1
|
Krumm B, Lundby C, Hansen J, Bejder J, Sørensen H, Equey T, Saugy J, Botrè F, Faiss R. Yearly intrasubject variability of hematological biomarkers in elite athletes for the Athlete Biological Passport. Drug Test Anal 2024; 16:1285-1294. [PMID: 38291831 DOI: 10.1002/dta.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Confounding factors including exercise and environments challenge the interpretation of individual Athlete Biological Passports (ABPs). This study aimed to investigate the natural variability of hematological ABP parameters over 1 year in elite athletes compared with healthy control subjects and the validity of a multiparametric model estimating plasma volume (PV) shifts to correct individual ABP thresholds. Blood samples were collected monthly with full blood counts performed by flow cytometry (Sysmex XN analyzers) in 20 elite xc-skiers (ELITE) and 20 moderately trained controls. Individual ABP profiles were generated through Anti-Doping Administration & Management System Training, a standalone version of the ABP's adaptive model developed by the World Anti-Doping Agency. Additionally, eight serum parameters were computed as volume-sensitive biomarkers to run a multiparametric model to estimate PV. Variability in ELITE compared with controls was significantly higher for the Abnormal Blood Profile Scores (P = 0.003). Among 12 Atypical Passport Findings (ATPF) initially reported, six could be removed after correction of PV shifts with the multiparametric modeling. However, several ATPF were additionally generated (n = 19). Our study outlines a larger intraindividual variability in elite athletes, likely explained by more frequent exposure to extrinsic factors altering hematological biomarkers. PV correction for individual ABP thresholds allowed to explain most of the atypical findings while generating multiple new ATPF occurrences in the elite population. Overall, accounting for PV shifts in elite athletes was shown to be paramount in this study outlining the opportunity to consider PV variations with novel approaches when interpreting individual ABP profiles.
Collapse
Affiliation(s)
- Bastien Krumm
- REDs, Research & Expertise in antiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carsten Lundby
- Section for Health and Exercise Physiology, Inland University of Applied Sciences, Lillehammer, Norway
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Joar Hansen
- Section for Health and Exercise Physiology, Inland University of Applied Sciences, Lillehammer, Norway
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sørensen
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Tristan Equey
- Athlete Biological Passport, Science Department, WADA, World Anti-Doping Agency, Montréal, Quebec, Canada
| | - Jonas Saugy
- REDs, Research & Expertise in antiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- REDs, Research & Expertise in antiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Raphael Faiss
- REDs, Research & Expertise in antiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Loria F, Breenfeldt Andersen A, Bejder J, Bonne T, Grabherr S, Kuuranne T, Leuenberger N, Baastrup Nordsborg N. mRNA biomarkers sensitive and specific to micro-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2024; 16:1392-1401. [PMID: 38382494 DOI: 10.1002/dta.3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Recombinant human erythropoietin (rhEPO) is prohibited by the World Anti-Doping Agency. rhEPO abuse can be indirectly detected via the athlete biological passport (ABP). However, altitude exposure challenges interpretation of the ABP. This study investigated whether 5'-aminolevulinate synthase 2 (ALAS2) and carbonic anhydrase 1 (CA1) in capillary dried blood spots (DBSs) are sensitive and specific markers of rhEPO treatment at altitude. ALAS2 and CA1 expression was monitored in DBS collected weekly before, during, and after a 3-week period at sea level or altitude. Participants were randomly assigned to receive 20 IU kg bw-1 epoetin alpha (rhEPO) or placebo injections every second day for 3 weeks while staying at sea level (rhEPO, n = 25; placebo, n = 9) or altitude (rhEPO, n = 12; placebo, n = 27). ALAS2 and CA1 expression increased up to 300% and 200%, respectively, upon rhEPO treatment at sea-level and altitude (P-values <0.05). When a blinded investigator interpreted the results, ALAS2 and CA1 expression had a sensitivity of 92%. Altitude did not confound the interpretation. Altitude affected ALAS2 and CA1 expression less than actual ABP markers when compared between sea level and altitude results. An individual athlete passport-like approach simulation confirmed the biomarker potential of ALAS2 and CA1. ALAS2 and CA1 were sensitive and specific biomarkers of micro-dose rhEPO treatment at sea level and altitude. Altitude seemed less a confounding factor for these biomarkers, especially when they are combined. Thus, micro-dose rhEPO injections can be detected in a longitudinal blinded setting using mRNA biomarkers in DBS.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Andreas Breenfeldt Andersen
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Silke Grabherr
- University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne & Geneva, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Krumm B, Saugy JJ, Botrè F, Donati F, Faiss R. Indirect biomarkers of blood doping: A systematic review. Drug Test Anal 2024; 16:49-64. [PMID: 37160638 DOI: 10.1002/dta.3514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The detection of blood doping represents a current major issue in sports and an ongoing challenge for antidoping research. Initially focusing on direct detection methods to identify a banned substance or its metabolites, the antidoping effort has been progressively complemented by indirect approaches. The longitudinal and individual monitoring of specific biomarkers aims to identify nonphysiological variations that may be related to doping practices. From this perspective, the identification of markers sensitive to erythropoiesis alteration is key in the screening of blood doping. The current Athlete Biological Passport implemented since 2009 is composed of 14 variables (including two primary markers, i.e., hemoglobin concentration and OFF score) for the hematological module to be used for indirect detection of blood doping. Nevertheless, research has continually proposed and investigated new markers sensitive to an alteration of the erythropoietic cascade and specific to blood doping. If multiple early markers have been identified (at the transcriptomic level) or developed directly in a diagnostics' kit (at a proteomic level), other target variables at the end of the erythropoietic process (linked with the red blood cell functions) may strengthen the hematological module in the future. Therefore, this review aims to provide a global systematic overview of the biomarkers considered to date in the indirect investigation of blood doping.
