1
|
Ishikawa C, Takeno S, Okamoto Y, Kawasumi T, Kakimoto T, Takemoto K, Nishida M, Ishino T, Hamamoto T, Ueda T, Tanaka A. Oncostatin M's Involvement in the Pathogenesis of Chronic Rhinosinusitis: Focus on Type 1 and 2 Inflammation. Biomedicines 2023; 11:3224. [PMID: 38137445 PMCID: PMC10740885 DOI: 10.3390/biomedicines11123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVES The cytokine oncostatin M (OSM) elicits pathogenic effects involving disruption of the epithelial barrier function as a part of immunological response networks. It is unclear how these integrated cytokine signals influence inflammation and other physiological processes in the pathology of chronic rhinosinusitis (CRS). We investigated the expression and distribution of OSM and OSM receptor (OSMR) in CRS patients' sinonasal specimens, and we compared the results with a panel of inflammatory cytokine levels and clinical features. PATIENTS AND METHODS We classified CRS patients as eosinophilic (ECRS, n = 36) or non-eosinophilic (non-ECRS, n = 35) based on the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis phenotypic criteria and compared their cases with those of 20 control subjects. We also examined OSM's stimulatory effects on cytokine receptor expression levels using the human bronchial epithelium cell line BEAS-2B. RESULTS RT-PCR showed that the OSM mRNA levels were significantly increased in the CRS patients' ethmoid sinus mucosa. The OSM mRNA levels were positively correlated with those of TNF-α, IL-1β, IL-13, and OSMR-β. In BEAS-2B cells, OSM treatment induced significant increases in the OSMRβ, IL-1R1, and IL-13Ra mRNA levels. CONCLUSIONS OSM is involved in the pathogenesis of CRS in both type 1 and type 2 inflammation, suggesting the OSM signaling pathway as a potential therapeutic target for modulating epithelial stromal interactions.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Sachio Takeno
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Yukako Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Tomohiro Kawasumi
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Takashi Kakimoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Kota Takemoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Manabu Nishida
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Takashi Ishino
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Takao Hamamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Tsutomu Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (C.I.); (Y.O.); (T.K.); (T.K.); (K.T.); (M.N.); (T.I.); (T.H.); (T.U.)
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| |
Collapse
|
2
|
McGowan EC, Singh R, Katzka DA. Barrier Dysfunction in Eosinophilic Esophagitis. Curr Gastroenterol Rep 2023; 25:380-389. [PMID: 37950816 DOI: 10.1007/s11894-023-00904-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE OF REVIEW Compelling evidence over the past decade supports the central role of epithelial barrier dysfunction in the pathophysiology of eosinophilic esophagitis (EoE). The purpose of this review is to summarize the genetic, environmental, and immunologic factors driving epithelial barrier dysfunction, and how this impaired barrier can further promote the inflammatory response in EoE. RECENT FINDINGS Common environmental exposures, such as detergents, may have a direct impact on the esophageal epithelial barrier. In addition, the effects of IL-13 on barrier dysfunction may be reduced by 17β-estradiol, Vitamin D, and the short chain fatty acids butyrate and propionate, suggesting novel therapeutic targets. There are many genetic, environmental, and immunologic factors that contribute to epithelial barrier dysfunction in EoE. This leads to further skewing of the immune response to a "Th2" phenotype, alterations in the esophageal microbiome, and penetration of relevant antigens into the esophageal mucosa, which are central to the pathophysiology of EoE.
Collapse
Affiliation(s)
- Emily C McGowan
- Division of Allergy and Immunology, University of Virginia School of Medicine, PO Box 801355, Charlottesville, VA, 22908, USA.
| | - Roopesh Singh
- Division of Allergy and Immunology, University of Virginia School of Medicine, PO Box 801355, Charlottesville, VA, 22908, USA
| | - David A Katzka
- Division of Digestive and Liver Disease, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
3
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
4
|
Fraszczak J, Arman KM, Lacroix M, Vadnais C, Gaboury L, Möröy T. Severe Inflammatory Reactions in Mice Expressing a GFI1 P2A Mutant Defective in Binding to the Histone Demethylase KDM1A (LSD1). THE JOURNAL OF IMMUNOLOGY 2021; 207:1599-1615. [PMID: 34408010 DOI: 10.4049/jimmunol.2001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
GFI1 is a DNA-binding transcription factor that regulates hematopoiesis by repressing target genes through its association with complexes containing histone demethylases such as KDM1A (LSD1) and histone deacetylases (HDACs). To study the consequences of the disruption of the complex between GFI1 and histone-modifying enzymes, we have used knock-in mice harboring a P2A mutation in GFI1 coding region that renders it unable to bind LSD1 and associated histone-modifying enzymes such as HDACs. GFI1P2A mice die prematurely and show increased numbers of memory effector and regulatory T cells in the spleen accompanied by a severe systemic inflammation with high serum levels of IL-6, TNF-α, and IL-1β and overexpression of the gene encoding the cytokine oncostatin M (OSM). We identified lung alveolar macrophages, CD8 T cell from the spleen and thymic eosinophils, and monocytes as the sources of these cytokines in GFI1P2A mice. Chromatin immunoprecipitation showed that GFI1/LSD1 complexes occupy sites at the Osm promoter and an intragenic region of the Tnfα gene and that a GFI1P2A mutant still remains bound at these sites even without LSD1. Methylation and acetylation of histone H3 at these sites were enriched in cells from GFI1P2A mice, the H3K27 acetylation being the most significant. These data suggest that the histone modification facilitated by GFI1 is critical to control inflammatory pathways in different cell types, including monocytes and eosinophils, and that a disruption of GFI1-associated complexes can lead to systemic inflammation with fatal consequences.
