mutations may be associated with mild pulmonary phenotypes such as asthma. Two deletions did not include NKX2-1, but MBIP, whose expression spatially and temporarily coincides with NKX2-1 in early murine development. CONCLUSIONS The high incidence of NKX2-1 mutations strongly recommends the routine screen for mutations in patients with corresponding symptoms. However, this analysis should not be confined to the exonic sequence alone, but should take advantage of affordable NGS technology to expand the target to adjacent regulatory sequences and the NKX2-1 interactome in order to maximise the yield of this diagnostic effort.
Collapse
Affiliation(s)
- Anne Thorwarth
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Schnittert-Hübener
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Pamela Schrumpf
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Ines Müller
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sabine Jyrch
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Christof Dame
- Department of Neonatology, Charité University Medicine, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Gunnar Kleinau
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Juri Katchanov
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité University Medicine, Berlin, Germany
| | - Grit Ebert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anne Steininger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Hans-Jürgen Christen
- Department for Neuropediatrics, Children's and Youth Hospital "Auf der Bult", Hannover, Germany
| | - Patricia Crock
- Division of Pediatric Endocrinology & Diabetes, John Hunter Children's Hospital, Newcastle, Australia
| | - Francis deZegher
- Department of Woman and Child, University of Leuven, Leuven, Belgium
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, Member of the German Center for Lung Research, University of Munich, Munich, Germany
| | - Jacqueline Hewitt
- Division of Endocrinology & Diabetes, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Sten Ivarsson
- Department of Clinical Sciences- Pediatric Endocrinology, University Hospital MAS, Malmö, Sweden
| | - Christoph Hübner
- Department of Neuropediatrics, Charité University Medicine, Berlin, Germany
| | - Klaus Kapelari
- Department of Pediatric and Adolescent Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Plecko
- Division of Child Neurology, University Childrens Hospital Zurich, Zurich, Switzerland
| | - Dietz Rating
- Department for Neuropediatrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Iva Stoeva
- Department of Paediatric Endocrinology Screening and Functional Endocrine Diagnostics, University Paediatric Hospital, Medical University Sofia, Sofia, Bulgaria
| | | | - Annette Grüters
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | | | - Heiko Krude
- Institute for Experimental Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
16
|
Heparan sulfotransferases Hs6st1 and Hs2st keep Erk in check for mouse corpus callosum development. J Neurosci 2014; 34:2389-401. [PMID: 24501377 DOI: 10.1523/jneurosci.3157-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The corpus callosum (CC) connects the left and right cerebral hemispheres in mammals and its development requires intercellular communication at the telencephalic midline mediated by signaling proteins. Heparan sulfate (HS) is a sulfated polysaccharide that decorates cell surface and extracellular matrix proteins and regulates the biological activity of numerous signaling proteins via sugar-protein interactions. HS is subject to regulated enzymatic sulfation and desulfation and an attractive, although not proven, hypothesis is that the biological activity of HS is regulated by a sugar sulfate code. Mutant mouse embryos lacking the heparan sulfotransferases Hs2st or Hs6st1 have severe CC phenotypes and form Probst bundles of noncrossing axons flanking large tangles of midline glial processes. Here, we identify a precocious accumulation of Sox9-expressing glial cells in the indusium griseum region and a corresponding depletion at the glial wedge associated with the formation of Probst bundles along the rostrocaudal axis in both mutants. Molecularly, we found a surprising hyperactivation of Erk signaling in Hs2st(-/-) (2-fold) and Hs6st1(-/-) (6-fold) embryonic telencephalon that was most striking at the midline, where Erk signaling is lowest in wild-types, and a 2-fold increase in Fgf8 protein levels in Hs6st1(-/-) embryos that could underpin Erk hyperactivation and excessive glial movement to the indusium griseum. The tightly linked Hs6st1(-/-) CC glial and axonal phenotypes can be rescued by genetic or pharmacological suppression of Fgf8/Erk axis components. Overall, our data fit a model in which Hs2st and Hs6st1 normally generate conditions conducive to CC development by generating an HS-containing environment that keeps Erk signaling in check.
Collapse
|
17
|
Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. ACTA ACUST UNITED AC 2014; 137:1579-613. [PMID: 24477430 DOI: 10.1093/brain/awt358] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.
Collapse
Affiliation(s)
- Timothy J Edwards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia2 Departments of Neurology and Pediatrics, The University of California and the Benioff Children's Hospital, CA, 94158, USA
| | - Elliott H Sherr
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA
| | - A James Barkovich
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA4 Departments of Paediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California San Francisco and The Benioff Children's Hospital, CA 94143-0628 USA
| | - Linda J Richards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia5 School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
18
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
19
|
Abstract
Commissural circuits are brain and spinal cord connections which interconnect the two sides of the central nervous system (CNS). They play essential roles in brain and spinal cord processing, ensuring left-right coordination and synchronization of information and commands. During the formation of neuronal circuits, all commissural neurons of the central nervous system must accomplish a common task, which is to project their axon onto the other side of the nervous system, across the midline that delineates the two halves of the CNS. How this task is accomplished has been the topic of extensive studies over the last past 20 years and remains one of the best models to investigate axon guidance mechanisms. In the first part of this review, I will introduce the commissural circuits, their general role in the physiology of the nervous system, and their recognized or suspected pathogenic properties in human diseases. In the second part of the review, I will concentrate on two commissural circuits, the spinal commissures and the corpus callosum, to detail the cellular and molecular mechanisms governing their formation, mostly during their navigation at the midline.
Collapse
|