Collapse
Affiliation(s)
- Bastien Krumm
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas J Saugy
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Raphael Faiss
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Biasini GM, Botrè F, de la Torre X, Donati F. Age-Markers on the Red Blood Cell Surface and Erythrocyte Microparticles may Constitute a Multi-parametric Strategy for Detection of Autologous Blood Transfusion. SPORTS MEDICINE - OPEN 2023; 9:113. [PMID: 38038869 PMCID: PMC10692063 DOI: 10.1186/s40798-023-00662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autologous blood transfusion is one of the illicit strategies, banned by the World Anti-Doping Agency, to increase the levels of hemoglobin, with a consequent improvement in the delivery of oxygen to tissues. At present, this practice is detectable exclusively by the individual, longitudinal monitoring of hematological biomarkers, as in the hematological module of the Athlete Biological Passport; but this indirect approach may suffer from different confounding factors. We are presenting a multi-parametric, analytical strategy to detect autologous blood transfusions by targeting the modification of the red blood cells during storage. We focused on the assessment of "storage lesions", targeting (i) membrane proteins: Glycophorin-A and Band 3 complex, (ii) biomarkers of oxidative stress: Peroxiredoxin-2, (iii) biomarkers of senescence: CD47 and Phosphatidylserine, (iv) erythrocytes microparticles. RESULTS All of the above markers were monitored, by immunological and flow cytofluorimetric methods, on samples of stored whole blood collected at different time intervals, and on fresh blood samples, collected for official doping control tests, mixed "ex vivo" to simulate an autotransfusion. Although anonymized before the delivery to the laboratory, it was possible to mix samples belonging to the same subject based on the "athlete biological passport" code. Our results showed that the irreversible alteration of RBCs morphology, the loss of membrane integrity, the occurrence of hemolysis phenomena, and, more in general, the "aging" of the erythrocytes during storage are closely related to: (i) the reduced concentration, on the erythrocyte membrane, of Band 3 protein (decrease of 19% and of 39% after 20 and 40 days of storage respectively) and of glycophorin A (- 47% and - 63% respectively); (ii) the externalization of phosphatidyl serine (with a five-fold increase after 20 days and a further 2× increase after 40 days); (iii) the reduced concentration of CD47; and (iv) increased levels of erythrocyte microparticles. CONCLUSIONS The most promising method to detect the presence of transfused blood in whole blood samples can be based on a multi-parametric strategy, considering jointly both protein expression on RBCs membranes and micro-vesiculation phenomena.
Collapse
Affiliation(s)
- Giorgia M Biasini
- Sapienza University of Rome, Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
- REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences University of Lausanne, Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
| |
Collapse
|
6
|
Lima G, Shurlock J, Wang G, Karanikolou A, Sutehall S, Pitsiladis YP, D'Alessandro A. Metabolomic Profiling of Recombinant Erythropoietin (rHuEpo) in Trained Caucasian Athletes. Clin J Sport Med 2023; 33:e123-e134. [PMID: 36731031 DOI: 10.1097/jsm.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Recombinant human erythropoietin (rHuEpo) is prohibited by the World Anti-Doping Agency but remains the drug of choice for many cheating athletes wishing to evade detection using current methods. The aim of this study was to identify a robust metabolomics signature of rHuEpo using an untargeted approach in blood (plasma and serum) and urine. DESIGN Longitudinal study. SETTING University of Glasgow. PARTICIPANTS Eighteen male participants regularly engaged in predominantly endurance-based activities, such as running, cycling, swimming, triathlon, and team sports, were recruited. INTERVENTIONS Each participant received 50 IU·kg -1 body mass of rHuEpo subcutaneously every 2 days for 4 weeks. Samples were collected at baseline, during rHuEpo administration (over 4 weeks) and after rHuEpo administration (week 7-10). The samples were analyzed using hydrophilic interaction liquid chromatography mass spectrometry. MAIN OUTCOME MEASURES Significant metabolic signatures of rHuEpo administration were identified in all biofluids tested in this study. RESULTS Regarding metabolomics data, 488 plasma metabolites, 694 serum metabolites, and 1628 urinary metabolites were identified. Reproducible signatures of rHuEpo administration across all biofluids included alterations of pyrimidine metabolism (orotate and dihydroorotate) and acyl-carnitines (palmitoyl-carnitine and elaidic carnitine), metabolic pathways that are associated with erythropoiesis or erythrocyte membrane function, respectively. CONCLUSIONS Preliminary metabolic signatures of rHuEpo administration were identified. Future studies will be required to validate these encouraging results in independent cohorts and with orthogonal techniques, such as integration of our data with signatures derived from other "omics" analyses of rHuEpo administration (eg, transcriptomics).