Collapse
Affiliation(s)
| | - Kaifee Mohammad Arman
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Marion Lacroix
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Charles Vadnais
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Louis Gaboury
- Unité de Recherche en Histologie et Pathologie Moléculaire, Institut de Recherche en Immunologie et en Cancérologie, Montreal, Canada.,Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Canada; and
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Canada.,Département de Microbiologie Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
5
|
Tian T, Zi X, Peng Y, Wang Z, Hong H, Yan Y, Guan W, Tan KS, Liu J, Ong HH, Kang X, Yu J, Ong YK, Thong KT, Shi L, Ye J, Wang DY. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res 2018; 371:322-329. [DOI: 10.1016/j.yexcr.2018.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/28/2022]
|
6
|
Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, Cheong TC, Moon HJ, Cho JA, Kim HR, Han D, Na Y, Seok SH, Cho NH, Lee HC, Nam EH, Cho H, Choi M, Minato N, Seong SY. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 2018; 9:1984. [PMID: 30279688 PMCID: PMC6153344 DOI: 10.3389/fimmu.2018.01984] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Bile acids (BAs) control metabolism and inflammation by interacting with several receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA) decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against renal injury, and prolongs mouse survival during sepsis. TDCA increases the number of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when adoptively transferred better than MDSCL. Proteogenomic analysis indicated that TDCA controls chromatin silencing, alternative splicing, and translation of the immune proteome of MDSCLT, which increases the expression of anti-inflammatory molecules such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of pro-inflammatory molecules such as neutrophil elastase. These findings suggest that TDCA globally edits the proteome to increase the number of MDSCLT cells and affect their immune-regulatory functions to resolve systemic inflammation during sepsis.
Collapse
Affiliation(s)
- Sooghee Chang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joo Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Young-Woo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Sungyoon Moon
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Yong Yook Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Jin Sun Jung
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hi-Eun Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Joo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Taek-Chin Cheong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Jung Moon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yirang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hai-Chon Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Eun-Hee Nam
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Mahony CB, Pasche C, Bertrand JY. Oncostatin M and Kit-Ligand Control Hematopoietic Stem Cell Fate during Zebrafish Embryogenesis. Stem Cell Reports 2018; 10:1920-1934. [PMID: 29779898 PMCID: PMC5993650 DOI: 10.1016/j.stemcr.2018.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/23/2023] Open
Abstract
Understanding the molecular pathways controlling hematopoietic stem cell specification and expansion is a necessary milestone to perform regenerative medicine. Here, we used the zebrafish model to study the role of the ckit signaling pathway in this process. We show the importance of kitb/kitlgb signaling in the specification and expansion of hematopoietic stem cells (HSCs), in the hemogenic endothelium and caudal hematopoietic tissue (CHT), respectively. Moreover, we identified the zebrafish ortholog of Oncostatin M (osm) in the zebrafish genome. We show that the osm/osmr pathway acts upstream of kitb during specification of the hemogenic endothelium, while both pathways act synergistically to expand HSCs in the CHT. Moreover, we found that osm, in addition to its role in promoting HSC proliferation, inhibits HSC commitment to the lymphoid fate. Altogether, our data identified two cytokines, kitlgb and osm, secreted by the vascular niche, that control HSCs during early embryonic development. kitb/kitlgb signaling is necessary for HSCs in the zebrafish model osm is a new cytokine important for HSCs in the zebrafish model osmr and kitb signaling are required sequentially for HSC specification osmr and kitb synergize to expand HSCs in the caudal hematopoietic tissue
Collapse
Affiliation(s)
- Christopher B Mahony
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, CMU, University of Geneva, 1 Rue Michel-Servet, Geneva 1211, Switzerland
| | - Corentin Pasche
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, CMU, University of Geneva, 1 Rue Michel-Servet, Geneva 1211, Switzerland
| | - Julien Y Bertrand
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, CMU, University of Geneva, 1 Rue Michel-Servet, Geneva 1211, Switzerland.
| |
Collapse
|
8
|
Komori T, Morikawa Y. Oncostatin M in the development of metabolic syndrome and its potential as a novel therapeutic target. Anat Sci Int 2017; 93:169-176. [PMID: 29103176 DOI: 10.1007/s12565-017-0421-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/28/2017] [Indexed: 01/01/2023]
Abstract
Oncostatin M (OSM), a member of the IL-6 family of cytokines, plays an important role in various biologic actions, including cell growth, neuronal development, and inflammatory responses. Recently, we demonstrated the unique relationship between OSM and metabolic syndrome in mice. Mice lacking OSM receptor β subunit (OSMRβ-/- mice) exhibited late-onset obesity. Before the onset of obesity, adipose tissue inflammation and insulin resistance were observed in OSMRβ-/- mice. In addition, high-fat diet-induced metabolic disorders, including obesity, adipose tissue inflammation, insulin resistance, and hepatic steatosis, were aggravated in OSMRβ-/- mice compared to those in wild-type mice. Consistent with these findings, OSM treatment dramatically improved these metabolic disorders in the mouse model of metabolic syndrome. Interestingly, OSM directly changed the phenotypes of adipose tissue macrophages toward anti-inflammatory M2 type. Furthermore, fatty acid content in the hepatocytes was decreased by OSM through expression regulation of several key enzymes of hepatic lipid metabolism. These findings suggest that OSM is a novel therapeutic target for metabolic syndrome.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
9
|
