1
|
Irfan S, Etekochay MO, Atanasov AG, Prasad VP, Kandimalla R, Mofatteh M, V P, Emran TB. Human olfactory neurosphere-derived cells: a unified tool for neurological disease modelling and neurotherapeutic applications. Int J Surg 2024; 110:6321-6329. [PMID: 38652180 PMCID: PMC11486950 DOI: 10.1097/js9.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
As one of the leading causes of global mortality and morbidity, various neurological diseases cause social and economic burdens. Despite significant advances in the treatment of neurological diseases, establishing a proper disease model, especially for degenerative and infectious diseases, remains a major challenging issue. For long, mice were the model of choice but suffered from serious drawbacks of differences in anatomical and functional aspects of the nervous system. Furthermore, the collection of postmortem brain tissues limits their usage in cultured cell lines. Overcoming such limitations has prompted the usage of stem cells derived from the peripheral nervous system, such as the cells of the olfactory mucosa as a preferred choice. These cells can be easily cultured in vitro and retain the receptors of neuronal cells life-long. Such cells have various advantages over embryonic or induced stem cells, including homology, and ease of culture and can be conveniently obtained from diseased individuals through either biopsies or exfoliation. They have continuously helped in understanding the genetic and developmental mechanisms of degenerative diseases like Alzheimer's and Parkinson's disease. Moreover, the mode of infection of various viruses that can lead to postviral olfactory dysfunction, such as the Zika virus can be monitored through these cells in vitro and their therapeutic development can be fastened.
Collapse
Affiliation(s)
- Saad Irfan
- Animal Science Department, Faculty of Animal and Agriculture Sciences, Universitas Diponegoro, Semarang, Indonesia
| | | | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Vishnu P. Prasad
- Rajiv Gandhi University of Health Sciences, Jayanagar, Bengaluru, Karnataka
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad, Telangana State
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Mohammad Mofatteh
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Priyanka V
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Talha B. Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
3
|
Pugsley K, Namipashaki A, Bellgrove MA, Hawi Z. Evaluating the regulatory function of non-coding autism-associated single nucleotide polymorphisms on gene expression in human brain tissue. Autism Res 2024; 17:467-481. [PMID: 38323502 DOI: 10.1002/aur.3101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Common variants account for most of the estimated heritability associated with autism spectrum disorder (autism). Although several replicable single nucleotide polymorphisms (SNPs) for the condition have been detected using genome-wide association study (GWAS) methodologies, their pathophysiological relevance remains elusive. Examining this is complicated, however, as all detected loci are situated within non-coding regions of the genome. It is therefore likely that they possess roles of regulatory function as opposed to directly affecting gene coding sequences. To bridge the gap between SNP discovery and mechanistic insight, we applied a comprehensive bioinformatic pipeline to functionally annotate autism-associated polymorphisms and their non-coding linkage disequilibrium (i.e., non-randomly associated) partners. We identified 82 DNA variants of probable regulatory function that may contribute to autism pathogenesis. To validate these predictions, we measured the impact of 11 high-confidence candidates and their GWAS linkage disequilibrium partners on gene expression in human brain tissue from Autistic and non-Autistic donors. Although a small number of the surveyed variants exhibited measurable influence on gene expression as determined via quantitative polymerase chain reaction, these did not survive correction for multiple comparisons. Additionally, no significant genotype-by-diagnosis effects were observed for any of the SNP-gene associations. We contend that this may reflect an inability to effectively capture the modest, neurodevelopmental-specific impact of individual variants on biological dysregulation in available post-mortem tissue samples, as well as limitations in the existing autism GWAS data.