Collapse
Affiliation(s)
- Giscard Lima
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- University of Rome "Foro Italico," Rome, Italy
| | - Jonathan Shurlock
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - Guan Wang
- Sport and Exercise Science and Sports Medicine Research and Enterprise Group, University of Brighton, Brighton, United Kingdom
| | - Antonia Karanikolou
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - Shaun Sutehall
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Yannis P Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland; and
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
Saugy JJ, Schmoutz T, Botrè F. Altitude and Erythropoietin: Comparative Evaluation of Their Impact on Key Parameters of the Athlete Biological Passport: A Review. Front Sports Act Living 2022; 4:864532. [PMID: 35847455 PMCID: PMC9282833 DOI: 10.3389/fspor.2022.864532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The hematological module of the Athlete's Biological Passport (ABP) identifies doping methods and/or substances used to increase the blood's capacity to transport or deliver oxygen to the tissues. Recombinant human erythropoietin (rhEPOs) are doping substances known to boost the production of red blood cells and might have an effect on the blood biomarkers of the ABP. However, hypoxic exposure influences these biomarkers similarly to rhEPOs. This analogous impact complicates the ABP profiles' interpretation by antidoping experts. The present study aimed to collect and identify, through a literature search, the physiological effects on ABP blood biomarkers induced by these external factors. A total of 43 studies were selected for this review. A positive correlation (R2 = 0.605, r = 0.778, p < 0.001) was identified between the hypoxic dose and the increase in hemoglobin concentration (HGB) percentage. In addition, the change in the reticulocyte percentage (RET%) has been identified as one of the most sensitive parameters to rhEPO use. The mean effects of rhEPO on blood parameters were greater than those induced by hypoxic exposure (1.7 times higher for HGB and RET% and 4 times higher for hemoglobin mass). However, rhEPO micro-doses have shown effects that are hardly distinguishable from those identified after hypoxic exposure. The results of the literature search allowed to identify temporal and quantitative evolution of blood parameters in connection with different hypoxic exposure doses, as well as different rhEPOs doses. This might be considered to provide justified and well-documented interpretations of physiological changes in blood parameters of the Athlete Biological Passport.
Collapse
Affiliation(s)
- Jonas J. Saugy
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jonas J. Saugy
| | - Tania Schmoutz
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Francesco Botrè
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Untargeted Metabolomics Identifies a Novel Panel of Markers for Autologous Blood Transfusion. Metabolites 2022; 12:metabo12050425. [PMID: 35629929 PMCID: PMC9145416 DOI: 10.3390/metabo12050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Untargeted metabolomics was used to analyze serum and urine samples for biomarkers of autologous blood transfusion (ABT). Red blood cell concentrates from donated blood were stored for 35−36 days prior to reinfusion into the donors. Participants were sampled at different time points post-donation and up to 7 days post-transfusion. Metabolomic profiling was performed using ACQUITY ultra performance liquid chromatography (UPLC), Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The markers of ABT were determined by principal component analysis and metabolites that had p < 0.05 and met ≥ 2-fold change from baseline were selected. A total of 11 serum and eight urinary metabolites, including two urinary plasticizer metabolites, were altered during the study. By the seventh day post-transfusion, the plasticizers had returned to baseline, while changes in nine other metabolites (seven serum and two urinary) remained. Five of these metabolites (serum inosine, guanosine and sphinganine and urinary isocitrate and erythronate) were upregulated, while serum glycourdeoxycholate, S-allylcysteine, 17-alphahydroxypregnenalone 3 and Glutamine conjugate of C6H10O2 (2)* were downregulated. This is the first study to identify a panel of metabolites, from serum and urine, as markers of ABT. Once independently validated, it could be universally adopted to detect ABT.
Collapse
|
9
|
Krumm B, Faiss R. Factors Confounding the Athlete Biological Passport: A Systematic Narrative Review. SPORTS MEDICINE - OPEN 2021; 7:65. [PMID: 34524567 PMCID: PMC8443715 DOI: 10.1186/s40798-021-00356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Through longitudinal, individual and adaptive monitoring of blood biomarkers, the haematological module of the athlete biological passport (ABP) has become a valuable tool in anti-doping efforts. The composition of blood as a vector of oxygen in the human body varies in athletes with the influence of multiple intrinsic (genetic) or extrinsic (training or environmental conditions) factors. In this context, it is fundamental to establish a comprehensive understanding of the various causes that may affect blood variables and thereby alter a fair interpretation of ABP profiles. METHODS This literature review described the potential factors confounding the ABP to outline influencing factors altering haematological profiles acutely or chronically. RESULTS Our investigation confirmed that natural variations in ABP variables appear relatively small, likely-at least in part-because of strong human homeostasis. Furthermore, the significant effects on haematological variations of environmental conditions (e.g. exposure to heat or hypoxia) remain debatable. The current ABP paradigm seems rather robust in view of the existing literature that aims to delineate adaptive individual limits. Nevertheless, its objective sensitivity may be further improved. CONCLUSIONS This narrative review contributes to disentangling the numerous confounding factors of the ABP to gather the available scientific evidence and help interpret individual athlete profiles.