Pothoven KL, Schleimer RP. The barrier hypothesis and Oncostatin M: Restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 2017; 5:e1341367. [PMID: 28665760 DOI: 10.1080/21688370.2017.1341367] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mucosal epithelium maintains tissue homeostasis through many processes, including epithelial barrier function, which separates the environment from the tissue. The barrier hypothesis of type 2 inflammatory disease postulates that epithelial and epidermal barrier dysfunction, which cause inappropriate exposure to the environment, can result in allergic sensitization and development of type 2 inflammatory disease. The restoration of barrier dysfunction once it's lost, or the prevention of barrier dysfunction, have the potential to be exciting new therapeutic strategies for the treatment of type 2 inflammatory disease. Neutrophil-derived Oncostatin M has been shown to be a potent disrupter of epithelial barrier function through the induction of epithelial-mesenchymal transition (EMT). This review will discuss these events and outline several points along this axis at which therapeutic intervention could be beneficial for the treatment of type 2 inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn L Pothoven
- a Division of Allergy-Immunology, Department of Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Driskill Graduate Program , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,c Immunology Program, Benaroya Research Institute at Virginia Mason , Seattle , WA , USA
| | - Robert P Schleimer
- a Division of Allergy-Immunology, Department of Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,d Departments of Otolaryngology and Microbiology-Immunology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
10
|
Komori T, Tanaka M, Furuta H, Akamizu T, Miyajima A, Morikawa Y. Oncostatin M is a potential agent for the treatment of obesity and related metabolic disorders: a study in mice. Diabetologia 2015; 58:1868-76. [PMID: 25972231 DOI: 10.1007/s00125-015-3613-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Obesity and insulin resistance are closely associated with adipose tissue dysfunction caused by the abnormal recruitment of inflammatory cells, including macrophages. Oncostatin M (OSM), a member of the IL-6 family of cytokines, plays important roles in a variety of biological functions including the regulation of inflammatory responses. In previous reports, we have demonstrated that mice deficient in the OSM receptor β subunit show obesity, adipose tissue inflammation, insulin resistance and hepatic steatosis, all of which are exacerbated by feeding the mice a high-fat diet. These results prompted us to test the therapeutic effects of OSM on obesity-induced metabolic disorders using mouse models of obesity. METHODS In diet-induced obese and ob/ob mice, metabolic variables were assessed physiologically, histologically and biochemically after the intraperitoneal injection of recombinant mouse OSM twice a day for 1 week. RESULTS Treatment with OSM improved obesity, adipose tissue inflammation, insulin resistance and hepatic steatosis in both mouse models. Although OSM reduced food intake, such therapeutic effects of OSM were observed even under pair-feeding conditions. Functionally, OSM directly changed the phenotype of adipose tissue macrophages from M1 type (inflammatory) to M2 type (anti-inflammatory). In the liver, OSM suppressed the expression of genes related to fatty acid synthesis and increased the expression of genes related to fatty acid oxidation. Furthermore, OSM decreased lipid absorption and increased the expression of active glucagon-like peptide-1 in the intestine. CONCLUSIONS/INTERPRETATION We showed that OSM is a novel candidate to act as a powerful therapeutic agent for the treatment of obesity-induced metabolic disorders.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Storan ER, O'Gorman SM, McDonald ID, Steinhoff M. Role of cytokines and chemokines in itch. Handb Exp Pharmacol 2015; 226:163-76. [PMID: 25861779 DOI: 10.1007/978-3-662-44605-8_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines classically are secreted "messenger" proteins that modulate cellular function of immune cells. Chemokines attract immune cells to the site where they exert various functions in inflammation, autoimmunity or cancer. Increasing evidence is emerging that cytokines or chemokines can act as "neuro-modulators" by activating high-affinity receptors on peripheral or central neurons, microglia cells or Schwann cells. Very recently, cytokines have been shown to act as pruritogens in rodents and humans, while a role of chemokines in itch has thus far been only demonstrated in mice. Upon stimulation, cytokines are released by skin or immune cells and form a "bridge of communication" between the immune and nervous system. For some cytokines such as IL-31 and TSLP, the evidence for this role is strong in rodents. For cytokines such as IL-4, there is some convincing evidence, while for cytokines such as oncostatin M, IL-2, IL-6, IL-8 and IL-13, direct evidence is currently limited. Current clinical trials support the idea that cytokines and chemokines and their receptors or signalling pathways are promising targets for the future therapy of certain subtypes of itch.
Collapse
Affiliation(s)
- Eoin R Storan
- Department of Dermatology, Dept. of Dermatology and UCD Charles Institute of Translational Dermatology University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
12
|
Pothoven KL, Norton JE, Hulse KE, Suh LA, Carter RG, Rocci E, Harris KE, Shintani-Smith S, Conley DB, Chandra RK, Liu MC, Kato A, Gonsalves N, Grammer LC, Peters AT, Kern RC, Bryce PJ, Tan BK, Schleimer RP. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol 2015; 136:737-746.e4. [PMID: 25840724 DOI: 10.1016/j.jaci.2015.01.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Epithelial barrier dysfunction is thought to play a role in many mucosal diseases, including asthma, chronic rhinosinusitis (CRS), and eosinophilic esophagitis. OBJECTIVE The objective of this study was to investigate the role of oncostatin M (OSM) in epithelial barrier dysfunction in human mucosal disease. METHODS OSM expression was measured in tissue extracts, nasal secretions, and bronchoalveolar lavage fluid. The effects of OSM stimulation on barrier function of normal human bronchial epithelial cells and nasal epithelial cells cultured at the air-liquid interface were assessed by using transepithelial electrical resistance and fluorescein isothiocyanate-dextran flux. Dual-color immunofluorescence was used to evaluate the integrity of tight junction structures in cultured epithelial cells. RESULTS Analysis of samples from patients with CRS showed that OSM mRNA and protein levels were highly increased in nasal polyps compared with those seen in control uncinate tissue (P < .05). OSM levels were also increased in bronchoalveolar lavage fluid of allergic asthmatic patients after segmental allergen challenge and in esophageal biopsy specimens from patients with eosinophilic esophagitis. OSM stimulation of air-liquid interface cultures resulted in reduced barrier function, as measured by decreased transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran flux (P < .05). Alterations in barrier function by OSM were reversible, and the viability of epithelial cells was unaffected. OSM levels in lysates of nasal polyps and uncinate tissue positively correlated with levels of α2-macroglobulin, a marker of epithelial leak, in localized nasal secretions (r = 0.4855, P < .05). CONCLUSIONS These results suggest that OSM might play a role in epithelial barrier dysfunction in patients with CRS and other mucosal diseases.
