1
|
Kumar S, Umair Z, Kumar V, Goutam RS, Park S, Lee U, Kim J. Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development. Sci Rep 2024; 14:8922. [PMID: 38637565 PMCID: PMC11026473 DOI: 10.1038/s41598-024-59299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B-6041, Belgium
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| |
Collapse
|
2
|
Abstract
Organizers, which comprise groups of cells with the ability to instruct adjacent cells into specific states, represent a key principle in developmental biology. The concept was first introduced by Spemann and Mangold, who showed that there is a cellular population in the newt embryo that elicits the development of a secondary axis from adjacent cells. Similar experiments in chicken and rabbit embryos subsequently revealed groups of cells with similar instructive potential. In birds and mammals, organizer activity is often associated with a structure known as the node, which has thus been considered a functional homologue of Spemann's organizer. Here, we take an in-depth look at the structure and function of organizers across species and note that, whereas the amphibian organizer is a contingent collection of elements, each performing a specific function, the elements of organizers in other species are dispersed in time and space. This observation urges us to reconsider the universality and meaning of the organizer concept. Summary: This Review re-evaluates the notion of Spemann's organizer as identified in amphibians, highlighting the spatiotemporal dispersion of equivalent elements in mouse and the key influence of responsiveness to organizer signals.
Collapse
Affiliation(s)
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
3
|
Naylor RW, Han HI, Hukriede NA, Davidson AJ. Wnt8a expands the pool of embryonic kidney progenitors in zebrafish. Dev Biol 2017; 425:130-141. [PMID: 28359809 DOI: 10.1016/j.ydbio.2017.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/15/2023]
Abstract
During zebrafish embryogenesis the pronephric kidney arises from a small population of posterior mesoderm cells that then undergo expansion during early stages of renal organogenesis. While wnt8 is required for posterior mesoderm formation during gastrulation, it is also transiently expressed in the post-gastrula embryo in the intermediate mesoderm, the precursor to the pronephros and some blood/vascular lineages. Here, we show that knockdown of wnt8a, using a low dose of morpholino that does not disrupt early mesoderm patterning, reduces the number of kidney and blood cells. For the kidney, wnt8a deficiency decreases renal progenitor growth during early somitogenesis, as detected by EdU incorporation, but has no effect on apoptosis. The depletion of the renal progenitor pool in wnt8a knockdown embryos leads to cellular deficits in the pronephros at 24 hpf that are characterised by a shortened distal-most segment and stretched proximal tubule cells. A pulse of the canonical Wnt pathway agonist BIO during early somitogenesis is sufficient to rescue the size of the renal progenitor pool while longer treatment expands the number of kidney cells. Taken together, these observations indicate that Wnt8, in addition to its well-established role in posterior mesoderm patterning, also plays a later role as a factor that expands the renal progenitor pool prior to kidney morphogenesis.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand.
| | - Hwa In Han
- Department of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Neil A Hukriede
- Department of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Abstract
The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sarah S Qubisi
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
5
|
BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis. Nat Commun 2016; 7:12197. [PMID: 27406002 PMCID: PMC4947171 DOI: 10.1038/ncomms12197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/09/2016] [Indexed: 11/23/2022] Open
Abstract
Despite the fundamental importance of patterning along the dorsal–ventral (DV) and anterior–posterior (AP) axes during embryogenesis, uncertainty exists in the orientation of these axes for the mesoderm. Here we examine the origin and formation of the zebrafish kidney, a ventrolateral mesoderm derivative, and show that AP patterning of the non-axial mesoderm occurs across the classic gastrula stage DV axis while DV patterning aligns along the animal–vegetal pole. We find that BMP signalling acts early to establish broad anterior and posterior territories in the non-axial mesoderm while retinoic acid (RA) functions later, but also across the classic DV axis. Our data support a model in which RA on the dorsal side of the embryo induces anterior kidney fates while posterior kidney progenitors are protected ventrally by the RA-catabolizing enzyme Cyp26a1. This work clarifies our understanding of vertebrate axis orientation and establishes a new paradigm for how the kidney and other mesodermal derivatives arise during embryogenesis. It is unclear how the dorsal-ventral (DV) and anterior-posterior (AP) axes established in the gastrula affect tissues. Here, the authors show that in zebrafish kidney development, with regard to non-axial mesoderm, the classic DV axis corresponds to the AP axis, and is regulated by BMP and retinoic acid.