Collapse
Affiliation(s)
- Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Center of Research and Expertise in Anti-Doping Sciences - REDs, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Chang WCW, Wang CY, Liu WY, Tsai CC, Wu YT, Hsu MC. Chinese Herbal Medicine Significantly Impacts the Haematological Variables of the Athlete Biological Passport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9533. [PMID: 34574458 PMCID: PMC8469363 DOI: 10.3390/ijerph18189533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
In the fight against sports doping, the Athlete Biological Passport (ABP) system aims to indirectly unveil the doping incidents by monitoring selected biomarkers; however, several unexplored extrinsic factors may dampen a fair interpretation of ABP profiles. Chinese herbal medicine (CHM) plays a pivotal role in the health care system, and some remedies have a long history of being used to treat anaemia. In this study, we addressed the concerns of whether the CHM administration could yield a measurable effect on altering the ABP haematological variables. Forty-eight healthy volunteers were randomly assigned to receive two-week oral administration of one of the six selected CHM products that are commonly prescribed in Taiwan (eight subjects per group). Their blood variables were determined longitudinally in the phases of baseline, intervention, and recovery over 5 weeks. Blood collection and analyses were carried out in strict compliance with relevant operating guidelines. In the groups receiving Angelicae Sinensis Radix, Astragali Radix, and Salviae Miltiorrhizae Radix et Rhizoma, a significant increased reticulocyte percentage and decreased OFF-hr Score were manifested during the intervention, and such effects even sustained for a period of time after withdrawal. All other variables, including haemoglobin and Abnormal Blood Profile Score, did not generate statistical significance. Our results show that the use of CHM may impact the ABP haematological variables. As a consequence, we recommend athletes, particularly those who have been registered in the testing pool, should be aware of taking specific Chinese herbal-based treatment or supplementation, and document any of its usage on the anti-doping forms.
Collapse
Affiliation(s)
- William Chih-Wei Chang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
- Master Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yuan Wang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
| | - Wan-Yi Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan;
- Chinese Medicine Department, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.C.-W.C.); (C.-Y.W.); (W.-Y.L.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Loria F, Cox HD, Voss SC, Rocca A, Miller GD, Townsend N, Georgakopoulos C, Eichner D, Kuuranne T, Leuenberger N. The use of RNA-based 5'-aminolevulinate synthase 2 biomarkers in dried blood spots to detect recombinant human erythropoietin microdoses. Drug Test Anal 2021; 14:826-832. [PMID: 34216436 PMCID: PMC9545850 DOI: 10.1002/dta.3123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
The hematological module of the Athlete Biological Passport (ABP) is used for indirect detection of blood manipulations; however, the use of this method to detect doping, such as with microdoses of recombinant human erythropoietin (rhEPO), is problematic. For this reason, the sensitivity of ABP must be enhanced by implementing novel biomarkers. Here, we show that 5'-aminolevulinate synthase 2 (ALAS2) mRNAs are useful transcriptomic biomarkers to improve the indirect detection of rhEPO microdosing. Moreover, the sensitivity was sufficient to distinguish rhEPO administration from exposure to hypoxic conditions. Levels of mRNAs encoding carbonate anhydrase 1 (CA1) and solute carrier family 4 member 1 (SLC4A1) RNA, as well as the linear (L) and linear + circular (LC) forms of ALAS2 mRNA, were monitored for 16 days after rhEPO microdosing and during exposure to hypoxic conditions. ALAS2 mRNAs increased by 300% compared with the baseline values after rhEPO microdosing. Moreover, ALAS2 mRNAs were not significantly increased under hypoxic conditions. By contrast, CA1 mRNA was increased after both rhEPO microdosing and hypoxia, whereas SLC4A1 mRNA did not significantly increase under either condition. Furthermore, the analyses described here were performed using dried blood spots (DBSs), which provide advantages in terms of the sample collection, transport, and storage logistics. This study demonstrates that ALAS2 mRNA levels are sensitive and specific transcriptomic biomarkers for the detection of rhEPO microdosing using the hematological module of the ABP, and this method is compatible with the use of DBSs for anti-doping analyses.
Collapse
Affiliation(s)
- Francesco Loria
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | | | - Angela Rocca
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Nathan Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Doha, Qatar
| | | | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Jeppesen JS, Breenfeldt Andersen A, Bonne TC, Thomassen M, Sørensen H, Nordsborg NB, Olsen NV, Huertas JR, Bejder J. Immature reticulocytes are sensitive and specific to low-dose erythropoietin treatment at sea level and altitude. Drug Test Anal 2021; 13:1331-1340. [PMID: 33739618 DOI: 10.1002/dta.3031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
We investigated whether immature reticulocyte fraction (IRF) and immature reticulocytes to red blood cells ratio (IR/RBC) are sensitive biomarkers for low-dose recombinant human erythropoietin (rhEpo) treatment at sea level (SL) and moderate altitude (AL) and whether multi (FACS) or single (Sysmex-XN) fluorescence flow cytometry is superior for IRF and IR/RBC determination. Thirty-nine participants completed two interventions, each containing a 4-week baseline, a 4-week SL or AL (2,230 m) exposure, and a 4-week follow-up. During exposure, rhEpo (20 IU kg-1 ) or placebo (PLA) was injected at SL (SLrhEpo , n = 25, SLPLA n = 9) and AL (ALrhEpo , n = 12, ALPLA n = 27) every second day for 3 weeks. Venous blood was collected weekly. Sysmex measurements revealed that IRF and IR/RBC were up to ~70% (P < 0.01) and ~190% (P < 0.001) higher in SLrhEpo than SLPLA during treatment and up to ~45% (P < 0.001) and ~55% (P < 0.01) lower post-treatment, respectively. Compared with ALPLA , IRF and IR/RBC were up to ~20% (P < 0.05) and ~45% (P < 0.001) lower post-treatment in SLrhEpo , respectively. In ALrhEpo , IRF and IR/RBC were up to ~40% (P < 0.05) and ~110% (P < 0.001) higher during treatment and up to ~25% (P < 0.05) and ~40% (P < 0.05) lower post-treatment, respectively, compared with ALPLA . Calculated thresholds provided ~90% sensitivity for both biomarkers at SL and 33% (IRF) and 66% (IR/RBC) at AL. Specificity was >99%. Single-fluorescence flow cytometry coefficient of variation was >twofold higher at baseline (P < 0.001) and provided larger or similar changes compared to multi-fluorescence, albeit with smaller precision. In conclusion, IRF and IR/RBC were sensitive and specific biomarkers for low-dose rhEpo misuse at SL and AL.