Collapse
Affiliation(s)
- Kathryn L Pothoven
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Erin Rocci
- Stritch School of Medicine, Loyola University Chicago, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Rakesh K Chandra
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Mark C Liu
- Divisions of Allergy and Clinical Immunology, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md
| | - Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Nirmala Gonsalves
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
13
|
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 2014; 5:17. [PMID: 24987514 PMCID: PMC4077281 DOI: 10.1186/2041-9139-5-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, 142 Life Sciences Addition #3200, Berkeley, CA 94720, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Christopher J Lowe
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
14
|
Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y. Deficiency of oncostatin M receptor β (OSMRβ) exacerbates high-fat diet-induced obesity and related metabolic disorders in mice. J Biol Chem 2014; 289:13821-37. [PMID: 24695736 DOI: 10.1074/jbc.m113.542399] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oncostatin M (OSM) belongs to the IL-6 family of cytokines and has diverse biological effects, including the modulation of inflammatory responses. In the present study we analyzed the roles of OSM signaling in obesity and related metabolic disorders. Under a high-fat diet condition, OSM receptor β subunit-deficient (OSMRβ(-/-)) mice exhibited increases in body weight and food intake compared with those observed in WT mice. In addition, adipose tissue inflammation, insulin resistance, and hepatic steatosis were more severe in OSMRβ(-/-) mice than in wild-type (WT) mice. These metabolic phenotypes did not improve when OSMRβ(-/-) mice were pair-fed with WT mice, suggesting that the effects of OSM signaling on these phenotypes are independent of the increases in the body weight and food intake. In the liver of OSMRβ(-/-) mice, the insulin-induced phosphorylation of p70 S6 kinase remained intact, whereas insulin-induced FOXO1 phosphorylation was impaired. In addition, OSMRβ(-/-) mice displayed a higher expression of genes related to de novo lipogenesis in the liver than WT mice. Furthermore, treatment of genetically obese ob/ob mice with OSM improved insulin resistance, adipose tissue inflammation, and hepatic steatosis. Intraportal administration of OSM into ob/ob mice activated STAT3 and increased the expression of long-chain acyl-CoA synthetase (ACSL) 3 and ACSL5 with decreased expression of fatty acid synthase in the liver, suggesting that OSM directly induces lipolysis and suppresses lipogenesis in the liver of obese mice. These findings suggest that defects in OSM signaling promote the deterioration of high-fat diet-induced obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Tadasuke Komori
- From the Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama 641-8509, Japan and
| | - Minoru Tanaka
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Emiko Senba
- From the Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama 641-8509, Japan and
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshihiro Morikawa
- From the Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama 641-8509, Japan and
| |
Collapse
|
15
|
Sanchez-Infantes D, White UA, Elks CM, Morrison RF, Gimble JM, Considine RV, Ferrante AW, Ravussin E, Stephens JM. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99:E217-25. [PMID: 24297795 PMCID: PMC3913819 DOI: 10.1210/jc.2013-3555] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Adipose tissue is a highly active endocrine organ that secretes many factors that affect other tissues and whole-body metabolism. Adipocytes are responsive to several glycoprotein 130 (gp130) cytokines, some of which have been targeted as potential antiobesity therapeutics. OBJECTIVE Oncostatin M (OSM) is a gp130 family member known to inhibit adipocyte differentiation in vitro, but its effects on other adipocyte properties are not characterized. The expression of OSM in white adipose tissue (WAT) has not been evaluated in the context of obesity. Thus, our objective was to examine the expression of adipose tissue OSM in obese animals and humans. DESIGN OSM expression was examined in adipose tissues from mice with diet-induced and genetic obesity and in obese humans as well as in fractionated adipose tissue from mice. Murine adipocytes were used to examine OSM receptor expression and the effects of OSM on adipocytes, including the secretion of factors such as plasminogen activator inhibitor 1 and IL-6, which are implicated in metabolic diseases. RESULTS OSM expression is increased in rodent and human obesity/type 2 diabetes mellitus. In humans, OSM levels correlate with body weight and insulin and are inversely correlated with glucose disposal rate as measured by hyperinsulinemic-euglycemic clamp. OSM is not produced from the adipocytes in WAT but derives from cells in the stromovascular fraction, including F4/80(+) macrophages. The specific receptor of OSM, OSM receptor-β, is expressed in adipocytes and adipose tissue and increased in both rodent models of obesity examined. OSM acts on adipocytes to induce the expression and secretion of plasminogen activator inhibitor 1 and IL-6. CONCLUSIONS These data indicate that WAT macrophages are a source of OSM and that OSM levels are significantly induced in murine and human obesity/type 2 diabetes mellitus. These studies suggest that OSM produced from immune cells in WAT acts in a paracrine manner on adipocytes to promote a proinflammatory phenotype in adipose tissue.
Collapse
Affiliation(s)
- David Sanchez-Infantes
- Pennington Biomedical Research Center (D.S.-I., U.A.W., C.M.E., J.M.G., E.R., J.M.S.) and Department of Biological Sciences (J.M.S.), Louisiana State University, Baton Rouge, Louisiana 70808; Department of Nutrition (R.F.M.), UNC-Greensboro, Greensboro, North Carolina 24702; Indiana University School of Medicine (R.V.C.), Indianapolis, Indiana 46202; Department of Medicine (A.W.F.), Columbia University, New York, New York 10032; and Endocrinology Department (D.S.-I.), St Joan de Deu, 08950 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
17
|
Nogueira-Silva C, Piairo P, Carvalho-Dias E, Veiga C, Moura RS, Correia-Pinto J. The role of glycoprotein 130 family of cytokines in fetal rat lung development. PLoS One 2013; 8:e67607. [PMID: 23826327 PMCID: PMC3691159 DOI: 10.1371/journal.pone.0067607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/24/2013] [Indexed: 11/24/2022] Open
Abstract
The glycoprotein 130 (gp130) dependent family of cytokines comprises interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and oncostatin M (OSM). These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6 promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM) were investigated. We also provide the first description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development. Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation. On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed, cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit lung branching.