Collapse
Affiliation(s)
- Kealan Pugsley
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Atefeh Namipashaki
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Lü L, Yuan F, Fan H, Li Y, Liu J, Feng W, Zhang HG, Chen SY. Ethanol exposure disrupted the formation of radial glial processes and impaired the generation and migration of outer radial glial cells in forebrain organoids derived from human embryonic stem cells. Exp Neurol 2023; 362:114325. [PMID: 36669750 PMCID: PMC9992138 DOI: 10.1016/j.expneurol.2023.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Radial glial cells (RGCs) play a pivotal role in cerebral cortical development by functioning as a source of new neurons and by supporting the migration of newborn neurons. These functions are primarily dependent on the apical-basolateral structures of radial glial processes. This study aims to investigate the effects of ethanol exposure on the development of radial glial processes and the generation, migration, and transformation of outer radial glial cells (oRGCs). For this purpose, forebrain organoids were developed from human embryonic stem cells. These forebrain organoids contain abundant neural progenitor cells (SOX2+), express high levels of neural epithelial markers β-catenin and PKCλ, and dorsal forebrain marker PAX6, and display well-organized cortical architectures containing abundant apical and basal RGCs, intermediate progenitors (IPCs), and neurons. Exposure of forebrain organoids to ethanol resulted in a significant increase in apoptosis in Nestin-positive radial glial cells. Ethanol exposure also remarkably decreased the levels of radial glial process-associated proteins, including Nestin, GFAP, and Vimentin, in radial glial cells and distinctly impaired the integrity and morphologies of radial glial processes. In addition, the ethanol-induced impairment of the radial glial processes is associated with decreased migration and proliferation of radial glial cells, reduction in the generation of HOPX+ oRGCs, and the accelerated transformation of oRGCs into astrocytes. These results demonstrate that ethanol exposure can disrupt cerebral cortex development by impairing the formation of radial glial processes and the generation, migration, and transformation of oRGCs.
Collapse
Affiliation(s)
- Lanhai Lü
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Robley Rex Veterans Affairs Medical Center, Louisville, KY 40292, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
5
|
Rozhkova IN, Okotrub SV, Brusentsev EY, Uldanova KE, Chuyko EА, Naprimerov VA, Lipina TV, Amstislavskaya TG, Amstislavsky SY. Alterations in the social-conditioned place preference and density of dopaminergic neurons in the ventral tegmental area in Clsnt2-KO mice. Vavilovskii Zhurnal Genet Selektsii 2023; 27:177-184. [PMID: 37063509 PMCID: PMC10090113 DOI: 10.18699/vjgb-23-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 04/18/2023] Open
Abstract
The incidence of autistic spectrum disorders (ASD) constantly increases in the world. Studying the mechanisms underlying ASD as well as searching for new therapeutic targets are crucial tasks. Many researchers agree that autism is a neurodevelopmental disorder. Clstn2-KO mouse strain with a knockout of calsyntenin 2 gene (Clstn2) is model for investigating ASD. This study aims to evaluate the social-conditioned place preference as well as density of dopaminergic (DA) neurons in the ventral tegmental area (VTA), which belongs to the brain reward system, in the males of the Clstn2-KO strain using wild type C57BL/6J males as controls. Social-conditioned place preference test evaluates a reward-dependent component of social behavior. The results of this test revealed differences between the Clstn2-KO and the control males, as the former did not value socializing with the familiar partner, spending equal time in the isolation- and socializing-associated compartments. The Clstn2-KO group entered both compartments more frequently, but spent less time in the socializing-associated compartment compared to the controls. By contrast, the control males of the C57BL/6J strain spent more time in socializing-associated compartment and less time in the compartment that was associated with loneness. At the same time, an increased number of DA and possibly GABA neurons labeled with antibodies against the type 2 dopamine receptor as well as against tyrosine hydroxylase were detected in the VTA of the Clstn2-KO mice. Thus, a change in social-conditioned place preference in Clstn2-KO mice as well as a higher number of neurons expressing type 2 dopamine receptors and tyrosine hydroxylase in the VTA, the key structure of the mesolimbic dopaminergic pathway, were observed.