Collapse
Affiliation(s)
- Jan Sommer Jeppesen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesús Rodríguez Huertas
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Bejder J, Gürdeniz G, Cuparencu C, Hall F, Gybel-Brask M, Breenfeldt Andersen A, Dragsted LO, Secher NH, Johansson PI, Nordsborg NB. An Untargeted Urine Metabolomics Approach for Autologous Blood Transfusion Detection. Med Sci Sports Exerc 2021; 53:236-243. [PMID: 32694367 DOI: 10.1249/mss.0000000000002442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Autologous blood transfusion is performance enhancing and prohibited in sport but remains difficult to detect. This study explored the hypothesis that an untargeted urine metabolomics analysis can reveal one or more novel metabolites with high sensitivity and specificity for detection of autologous blood transfusion. METHODS In a randomized, double-blinded, placebo-controlled, crossover design, exercise-trained men (n = 12) donated 900 mL blood or were sham phlebotomized. After 4 wk, red blood cells or saline were reinfused. Urine samples were collected before phlebotomy and 2 h and 1, 2, 3, 5, and 10 d after reinfusion and analyzed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. Models of unique metabolites reflecting autologous blood transfusion were attained by partial least-squares discriminant analysis. RESULTS The strongest model was obtained 2 h after reinfusion with a misclassification error of 6.3% and 98.8% specificity. However, combining only a few of the strongest metabolites selected by this model provided a sensitivity of 100% at days 1 and 2 and 66% at day 3 with 100% specificity. Metabolite identification revealed the presence of secondary di-2-ethylhexyl phtalate metabolites and putatively identified the presence of (iso)caproic acid glucuronide as the strongest candidate biomarker. CONCLUSIONS Untargeted urine metabolomics revealed several plasticizers as the strongest metabolic pattern for detection of autologous blood transfusion for up to 3 d. Importantly, no other metabolites in urine seem of value for antidoping purposes.
Collapse
Affiliation(s)
- Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Frederikke Hall
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Mikkel Gybel-Brask
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, DENMARK
| | | | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Niels H Secher
- Department of Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, DENMARK
| | | |
Collapse
|
14
|
Bejder J, Breenfeldt Andersen A, Bonne TC, Linkis J, Olsen NV, Huertas JR, Nordsborg NB. Hematological adaptations and detection of recombinant human erythropoietin combined with chronic hypoxia. Drug Test Anal 2020; 13:360-368. [PMID: 32955164 DOI: 10.1002/dta.2931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/26/2023]
Abstract
This study evaluated whether recombinant human erythropoietin (rhEpo) treatment combined with chronic hypoxia provided an additive erythropoietic response and whether the athlete biological passport (ABP) sensitivity improved with hypoxia. Two interventions were completed, each containing 4 weeks baseline, 4 weeks exposure at sea level or 2,320 m of altitude, and 4 weeks follow-up. Participants were randomly assigned to 20 IU·kg bw-1 rhEpo or placebo injections every second day for 3 weeks during the exposure period at sea level (rhEpo n = 25, placebo n = 9) or at altitude (rhEpo n = 12, placebo n = 27). Venous blood was analyzed weekly. Combining rhEpo and hypoxia induced larger changes compared with rhEpo or hypoxia alone for [Hb] (p < 0.001 and p > 0.05, respectively), reticulocyte percentage (p < 0.001), and OFF-hr score (p < 0.01 and p < 0.001, respectively). The most pronounced effect was observed for reticulocyte percentage with up to ~35% (p < 0.001) and ~45% (p < 0.001) higher levels compared with rhEpo or hypoxia only, respectively. The ABP sensitivity for the combined treatment was 54 and 35 percentage points higher for [Hb] (p < 0.05) and reticulocyte percentage (p < 0.05), respectively, but similar for OFF-hr score, compared with rhEpo at sea level. Across any time point, [Hb] and OFF-hr score combined identified 14 unique true-positive participants (56%) at sea level and 12 unique true-positive participants (100%) at altitude. However, a concurrent reduction in specificity existed at altitude. In conclusion, rhEpo treatment combined with hypoxic exposure provided an additive erythropoietic response compared with rhEpo or hypoxic exposure alone. Correspondingly, ABP was more sensitive to rhEpo at altitude than at sea level, but a compromised specificity existed with hypoxic exposure.