Collapse
Affiliation(s)
- Cristina Nogueira-Silva
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| | - Paulina Piairo
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Carvalho-Dias
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Carla Veiga
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
- * E-mail:
| |
Collapse
|
18
|
Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y. Lack of oncostatin M receptor β leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J Biol Chem 2013; 288:21861-75. [PMID: 23760275 DOI: 10.1074/jbc.m113.461905] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncostatin M (OSM), a member of the IL-6 family of cytokines, plays important roles in a variety of biological functions, including inflammatory responses. However, the roles of OSM in metabolic diseases are unknown. We herein analyzed the metabolic parameters of OSM receptor β subunit-deficient (OSMRβ(-/-)) mice under normal diet conditions. At 32 weeks of age, OSMRβ(-/-) mice exhibited mature-onset obesity, severer hepatic steatosis, and insulin resistance. Surprisingly, insulin resistance without obesity was observed in OSMRβ(-/-) mice at 16 weeks of age, suggesting that insulin resistance precedes obesity in OSMRβ(-/-) mice. Both OSM and OSMRβ were expressed strongly in the adipose tissue and little in some other metabolic organs, including the liver and skeletal muscle. In addition, OSMRβ is mainly expressed in the adipose tissue macrophages (ATMs) but not in adipocytes. In OSMRβ(-/-) mice, the ATMs were polarized to M1 phenotypes with the augmentation of adipose tissue inflammation. Treatment of OSMRβ(-/-) mice with an anti-inflammatory agent, sodium salicylate, improved insulin resistance. In addition, the stimulation of a macrophage cell line, RAW264.7, and peritoneal exudate macrophages with OSM resulted in the increased expression of M2 markers, IL-10, arginase-1, and CD206. Furthermore, treatment of C57BL/6J mice with OSM increased insulin sensitivity and polarized the phenotypes of ATMs to M2. Thus, OSM suppresses the development of insulin resistance at least in part through the polarization of the macrophage phenotypes to M2, and OSMRβ(-/-) mice provide a unique mouse model of metabolic diseases.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | | | | | | | | |
Collapse
|
19
|
Antic D, Impera L, Fekete MD, Djordjevic V, Storlazzi CT, Elezovic I. Novel chromosomal translocation (17;22)(q12;q12) in a case of myelodisplastic syndrome characterized with signs of hemolytic anemia at presentation. Gene 2012; 493:161-4. [PMID: 22138479 DOI: 10.1016/j.gene.2011.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/01/2011] [Indexed: 11/15/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal stem cell diseases that can result in cytopenias, dysplasia in one or more cell lineages, infective hematopoiesis, and increase the risk of progression to acute myeloid leukemia (AML). MDSs are characterized by several recurrent cytogenetic defects, which can affect diagnosis, prognosis, and treatment. Some of that chromosomal alterations are associated with very poor prognosis. Conventional cytogenetics cannot accurately define the rearranged karyotype. Instead, molecular cytogenetics analyses can provide important diagnostic and prognostic information for patients affected by MDS, allowing the characterization of the whole mutational spectrum and, mainly, novel chromosomal lesions. In this paper, we report a MDS case with a novel chromosomal translocation [t(17;22)(q12;q22)], described for the first time here. Following Giemsa-banding karyotyping, fluorescent in situ hybridization analyses, by using chromosome-specific probes, displayed the breakpoint regions at chromosomes 17 and 22, within which intra and inter-chromosomal segmental duplications (SD) are present. Because of the occurrence of SDs in breakpoint region, it was not possible to finely define the genomic regions where breaks fell. Further investigations could be required to better understand the molecular basis of the novel translocation t(17;22)(q12;q12) acting in MDS context and to explain if SDs could contribute to the pathogenesis of MDS.
Collapse
Affiliation(s)
- Darko Antic
- Clinic for hematology, Clinical Center Serbia, Koste Todorovica 2, 11 000 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
20
|
Shen X, Cui J, Nagahama Y. The Forkhead Gene Family in Medaka: Expression Patterns and Gene Evolution. Cytogenet Genome Res 2012; 136:123-30. [DOI: 10.1159/000335898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 11/19/2022] Open
|
21
|
Hwang JY, Santos MD, Kondo H, Hirono I, Aoki T. Identification, characterization and expression of a novel cytokine M17 homologue (MSH) in fish. FISH & SHELLFISH IMMUNOLOGY 2007; 23:1256-1265. [PMID: 17950621 DOI: 10.1016/j.fsi.2007.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 05/25/2023]
Abstract
Members of the interleukin 6 (IL6)-cytokine subfamily of proteins are involved in numerous physiological processes including cellular development, inflammatory function, and acute phase and immune responses. Previously, a cytokine-like gene named M17, which is closely associated with the IL6 subfamily, has been identified in fish with no apparent orthologue in higher vertebrates. Here, we cloned a novel cDNA from Japanese flounder, Paralichthys olivaceus, which had significant identity but exhibited contrasting expression with fish M17s, named here as M17 Homologue (MSH). With subsequent in silico search and full annotation of the M17 orthologue in zebrafish (Danio rerio), MSH orthologues in tiger puffer (Takifugu rubripes), green spotted pufferfish (Tetraodon nigroviridis) and stickleback (Gastorosteus aculeatus), as well as structural, synteny comparisons and phylogenetic analysis with known IL6-cytokines, we determined the novelty of the fish MSH. Japanese flounder MSH was observed to be highly expressed in immune-related tissues and are induced by immune stimulants, lipopolysaccharide (LPS), polyI:C and peptidoglycan (PG) in vitro suggesting that it is involved in fish immunity particularly against viral and bacterial agents, a functional feature exhibited by previously reported fish cytokines.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
22
|
Minehata KI, Takeuchi M, Hirabayashi Y, Inoue T, Donovan PJ, Tanaka M, Miyajima A. Oncostatin m maintains the hematopoietic microenvironment and retains hematopoietic progenitors in the bone marrow. Int J Hematol 2007; 84:319-27. [PMID: 17118758 DOI: 10.1532/ijh97.06090] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bone marrow (BM) functions as the primary hematopoietic tissue throughout adult life by providing a microenvironment for the proliferation, differentiation, and retention of hematopoietic stem cells and progenitors. We describe novel roles for oncostatin M (OSM) in the BM hematopoietic microenvironment. Hematopoietic progenitor activity in OSM-deficient mice was reduced in BM but elevated in the spleen and peripheral blood. The level of circulating granulocyte colony-stimulating factor (G-CSF) was increased, whereas that of stromal cell-derived factor 1 (SDF-1) was decreased in OSM-deficient mice. Moreover, the ability of OSM-deficient BM stromal cells to support hematopoiesis in vitro was significantly reduced. These results indicate that OSM plays a unique role in hematopoiesis by maintaining the proper microenvironment for BM hematopoiesis; it also retains hematopoietic progenitors in BM by regulating G-CSF and SDF-1 levels.