Collapse
Affiliation(s)
- I N Rozhkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Okotrub
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Yu Brusentsev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K E Uldanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E А Chuyko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Naprimerov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Agricultural University, Novosibirsk, Russia
| | | | - T G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - S Ya Amstislavsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
7
|
Dixon TA, Muotri AR. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol Psychiatry 2023; 28:83-95. [PMID: 35948659 PMCID: PMC9812789 DOI: 10.1038/s41380-022-01708-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
Psychiatric disorders are often distinguished from neurological disorders in that the former do not have characteristic lesions or findings from cerebrospinal fluid, electroencephalograms (EEGs), or brain imaging, and furthermore do not have commonly recognized convergent mechanisms. Psychiatric disorders commonly involve clinical diagnosis of phenotypic behavioral disturbances of mood and psychosis, often with a poorly understood contribution of environmental factors. As such, psychiatric disease has been challenging to model preclinically for mechanistic understanding and pharmaceutical development. This review compares commonly used animal paradigms of preclinical testing with evolving techniques of induced pluripotent cell culture with a focus on emerging three-dimensional models. Advances in complexity of 3D cultures, recapitulating electrical activity in utero, and disease modeling of psychosis, mood, and environmentally induced disorders are reviewed. Insights from these rapidly expanding technologies are discussed as they pertain to the utility of human organoid and other models in finding novel research directions, validating pharmaceutical action, and recapitulating human disease.
Collapse
Affiliation(s)
- Thomas Anthony Dixon
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037 USA
| |
Collapse
|
8
|
An Overview of Pediatric Approaches to Child with Developmental Delay Especially if There is Suspicion of ASD in First Few Years of Life. PRILOZI (MAKEDONSKA AKADEMIJA NA NAUKITE I UMETNOSTITE. ODDELENIE ZA MEDICINSKI NAUKI) 2022; 43:43-53. [PMID: 36473037 DOI: 10.2478/prilozi-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To be a pediatrician means that one encounters many serious childhood health problems and one finds many ways to help families cope with these problems. Symptoms in children can be discrete, and the responsibility of the pediatrician to distinguish normal development from pathological. We are facing a new era in the developmental assessment of children. A cluster of neurodevelopmental disorders includes ASD (autism spectrum disorder) and ADHD (attention deficit hyperactivity disorder). Parents often do not recognize the problem on time. Generally, their first concern is speech delay, leading to the suspicion of hearing problems. Therefore, it is very important to obtain objective anamnestic information and for the child to undergo a careful physical examination, a neurophysiological assessment, and metabolic and genetic testing. The etiology usually is multifactorial: genetic, epigenetic, and non-genetic factors act in combination through various paths. Most children seem to have typical neurodevelopment during first their year. It was found that approximately one-third of children with ASD lose some skills during the preschool period, usually speech related, but sometimes also non-verbal communication, social or play skills. In conclusion we must say that it is very important to recognize the early signs of ASD and any kind of other developmental delay and to start with early intervention. Clinical pediatricians tend to correlate clinical manifestations and biological underpinnings related to neurodevelopmental disorder, especially ASD. Therefore, better treatment possibilities are needed.
Collapse
|
9
|
Recent Developments in Autism Genetic Research: A Scientometric Review from 2018 to 2022. Genes (Basel) 2022; 13:genes13091646. [PMID: 36140813 PMCID: PMC9498399 DOI: 10.3390/genes13091646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic research in Autism Spectrum Disorder (ASD) has progressed tremendously in recent decades. Dozens of genetic loci and hundreds of alterations in the genetic sequence, expression, epigenetic transformation, and interactions with other physiological and environmental systems have been found to increase the likelihood of developing ASD. There is therefore a need to represent this wide-ranging yet voluminous body of literature in a systematic manner so that this information can be synthesised and understood at a macro level. Therefore, this study made use of scientometric methods, particularly document co-citation analysis (DCA), to systematically review literature on ASD genetic research from 2018 to 2022. A total of 14,818 articles were extracted from Scopus and analyzed with CiteSpace. An optimized DCA analysis revealed that recent literature on ASD genetic research can be broadly organised into 12 major clusters representing various sub-topics. These clusters are briefly described in the manuscript and potential applications of this study are discussed.