Collapse
Affiliation(s)
- Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Linkis
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesús Rodríguez Huertas
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Granada, Spain
| | | |
Collapse
|
15
|
Megía-Palma R, Jiménez-Robles O, Hernández-Agüero JA, De la Riva I. Plasticity of haemoglobin concentration and thermoregulation in a mountain lizard. J Therm Biol 2020; 92:102656. [PMID: 32888560 DOI: 10.1016/j.jtherbio.2020.102656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/12/2023]
Abstract
The plastic capability of species to cope with the new conditions created by climate change is poorly understood. This is particularly relevant for organisms restricted to high elevations because they are adapted to cold temperatures and low oxygen availability. Therefore, evaluating trait plasticity of mountain specialists is fundamental to understand their vulnerability to environmental change. We transplanted mountain lizards, Iberolacerta cyreni, 800 m downhill to evaluate the plastic response in body condition, thermoregulation traits, haemoglobin level, and haemoparasite load. Initial measurements of body mass, total haemoglobin concentration ([Hb]), hematic parasite intensities, dorsal luminance, and thermoregulatory behaviour were resampled after two and four weeks of acclimation. We also tested whether an anti-parasitic drug reduced haemoparasite intensity. After only two weeks of acclimation to a lower elevation, lizards decreased 42% in [Hb], had 17% less parasite intensities, increased body condition by 25%, and raised by ~3% their mean preferred temperatures and their voluntary thermal maximum. The anti-parasitic treatment had no significant effect on the intensity of hematic parasites, but our results suggest that negative effects of haemoparasites on [Hb] are relaxed at lower elevation. The rapid plastic changes observed in thermal preferences, body condition, [Hb], and parasite intensity of I. cyreni demonstrate a potential plastic response of a mountain specialist. This may be adaptive under the climatic extremes typical of mountain habitats. However, there is uncertainty in whether the observed plasticity can also help overcome long term environmental changes.
Collapse
Affiliation(s)
- R Megía-Palma
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade Do Porto, Campus de Vairão, Rua Padre Armando Quintas, P-4485-661, Vairão, Portugal; Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/ José Gutiérrez Abascal 2, Madrid, E-28006, Spain.
| | - O Jiménez-Robles
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain; Department of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - J A Hernández-Agüero
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, C/ Tulipán S/n, E-28933, Móstoles, Madrid, Spain
| | - I De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| |
Collapse
|
16
|
Miller GD, Beharry A, Teramoto M, Lai A, Willick SE, Eichner D. Hematological changes following an Ironman triathlon: An antidoping perspective. Drug Test Anal 2020; 11:1747-1754. [DOI: 10.1002/dta.2724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Adam Beharry
- United States Anti‐Doping Agency Colorado Springs CO USA
| | - Masaru Teramoto
- Division of Physical Medicine and RehabilitationUniversity of Utah School of Medicine Salt Lake City UT USA
| | - Auriella Lai
- Sports Medicine Research and Testing Laboratory Salt Lake City UT USA
| | - Stuart E. Willick
- Division of Physical Medicine and RehabilitationUniversity of Utah School of Medicine Salt Lake City UT USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory Salt Lake City UT USA
| |
Collapse
|
17
|
Voss SC, Al‐Hamad K, Samsam W, Cherif A, Georgakopoulos C, Al Maadheed M, Balanos G, Lucas S, Sottas P, Wilson M, Townsend N. A novel mixed living high training low intervention and the hematological module of the athlete biological passport. Drug Test Anal 2019; 12:323-330. [DOI: 10.1002/dta.2723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/15/2019] [Accepted: 10/22/2019] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | - George Balanos
- School of Sport, Exercise and Rehabilitation Sciences University of Birmingham Birmingham Birmingham UK
| | - Sam Lucas
- School of Sport, Exercise and Rehabilitation Sciences University of Birmingham Birmingham Birmingham UK
| | | | - Mathew Wilson
- Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Doha Ad Dawhah Qatar
| | - Nathan Townsend
- Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Doha Ad Dawhah Qatar
| |
Collapse
|
18
|
Sutehall S, Muniz-Pardos B, Lima G, Wang G, Malinsky FR, Bosch A, Zelenkova I, Tanisawa K, Pigozzi F, Borrione P, Pitsiladis Y. Altitude Training and Recombinant Human Erythropoietin: Considerations for Doping Detection. Curr Sports Med Rep 2019; 18:97-104. [PMID: 30969231 DOI: 10.1249/jsr.0000000000000577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefit of training at altitude to enhance exercise performance remains equivocal although the most widely accepted approach is one where the athletes live and perform lower-intensity running at approximately 2300 m with high-intensity training at approximately 1250 m. The idea is that this method maintains maximal augmentations in total hemoglobin mass while reducing the performance impairment of high-intensity sessions performed at moderate altitude and thus preventing any detraining that can occur when athletes live and train at moderate altitude. This training regimen, however, is not universally accepted and some argue that the performance enhancement is due to placebo and training camp effects. Altitude training may affect an athlete's hematological parameters in ways similar to those observed following blood doping. Current methods of detection appear insufficient to differentiate between altitude training and blood doping making the interpretation of an athlete's biological passport difficult. Further research is required to determine the optimal method for altitude training and to enhance current detection methods to be able to differentiate better blood doping and altitude exposure.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, SPAIN
| | - Giscard Lima
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM.,Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| | | | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | | | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, JAPAN
| | - Fabio Pigozzi
- Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Paolo Borrione
- Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| |
Collapse
|
19
|
Miller GD, Teramoto M, Smeal SJ, Cushman D, Eichner D. Assessing serum albumin concentration following exercise-induced fluid shifts in the context of the athlete biological passport. Drug Test Anal 2019; 11:782-791. [PMID: 30690899 DOI: 10.1002/dta.2571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE The hydration status of an athlete at the time of a doping control sample collection is an important factor to consider when reviewing athlete biological passports (ABPs). Dehydration results in a reduction of the circulating plasma volume (PV), which may lead to artificially high values of some blood parameters. This study aimed to identify whether serum albumin could serve as a single marker of fluid shifts, which are not currently accounted for in the hematological passport. An additional marker could be used to assist experts when interpreting irregularities in the ABP. METHODS Twelve subjects underwent multiple controlled exercise trials designed to induce varying levels of PV shifts. Pre-exercise blood samples were collected to establish baseline values for individual passports. During exercise interventions, blood samples were collected before the start of exercise and at 10 minute, 1 hour, 2 hours, and 24 hours following exercise. RESULTS Significant increases in hematological parameters - hemoglobin [Hb], hematocrit (HCT), albumin (ALB), and calculated OFF-score - were identified at varying time points following fluid shift-inducing exercise. Changes in ALB correlated strongly with changes in [Hb] (r = 0.753) and with estimated PV shifts (r = -0.764). In analyzing ABPs, the resulting increases in Hb did not trigger any atypical findings at 99% specificity. PERSPECTIVE Monitoring changes in ALB longitudinally may assist experts when reviewing PV shifts in the biological passport.