Collapse
Affiliation(s)
- Ken-ichi Minehata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Komori T, Morikawa Y, Nanjo K, Senba E. Induction of brain-derived neurotrophic factor by leptin in the ventromedial hypothalamus. Neuroscience 2006; 139:1107-15. [PMID: 16564638 DOI: 10.1016/j.neuroscience.2005.12.066] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/30/2005] [Accepted: 12/07/2005] [Indexed: 01/19/2023]
Abstract
Leptin, an adipocyte-derived hormone, reduces food intake by regulating orexigenic and anorexigenic factors in the hypothalamus. Although brain-derived neurotrophic factor is an important anorexigenic factor in the hypothalamus, little is known about the regulation of brain-derived neurotrophic factor expression by leptin in the hypothalamus. In the present study, we examined the effect of leptin on the expression of brain-derived neurotrophic factor in the hypothalamus. I.V. administration of leptin (10 microg/g) led to the increase in the expression of brain-derived neurotrophic factor mRNA, which was observed in the dorsomedial part of the ventromedial hypothalamic nucleus. The increased expression of brain-derived neurotrophic factor mRNA was detected in phosphorylated signal transducer and activator of transcription 3-positive neurons, suggesting that leptin induced brain-derived neurotrophic factor expression in neurons of the dorsomedial part of the ventromedial hypothalamic nucleus. In addition, the expression of brain-derived neurotrophic factor was increased at the protein level in the ventromedial hypothalamic nucleus of leptin-injected mice. Interestingly, brain-derived neurotrophic factor-positive fibers also increased in the ventromedial hypothalamic nucleus and dorsomedial hypothalamic nucleus of leptin-injected mice, which were in close apposition to tyrosine kinase receptor B-immunoreactive neurons and colocalized with synaptophysin, a marker of presynaptic terminals. These results suggest that leptin induces brain-derived neurotrophic factor expression in the dorsomedial part of the ventromedial hypothalamic nucleus and brain-derived neurotrophic factor may exert as anorexigenic factors possibly through the activation of tyrosine kinase receptor B in the ventromedial hypothalamic nucleus and dorsomedial hypothalamic nucleus.
Collapse
Affiliation(s)
- T Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | | | | | | |
Collapse
|
24
|
Finelt N, Gazel A, Gorelick S, Blumenberg M. Transcriptional responses of human epidermal keratinocytes to Oncostatin-M. Cytokine 2005; 31:305-13. [PMID: 16023359 DOI: 10.1016/j.cyto.2005.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/06/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Oncostatin-M (OsM) plays an important role in inflammatory and oncogenic processes in skin, including psoriasis and Kaposi sarcoma. However, the molecular responses to OsM in keratinocytes have not been explored in depth. Here we show the results of transcriptional profiling in OsM-treated primary human epidermal keratinocytes, using high-density DNA microarrays. We find that OsM strongly and specifically affects the expression of many genes, in particular those involved with innate immunity, angiogenesis, adhesion, motility, tissue remodeling, cell cycle and transcription. The timing of the responses to OsM comprises two waves, early at 1h, and late at 48 h, with much fewer genes regulated in the intervening time points. Secreted cytokines and growth factors and their receptors, as well as nuclear transcription factors, are primary targets of OsM regulation, and these, in turn, effect the secondary changes.
Collapse
Affiliation(s)
- Nika Finelt
- Department of Dermatology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | | | |
Collapse
|
25
|
Abstract
Oncostatin M (OSM) is a member of the interleukin-6 family of cytokines. Of these cytokines, OSM is closely related structually, genetically and functionally to leukemia inhibitory factor. However, OSM-specific biological activities have been reported in hematopoiesis and liver development. Recently, we have demonstrated OSM-specific activities in the nervous systems. In the adult central nervous system (CNS), OSM receptor (OSMR) beta was observed in meningeal cells of pia mater, epithelial cells of the choroid plexus and olfactory astrocyte-like glia surrounding the glomeruli of the olfactory bulb. In the CNS of neonatal mice, OSMRbeta was also expressed in the ventral subnucleus of the hypoglossal nucleus, but disappeared at post-natal day (P) 14. In contrast with the CNS, OSMRbeta was strongly expressed in small-sized non-peptidergic neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG). Interestingly, all OSMRbeta-positive neurons in these ganglia also expressed both TRPV1 (a vanilloid receptor) and P2X3 (a purinergic receptor). In OSM-deficient mice, TRPV1/P2X3/OSMRbeta triple-positive neurons were significantly decreased. Consistent with such histological findings, OSM-deficient mice exhibited a reduction in responses to various stimuli, including mechanical and thermal stimuli. These findings suggest an important role for OSM in the development of a subset of nociceptive neurons.