Collapse
|
10
|
Yeo-Teh NSL, Tang BL. Moral obligations in conducting stem cell-based therapy trials for autism spectrum disorder. JOURNAL OF MEDICAL ETHICS 2022; 48:343-348. [PMID: 33858947 DOI: 10.1136/medethics-2020-107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Unregulated patient treatments and approved clinical trials have been conducted with haematopoietic stem cells and mesenchymal stem cells for children with autism spectrum disorder (ASD). While the former direct-to-consumer practice is usually considered rogue and should be legally constrained, regulated clinical trials could also be ethically questionable. Here, we outline principal objections against these trials as they are currently conducted. Notably, these often lack a clear rationale for how transplanted cells may confer a therapeutic benefit in ASD, and thus, have ill-defined therapeutic outcomes. We posit that ambiguous and unsubstantiated descriptions of outcome from such clinical trials may nonetheless appeal to the lay public as being based on authentic scientific findings. These may further fuel caregivers of patients with ASD to pursue unregulated direct-to-consumer treatments, thus exposing them to unnecessary risks. There is, therefore, a moral obligation on the part of those regulating and conducting clinical trials of stem cell-based therapeutic for ASD minors to incorporate clear therapeutic targets, scientific rigour and reporting accuracy in their work. Any further stem cell-based trials for ASD unsupported by significant preclinical advances and particularly sound scientific hypothesis and aims would be ethically indefensible.
Collapse
Affiliation(s)
| | - Bor Luen Tang
- Research Compliance and Integrity Office, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
11
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
13
|
Wayhelova M, Vallova V, Broz P, Mikulasova A, Loubalova D, Filkova H, Smetana J, Drabova K, Gaillyova R, Kuglik P. Novel de novo pathogenic variant in the GNAI1 gene as a cause of severe disorders of intellectual development. J Hum Genet 2021; 67:209-214. [PMID: 34819662 DOI: 10.1038/s10038-021-00988-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Pathogenic sequence variant in the GNAI1 gene were recently introduced as a cause of novel syndrome with a manifestation of variable developmental delay and autistic features. In our study, we report a case of monozygotic twins with severe intellectual disability and motor delay and developmental dysphasia. Both probands and their parents were examined using multi-step molecular diagnostic algorithm including whole-exome sequencing (WES), resulting in the identification of a novel, de novo pathogenic sequence variant in the GNAI1 gene, NM_002069.6:c.815 A>G, p.(Asp272Gly) in probands. Using WES we also verified the microarray findings of a familial 8q24.23q24.3 duplication and heterozygous 5q13.2 deletion, not associated with clinical symptoms in probands. Our results confirmed the role of the GNAI1 gene in the pathogenesis of syndromic neurodevelopmental disorders. They support trio- or quatro-based WES as a suitable molecular diagnostics method for the simultaneous detection of clinically relevant sequence variants and CNVs in individuals with neurodevelopmental disorders and rare diseases.
Collapse
Affiliation(s)
- Marketa Wayhelova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic. .,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic.
| | - Vladimira Vallova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Petr Broz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and Faculty Hospital Motol, Prague, Czech Republic
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dominika Loubalova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Filkova
- Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Smetana
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Klara Drabova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Petr Kuglik
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Laboratory of Cytogenomics, Centre of Molecular Biology and Genetics, Department of Internal Medicine, Haematology and Oncology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
14
|
Abdelrahman AH, Eid OM, Ibrahim MH, Abd El-Fattah SN, Eid MM, Meguid NA. Evaluation of circulating miRNAs and mRNAs expression patterns in autism spectrum disorder. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder is a condition related to brain development that affects a person’s perception and socialization, resulting in problems in social interaction and communication. It has no single known cause, yet several different genes appear to be involved in autism. As a genetically complex disease, dysregulation of miRNA expression and miRNA–mRNA interactions might be a feature of autism spectrum disorder. The aim of the current study was to investigate the expression profile of circulating miRNA-128, miRNA-7 and SHANK gene family in ASD patients and to assess the possible influence of miRNA-128 and miRNA-7 on SHANK genes, which might provide an insight into the pathogenic mechanisms of ASD and introduce noninvasive molecular biomarkers for the disease diagnosis and prognosis. Quantitative real-time PCR technique was employed to determine expression levels of miRNA-128, miRNA-7 and SHANK gene family in blood samples of 40 autistic cases along with 30 age- and sex-matched normal volunteer subjects.
Results
Our study revealed a statistical significant upregulation of miRNA-128 expression levels in ASD cases compared to controls (p value < 0.001). A statistical significant difference in SHANK-3 expression was encountered on comparing cases to controls (p value < 0.001). However, miRNA-7 expression showed no significant difference between the studied groups.