Collapse
Affiliation(s)
- Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, University of Utah School of Medicine, Utah, USA.,Division of Physical medicine and Rehabilitation, University of Utah School of Medicine, Utah, USA
| | - Masaru Teramoto
- Division of Physical medicine and Rehabilitation, University of Utah School of Medicine, Utah, USA
| | - Stacy J Smeal
- Sports Medicine Research and Testing Laboratory, University of Utah School of Medicine, Utah, USA
| | - Dan Cushman
- Division of Physical medicine and Rehabilitation, University of Utah School of Medicine, Utah, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, University of Utah School of Medicine, Utah, USA.,Division of Physical medicine and Rehabilitation, University of Utah School of Medicine, Utah, USA
| |
Collapse
|
20
|
Cox HD, Miller GD, Lai A, Cushman D, Ganz T, Eichner D. Evaluation of serum markers for improved detection of autologous blood transfusions. Haematologica 2018; 103:e443-e445. [PMID: 29674501 DOI: 10.3324/haematol.2018.190918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA.,University of Utah School of Medicine - Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| | - Auriella Lai
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA
| | - Dan Cushman
- University of Utah School of Medicine - Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA.,University of Utah School of Medicine - Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Lobigs LM, Garvican-Lewis LA, Vuong VL, Tee N, Gore CJ, Peeling P, Dawson B, Schumacher YO. Validation of a blood marker for plasma volume in endurance athletes during a live-high train-low altitude training camp. Drug Test Anal 2018; 10:1176-1183. [PMID: 29457371 DOI: 10.1002/dta.2370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 11/09/2022]
Abstract
Altitude is a confounding factor within the Athlete Biological Passport (ABP) due, in part, to the plasma volume (PV) response to hypoxia. Here, a newly developed PV blood test is applied to assess the possible efficacy of reducing the influence of PV on the volumetric ABP markers; haemoglobin concentration ([Hb]) and the OFF-score. Endurance athletes (n=34) completed a 21-night simulated live-high train-low (LHTL) protocol (14 h.d-1 at 3000 m). Bloods were collected twice pre-altitude; at days 3, 8, and 15 at altitude; and 1, 7, 21, and 42 days post-altitude. A full blood count was performed on the whole blood sample. Serum was analysed for transferrin, albumin, calcium, creatinine, total protein, and low-density lipoprotein. The PV blood test (consisting of the serum markers, [Hb] and platelets) was applied to the ABP adaptive model and new reference predictions were calculated for [Hb] and the OFF-score, thereby reducing the PV variance component. The PV correction refined the ABP reference predictions. The number of atypical passport findings (ATPFs) for [Hb] was reduced from 7 of 5 subjects to 6 of 3 subjects. The OFF-score ATPFs increased with the PV correction (from 9 to 13, 99% specificity); most likely the result of more specific reference limit predictions combined with the altitude-induced increase in red cell production. Importantly, all abnormal biomarker values were identified by a low confidence value. Although the multifaceted, individual physiological response to altitude confounded some results, the PV model appears capable of reducing the impact of PV fluctuations on [Hb].
Collapse
Affiliation(s)
- Louisa M Lobigs
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
- Aspetar Sports Medicine Hospital, Doha, Qatar
| | - Laura A Garvican-Lewis
- Australian Institute of Sport, Canberra, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | | | - Nicolin Tee
- Australian Institute of Sport, Canberra, Australia
| | | | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
- Western Australian Institute of Sport, Mt Claremont, Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | | |
Collapse
|
22
|
Lobigs LM, Sharpe K, Garvican-Lewis LA, Gore CJ, Peeling P, Dawson B, Schumacher YO. The athlete's hematological response to hypoxia: A meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am J Hematol 2018; 93:74-83. [PMID: 29027252 DOI: 10.1002/ajh.24941] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Abstract
Altitude training is associated with changes in blood markers, which can confound results of the Athlete?s Biological Passport (ABP). This meta-analysis aims to describe the fluctuations during- and post-altitude in key ABP variables; hemoglobin concentration ([Hb]), square-root transformed reticulocyte percentage (sqrt(retic%)) and the OFF-score. Individual de-identified raw data were provided from 17 studies. Separate linear mixed effects analyses were performed for delta values from baseline for [Hb], sqrt(retic%) and OFF-score, by altitude phase (during and post). Mixed models were fitted with the hierarchical structure: study and subject within study as random effects. Delta values as response variables and altitude dose (in kilometer hours; km.hr = altitude (m) / 1000 x hours), sex, age, protocol and baseline values as fixed effects. Allowances were made for potential autocorrelation. Within two days at natural altitude [Hb] rapidly increased. Subsequent delta [Hb] values increased with altitude dose, reaching a plateau of 0.94 g/dL [95%CI (0.69, 1.20)] at ~1000 km.hr. Delta sqrt(retic%) and OFF-score were the first to identify an erythrocyte response, with respective increases and decreases observed within 100 to 200 km.hr. Post-altitude, [Hb] remained elevated for two weeks. Delta sqrt(retic%) declined below baseline, the magnitude of change was dependent on altitude dose. Baseline values were a significant covariate (p<0.05). The response to altitude is complex resulting in a wide range of individual responses, influenced primarily by altitude dose and baseline values. Improved knowledge of the plausible hematological variations during- and post-altitude provides fundamental information for both the ABP expert and sports physician.