Collapse
Affiliation(s)
- Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
26
|
Znoyko I, Sohara N, Spicer SS, Trojanowska M, Reuben A. Comparative studies of oncostatin M expression in the tissues of adult rodents. ACTA ACUST UNITED AC 2005; 283:182-6. [PMID: 15674824 DOI: 10.1002/ar.a.20159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, is thought to be expressed mostly by activated T-lymphocytes and monocytes in adult animals. However, here we report specific constitutive tissue expression of OSM in the pancreas, kidney, testes, spleen, stomach, and brain, but not liver or lung, of three adult rodent species.
Collapse
Affiliation(s)
- Iya Znoyko
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
27
|
Tamura S, Morikawa Y, Senba E. Up-regulated phosphorylation of signal transducer and activator of transcription 3 and cyclic AMP-responsive element binding protein by peripheral inflammation in primary afferent neurons possibly through oncostatin M receptor. Neuroscience 2005; 133:797-806. [PMID: 15893881 DOI: 10.1016/j.neuroscience.2005.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/08/2005] [Accepted: 02/23/2005] [Indexed: 12/23/2022]
Abstract
Oncostatin M (OSM), a member of interleukin-6 family cytokines, contributes to the development of nociceptive sensory neurons. However, little is known about the role of OSM in dorsal root ganglia (DRGs) of adult mice after peripheral inflammation. In the present study, we showed that OSM mRNA was highly expressed in the inflamed skin during acute inflammation induced by complete Freund's adjuvant (CFA), while the expression of oncostatin M receptor (OSMR) did not change in the ipsilateral DRG. Although peripheral inflammation induced significant increases in the number of neurons with phosphorylated extracellular signal-regulated kinase (p-ERK) and phosphorylated p38 mitogen-activated protein kinase (p-p38) in ipsilateral DRGs, OSMR-positive neurons exhibited neither p-ERK nor p-p38. In addition, we found significant increases in the number of neurons with phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and phosphorylated cAMP-responsive element binding protein (p-CREB) in the ipsilateral DRGs. Interestingly, OSMR-positive neurons with p-STAT3 and p-CREB were significantly increased after peripheral inflammation. Thus, our results suggest that acute inflammation induce the phosphorylations of several signal molecules, including ERK, p38, cAMP-responsive element binding protein, and STAT3. Among them, the up-regulation of p-STAT3 and p-CREB may be induced possibly through OSMR.
Collapse
Affiliation(s)
- S Tamura
- Department of Anatomy and Neurobiology, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan
| | | | | |
Collapse
|
28
|
Tamura S, Morikawa Y, Iwanishi H, Hisaoka T, Senba E. Foxp1 gene expression in projection neurons of the mouse striatum. Neuroscience 2004; 124:261-7. [PMID: 14980377 DOI: 10.1016/j.neuroscience.2003.11.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 11/21/2022]
Abstract
The developmental processes of maturation in the CNS are the result of specific events including mitogenesis, differentiation, and cell death which occur in a precise spatial and temporal manner. It has been reported that many transcription factors, including forkhead transcription factors, play a key role in these processes. First, we examined the expression pattern of the forkhead transcription factor Foxp1 in the adult CNS. Foxp1 was highly expressed in the striatum and moderately in the cerebral cortex, CA1/2 subfields of the hippocampus, and several thalamic nuclei. In situ hybridization combined with immunohistochemistry in the striatum of adult mice revealed that Foxp1 mRNA was detected in a subset of projection neurons, not in interneurons. In addition, the expression of Foxp1 mRNA was observed in the developing basal ganglia with the exception of the globus pallidus. Thus, Foxp1 mRNA was expressed in a subset of striatal projection neurons, probably the matrix neurons. The expression pattern of Foxp1 mRNA suggests that Foxp1 may play a role in the development and formation of a circuit in the basal ganglia, which is involving the matrix neurons.
Collapse
Affiliation(s)
- S Tamura
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | | | | | | | | |
Collapse
|
29
|
Morikawa Y, Tamura S, Minehata KI, Donovan PJ, Miyajima A, Senba E. Essential function of oncostatin m in nociceptive neurons of dorsal root ganglia. J Neurosci 2004; 24:1941-7. [PMID: 14985435 PMCID: PMC6730413 DOI: 10.1523/jneurosci.4975-03.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oncostatin M (OSM) is a member of the interleukin-6 family of cytokines, and we have reported previously that the murine OSM receptor beta subunit (OSMR) was expressed in some neurons in the adult trigeminal and dorsal root ganglia (DRGs) and in the perineonatal hypoglossal nucleus. In the present study, we investigated the development of OSMR-positive neurons of DRGs in OSM-deficient mice. In situ hybridization revealed that OSMR-positive neurons in DRGs began to appear at postnatal day 0 (P0) and reached the adult level at P14. In the DRGs of the OSM-deficient mice, vanilloid receptor 1 (VR1)- and P2X3-positive small-sized neurons were significantly decreased. In addition, OSMR-positive neurons decreased, resulting in the reduced number of VR1/P2X3/OSMR-triple positive neurons. OSM-deficient mice displayed significantly reduced noxious responses in models of acute thermal, mechanical, chemical, and visceral pain. Thus, OSM plays an essential role in the development of a subtype of nociceptive neurons in the DRGs.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/biosynthesis
- Behavior, Animal
- Cell Count
- Cell Size
- Fluorescent Antibody Technique
- Ganglia, Spinal/cytology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Gene Targeting
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/cytology
- Neurons/metabolism
- Oncostatin M
- Pain/metabolism
- Pain Measurement
- Peptides/genetics
- Peptides/physiology
- RNA, Messenger/metabolism
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Drug/biosynthesis
- Receptors, Oncostatin M
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2X3
Collapse
Affiliation(s)
- Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama, 641-8509 Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Shimoyama Y, Morikawa Y, Ichihara M, Kodama Y, Fukuda N, Hayashi H, Morinaga T, Iwashita T, Murakumo Y, Takahashi M. Identification of human SEP1 as a glial cell line-derived neurotrophic factor-inducible protein and its expression in the nervous system. Neuroscience 2003; 121:899-906. [PMID: 14580940 DOI: 10.1016/s0306-4522(03)00487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) signals through multisubunit receptor complex consisting of RET tyrosine kinase and a glycosylphosphatidylinositol-anchored coreceptor called GDNF family receptor alpha1 (GFRalpha1). In the current study, we cloned a human SEP1 gene as a GDNF-inducible gene using human neuroblastoma cells that express RET and GFRalpha1. The induction of the SEP1 gene showed two peaks at 0.5-2 h and 24-48 h after GDNF stimulation by Northern blotting and quantitative real-time reverse transcriptase polymerase chain reaction. The late induction was also confirmed at protein levels by Western blotting with anti-SEP1 antibody. Immunostaining revealed that the expression of the SEP1 protein was detected in cell body, elongated neurites and growth cone-like structure of neuroblastoma cells treated with GDNF. In addition, we found a high level of SEP1 expression in neurons of the dorsal root and superior cervical ganglia and motor neurons of the spinal cord of mice in which RET is also expressed. SEP1 was co-immunoprecipitated with alpha- and beta-tubulins from the lysate of mouse brain. These results thus suggested that SEP1 is a GDNF-inducible and microtubule-associated protein that may play a role in the nervous system.