Conclusions
MiRNA-128 and SHANK-3 gene are emerging players in the field of ASD. They are promising candidates as noninvasive biomarkers in autism. Future studies are needed to emphasize their pivotal role.
Collapse
|
15
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|
16
|
Modafferi S, Zhong X, Kleensang A, Murata Y, Fagiani F, Pamies D, Hogberg HT, Calabrese V, Lachman H, Hartung T, Smirnova L. Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77001. [PMID: 34259569 PMCID: PMC8278985 DOI: 10.1289/ehp8580] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components. Mechanisms of gene-environment (G × E ) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G × E ) interactions. OBJECTIVES In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase DNA binding protein 8 (CHD8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-dimensional (3D) brain model. METHODS This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivating mutation in CHD8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements. RESULTS Expression of CHD8 protein was significantly lower in CHD8 heterozygous knockout (C H D 8 + / - ) BrainSpheres compared with C H D 8 + / + ones. Exposure to CPF/CPO treatment further reduced CHD8 protein levels, showing the potential (G × E ) interaction synergy. A novel approach for validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryptophan, kynurenic acid, and α -hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHD8 in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine. DISCUSSION This study pioneered (G × E ) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased susceptibility of CHD 8 + / - BrainSpheres to chemical insult establishes a possibly broader role of (G × E ) interaction in ASD. https://doi.org/10.1289/EHP8580.
Collapse
Affiliation(s)
- Sergio Modafferi
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Xiali Zhong
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Andre Kleensang
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohei Murata
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Research Center, Nihon Nohyaku Co. Ltd., Osaka, Japan
| | - Francesca Fagiani
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- Istituto Universitario di Studi Superiori (Scuola Universitaria Superiore IUSS) Pavia, Pavia, Italy
| | - David Pamies
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Herbert Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- University of Konstanz, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Barnhart AJ, Dierickx K. Cultures and cures: neurodiversity and brain organoids. BMC Med Ethics 2021; 22:61. [PMID: 34001098 PMCID: PMC8130283 DOI: 10.1186/s12910-021-00627-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Research with cerebral organoids is beginning to make significant progress in understanding the etiology of autism spectrum disorder (ASD). Brain organoid models can be grown from the cells of donors with ASD. Researchers can explore the genetic, developmental, and other factors that may give rise to the varieties of autism. Researchers could study all of these factors together with brain organoids grown from cells originating from ASD individuals. This makes brain organoids unique from other forms of ASD research. They are like a multi-tool, one with significant versatility for the scope of ASD research and clinical applications. There is hope that brain organoids could one day be used for precision medicine, like developing tailored ASD drug treatments. MAIN BODY Brain organoid researchers often incorporate the medical model of disability when researching the origins of ASD, especially when the research has the specific aim of potentially finding tailored clinical treatments for ASD individuals. The neurodiversity movement-a developmental disability movement and paradigm that understands autism as a form of natural human diversity-will potentially disagree with approaches or aims of cerebral organoid research on ASD. Neurodiversity advocates incorporate a social model of disability into their movement, which focuses more on the social, attitudinal, and environmental barriers rather than biophysical or psychological deficits. Therefore, a potential conflict may arise between these perspectives on how to proceed with cerebral organoid research regarding neurodevelopmental conditions, especially ASD. CONCLUSIONS Here, we present these perspectives and give at least three initial recommendations to achieve a more holistic and inclusive approach to cerebral organoid research on ASD. These three initial starting points can build bridges between researchers and the neurodiversity movement. First, neurodiverse individuals should be included as co-creators in both the scientific process and research communication. Second, clinicians and neurodiverse communities should have open and respectful communication. Finally, we suggest a continual reconceptualization of illness, impairment, disability, behavior, and person.