Collapse
Affiliation(s)
- Louisa M. Lobigs
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
- Aspetar Sports Medicine Hospital, PO Box 29222; Doha Qatar
| | - Ken Sharpe
- Statistical Consulting Centre, School of Mathematics and Statistics; University of Melbourne; Vic 3010 Australia
| | - Laura A. Garvican-Lewis
- Australian Institute of Sport; Canberra 2617 Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University; Melbourne Australia
| | | | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
- Western Australian Institute of Sport, Mt Claremont; WA 6010 Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
| | | |
Collapse
|
23
|
Garvican-Lewis LA, Vuong VL, Govus AD, Schumacher YO, Hughes D, Lovell G, Eichner D, Gore CJ. Influence of combined iron supplementation and simulated hypoxia on the haematological module of the athlete biological passport. Drug Test Anal 2017; 10:731-741. [PMID: 28929623 DOI: 10.1002/dta.2303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023]
Abstract
The integrity of the athlete biological passport (ABP) is underpinned by understanding normal fluctuations of its biomarkers to environmental or medical conditions, for example, altitude training or iron deficiency. The combined impact of altitude and iron supplementation on the ABP was evaluated in endurance-trained athletes (n = 34) undertaking 3 weeks of simulated live-high: train-low (14 h.d-1 , 3000 m). Athletes received either oral, intravenous (IV) or placebo iron supplementation, commencing 2 weeks prior and continuing throughout hypoxic exposure. Venous blood was sampled twice prior, weekly during, and up to 6 weeks after altitude. Individual ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (%retic), and OFF score were calculated using the adaptive model and assessed at 99% and 99.9% specificity. Eleven athletes returned values outside of the calculated reference ranges at 99%, with 8 at 99.9%. The percentage of athletes exceeding the thresholds in each group was similar, but IV returned the most individual occurrences. A similar frequency of abnormalities occurred across the 3 biomarkers, with abnormal [Hb] and OFF score values arising mainly during-, and %retic values mainly post- altitude. Removing samples collected during altitude from the model resulted in 10 athletes returning abnormal values at 99% specificity, 2 of whom had not triggered the model previously. In summary, the abnormalities observed in response to iron supplementation and hypoxia were not systematic and mostly in line with expected physiological adaptations. They do not represent a uniform weakness in the ABP. Nevertheless, altitude training and iron supplementation should be carefully considered by experts evaluating abnormal ABP profiles.
Collapse
Affiliation(s)
- Laura A Garvican-Lewis
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.,Australian Institute of Sport, Canberra, Australia
| | | | - Andrew D Govus
- Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | | | - David Hughes
- Australian Institute of Sport, Canberra, Australia
| | - Greg Lovell
- Australian Institute of Sport, Canberra, Australia
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | | |
Collapse
|
24
|
Flaherty G, O'Connor R, Johnston N. Altitude training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med Infect Dis 2016; 14:200-11. [PMID: 27040934 DOI: 10.1016/j.tmaid.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
High altitude training is regarded as an integral component of modern athletic preparation, especially for endurance sports such as middle and long distance running. It has rapidly achieved popularity among elite endurance athletes and their coaches. Increased hypoxic stress at altitude facilitates key physiological adaptations within the athlete, which in turn may lead to improvements in sea-level athletic performance. Despite much research in this area to date, the exact mechanisms which underlie such improvements remain to be fully elucidated. This review describes the current understanding of physiological adaptation to high altitude training and its implications for athletic performance. It also discusses the rationale and main effects of different training models currently employed to maximise performance. Athletes who travel to altitude for training purposes are at risk of suffering the detrimental effects of altitude. Altitude illness, weight loss, immune suppression and sleep disturbance may serve to limit athletic performance. This review provides an overview of potential problems which an athlete may experience at altitude, and offers specific training recommendations so that these detrimental effects are minimised.
Collapse
Affiliation(s)
- Gerard Flaherty
- School of Medicine, National University of Ireland, Galway, Ireland; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Rory O'Connor
- School of Biomedical Science, National University of Ireland, Galway, Ireland.
| | - Niall Johnston
- School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
25
|
Thevis M, Kuuranne T, Walpurgis K, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2016; 8:7-29. [PMID: 26767774 DOI: 10.1002/dta.1928] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories, Höyläämötie 14, 00380, Helsinki, Finland
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
26
|
Sightings, edited by Erik Swenson and Peter Bärtsch. High Alt Med Biol 2015. [DOI: 10.1089/ham.2015.29004.stg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|