Collapse
Affiliation(s)
- Y Shimoyama
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tamura S, Morikawa Y, Senba E. Localization of oncostatin M receptor beta in adult and developing CNS. Neuroscience 2003; 119:991-7. [PMID: 12831858 DOI: 10.1016/s0306-4522(03)00240-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oncostatin M (OSM) is a member of the interleukin-6 cytokine family, which is involved in definitive hematopoiesis, the development of liver, and local inflammation. However, little is known about the role of OSM in the murine CNS. Using Northern blot analysis, we examined the regional distribution of OSM receptor beta (OSMRbeta) mRNA in the adult CNS. OSMRbeta mRNA was observed predominantly in the olfactory bulb, and with low levels in the other regions. In situ hybridization shows that OSMRbeta gene expression was found in astrocytes of olfactory bulb, epithelial cells of choroid plexus, and meningeal cells in pia mater. In addition, we investigated the gene expression of OSMRbeta in the developing CNS at different time points. Its gene expression was first observed in large neurons of the hypoglossal nucleus at 14.5 days postcoitum, which was sustained until neonatal mice. OSMRbeta mRNA and protein were mainly localized in the ventral subnucleus of the developing hypoglossal nucleus. Our results suggest that OSM contributes to the development of specific subpopulations of both neurons and astrocytes in the murine CNS.
Collapse
Affiliation(s)
- S Tamura
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, 641-8509, Wakayama, Japan
| | | | | |
Collapse
|
32
|
Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M receptor beta in a specific subset of nociceptive sensory neurons. Eur J Neurosci 2003; 17:2287-98. [PMID: 12814362 DOI: 10.1046/j.1460-9568.2003.02681.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oncostatin M belongs to the interleukin-6 family of cytokines and acts as a multifunctional cytokine during murine embryogenesis and in inflammatory reactions. Although it has been demonstrated that oncostatin M has biological activities on many types of cells, including hepatocytes, dermal fibroblasts and endothelial cells, the roles of oncostatin M in the murine peripheral nervous system remain unclear. Here, we investigated the expression of specific beta-subunit of oncostatin M receptor in the dorsal root ganglia of adult mice. In the adult dorsal root ganglia, beta-subunit of oncostatin M receptor was exclusively expressed in small-sized neurons. Approximately 13% of total dorsal root ganglia neurons in mice contained beta-subunit of oncostatin M receptor. The double-immunofluorescence method revealed that approximately 28% of beta-subunit of oncostatin M receptor-positive neurons contained TrkA immunoreactivity, 63% expressed Ret immunoreactivity and 58% bound isolectin B4. No neuropeptides, including substance P and calcitonin gene-related peptide, were contained in the neurons. In addition, all beta-subunit of oncostatin M receptor-positive neurons expressed both vanilloid receptor 1 and P2X3 purinergic receptor. These neurons projected to the inner portion of lamina II in the dorsal horn of spinal cord and the dermis of skin. Seven days after sciatic nerve axotomy, the expression of beta-subunit of oncostatin M receptor was down-regulated in the lumbar dorsal root ganglia of the injured side. Our study demonstrated that beta-subunit of oncostatin M receptor was expressed in both cell bodies and processes of nonpeptidergic nociceptive neurons in adult mice, suggesting that oncostatin M may affect the nociceptive function of the neurons through the modulation of vanilloid receptor 1 and P2X3 expression.
Collapse
MESH Headings
- Animals
- Axotomy/methods
- Blotting, Northern
- Calcitonin Gene-Related Peptide/metabolism
- Carrier Proteins/metabolism
- Cell Count
- Contactins
- Drosophila Proteins/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/injuries
- Ganglia, Spinal/metabolism
- Gene Expression
- Glycoproteins
- Immunohistochemistry/methods
- In Situ Hybridization
- Lectins/metabolism
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Neurons, Afferent/classification
- Neurons, Afferent/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Proto-Oncogene Proteins c-ret
- RNA Probes/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, trkA
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Drug/metabolism
- Receptors, OSM-LIF
- Receptors, Oncostatin M
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X3
- Skin/metabolism
- Trigeminal Ganglion/cytology
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Anatomy and Neurobiology, Wakay ama Medical University, 811-1 Kimiidera, Wakayama, Japan, 641-8509
| | | | | | | |
Collapse
|