Collapse
Affiliation(s)
- Andrew J Barnhart
- Department of Public Health and Primary Care, Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium.
| | - Kris Dierickx
- Department of Public Health and Primary Care, Centre for Biomedical Ethics and Law, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Baldassari S, Musante I, Iacomino M, Zara F, Salpietro V, Scudieri P. Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders. Front Cell Dev Biol 2020; 8:590119. [PMID: 33154971 PMCID: PMC7586734 DOI: 10.3389/fcell.2020.590119] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development. However, targeted approaches to investigate specific molecular defects and their implications in human brain dysfunction are prevented by limited access to patient-derived brain tissues. In this context, advances of both stem cell technologies and genome editing strategies during the last decade led to the generation of three-dimensional (3D) in vitro-models of cerebral organoids, holding the potential to recapitulate precise stages of human brain development with the aim of personalized diagnostic and therapeutic approaches. Recent progresses allowed to generate 3D-structures of both neuronal and non-neuronal cell types and develop either whole-brain or region-specific cerebral organoids in order to investigate in vitro key brain developmental processes, such as neuronal cell morphogenesis, migration and connectivity. In this review, we summarized emerging methodological approaches in the field of brain organoid technologies and their application to dissect disease mechanisms underlying an array of pediatric brain developmental disorders, with a particular focus on autism spectrum disorders (ASDs) and epileptic encephalopathies.
Collapse
Affiliation(s)
- Simona Baldassari
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Ilaria Musante
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paolo Scudieri
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Hohmann SS, Ilieva M, Michel TM. In vitro models for ASD-patient-derived iPSCs and cerebral organoids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:355-375. [PMID: 32711817 DOI: 10.1016/bs.pmbts.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Autism spectrum disorder (ASD) is a set of pervasive neurodevelopmental disorders. The causation is multigenic in most cases, which makes it difficult to model the condition in vitro. Advances in pluripotent stem cell technology has made it possible to generate in vitro models of human brain development. Induced pluripotent stem cells (iPSCs) can be generated from somatic cells and have the ability to differentiate to all of the body's cells. This chapter aims to give an overview of the iPSC technology for generating neural cells and cerebral organoids as models for neurodevelopment and how these models are utilized in the study of ASD. The combination of iPSC technology and the genetic modification tool CRISPR/Cas9 is described, and current limitations and future perspectives of iPSC technology is discussed.
Collapse
Affiliation(s)
- Sonja Simone Hohmann
- Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.
| | - Mirolyuba Ilieva
- Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tanja Maria Michel
- Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Gyertyán I. How can preclinical cognitive research further neuropsychiatric drug discovery? Chances and challenges. Expert Opin Drug Discov 2020; 15:659-670. [DOI: 10.1080/17460441.2020.1739645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- István Gyertyán
- Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Larijani B, Foroughi Heravani N, Alavi-Moghadam S, Goodarzi P, Rezaei-Tavirani M, Payab M, Gholami M, Razi F, Arjmand B. Cell Therapy Targets for Autism Spectrum Disorders: Hopes, Challenges and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1341:107-124. [PMID: 32072476 DOI: 10.1007/5584_2020_491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders as a group of pediatric neurodevelopmental diseases is a crucial part of the worldwide disabilities which have influence in communication skills, social interactions, and ability to understand the concepts. The precise pathophysiology of autism spectrum disorders due to the abundance of involved mechanisms is unknown. Some of these involved mechanisms are related to genetic factors, chronic neuro inflammation, mitochondrial dysfunction, oxidative stress, immune dysregulation, hormonal imbalance, and environmental factors. Current main treatments for autisms are behavioral, nutritional and medical therapies, however there is not definitive treatment approach. Therein, more novel therapies are still required to improve the symptoms. Several preclinical and clinical evidence were shown that stem cell therapy is a potential treatment option for autism spectrum disorders individuals. Considering the significant factors which can affect the outcome of stem cell therapeutic effects including stem cell types, route and dosage of administration, and mechanism of activity along with selecting best animal models can be very important in performing clinical trials.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Siences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Tran H, Park W, Seong S, Jeong J, Nguyen Q, Yoon J, Baek K, Jeong Y. Tcf7l2
transcription factor is required for the maintenance, but not the initial specification, of the neurotransmitter identity in the caudal thalamus. Dev Dyn 2019; 249:646-655. [DOI: 10.1002/dvdy.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hong‐Nhung Tran
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Wonbae Park
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Sojeong Seong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Ji‐eun Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Quy‐Hoai Nguyen
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Jaeseung Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of BiotechnologyKyung Hee University Yongin‐si Republic of Korea
| |
Collapse
|