Collapse
|
6
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
7
|
Generic oscillation patterns of the developing systems and their role in the origin and evolution of ontogeny. Biosystems 2014; 123:37-53. [PMID: 24769154 DOI: 10.1016/j.biosystems.2014.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 11/24/2022]
Abstract
The role of generic oscillation patterns in embryonic development on a macroscopic scale is discussed in terms of active shell model. These self-oscillations include periodic changes in both the mean shape of the shell surface and its spatial variance. They lead to origination of a universal oscillatory contour in the form of a non-linear dependence of the average rudiment's curvature upon the curvature variance. The alternation of high and low levels of the variance makes it possible to pursue the developmental dynamics irrespective to the spatiotemporal order of development and characters subject to selection and genetic control. Spatially homogeneous and heterogeneous states can alternate in both time and space being the parametric modifications of the same self-organization dynamics, which is a precondition of transforming of the oscillations into spatial differences between the parts of the embryo and then into successive stages of their formation. This process can be explained as a "retrograde developmental evolution", which means the late evolutionary appearance of the earlier developmental stages. The developing system progressively retreats from the initial self-organization threshold replacing the self-oscillatory dynamics by a linear succession of stages in which the earlier developmental stages appear in the evolution after the later ones. It follows that ontogeny is neither the cause, nor the effect of phylogeny: the phenotype development can be subject to directional change under the constancy of the phenotype itself and, vice versa, the developmental evolution can generate new phenotypes in the absence of the external environmental trends of their evolution.
Collapse
|
8
|
Wang R, Liu X, Küster-Schöck E, Fagotto F. Proteomic analysis of differences in ectoderm and mesoderm membranes by DiGE. J Proteome Res 2012; 11:4575-93. [PMID: 22852788 DOI: 10.1021/pr300379m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ectoderm and mesoderm can be considered as prototypes for epithelial and mesenchymal cell types. These two embryonic tissues display clear differences in adhesive and motility properties, which are phenomenologically well characterized but remain largely unexplored at the molecular level. Because the key downstream regulations must occur at the plasma membrane and in the underlying actin cortical structures, we have set out to compare the protein content of membrane fractions from Xenopus ectoderm and mesoderm tissues using 2-dimensional difference gel electrophoresis (DiGE). We have thus identified several proteins that are enriched in one or the other tissues, including regulators of the cytoskeleton and of cell signaling. This study represents to our knowledge the first attempt to use proteomics specifically targeted to the membrane-cortex compartment of embryonic tissues. The identified components should help unraveling a variety of tissue-specific functions in the embryo.
Collapse
Affiliation(s)
- Renee Wang
- Department of Biology, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
9
|
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 2011; 354:173-90. [PMID: 21466800 DOI: 10.1016/j.ydbio.2011.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl₂), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl₂ disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl₂ sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl₂ sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.
Collapse
Affiliation(s)
- E Röttinger
- Kewalo Marine Laboratory, PBRC, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
10
|
Abstract
Fibroblast growth factor (FGF) signalling has been implicated during several phases of early embryogenesis, including the patterning of the embryonic axes, the induction and/or maintenance of several cell lineages and the coordination of morphogenetic movements. Here, we summarise our current understanding of the regulation and roles of FGF signalling during early vertebrate development.
Collapse
Affiliation(s)
- Karel Dorey
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
11
|
Klymkowsky MW, Rossi CC, Artinger KB. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 2010; 4:595-608. [PMID: 20962584 PMCID: PMC3011258 DOI: 10.4161/cam.4.4.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/09/2010] [Indexed: 01/09/2023] Open
Abstract
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Department of Molecular, Cellular and Developmental Biology; University of Colorado Boulder; Boulder, CO USA
| | - Christy Cortez Rossi
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology; University of Colorado Denver; School of Dental Medicine; Aurora, CO USA
| |
Collapse
|
12
|
Identification of a novel Bves function: regulation of vesicular transport. EMBO J 2010; 29:532-45. [PMID: 20057356 DOI: 10.1038/emboj.2009.379] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/13/2009] [Indexed: 12/17/2022] Open
Abstract
Blood vessel/epicardial substance (Bves) is a transmembrane protein that influences cell adhesion and motility through unknown mechanisms. We have discovered that Bves directly interacts with VAMP3, a SNARE protein that facilitates vesicular transport and specifically recycles transferrin and beta-1-integrin. Two independent assays document that cells expressing a mutated form of Bves are severely impaired in the recycling of these molecules, a phenotype consistent with disruption of VAMP3 function. Using Morpholino knockdown in Xenopus laevis, we demonstrate that elimination of Bves function specifically inhibits transferrin receptor recycling, and results in gastrulation defects previously reported with impaired integrin-dependent cell movements. Kymographic analysis of Bves-depleted primary and cultured cells reveals severe impairment of cell spreading and adhesion on fibronectin, indicative of disruption of integrin-mediated adhesion. Taken together, these data demonstrate that Bves interacts with VAMP3 and facilitates receptor recycling both in vitro and during early development. Thus, this study establishes a newly identified role for Bves in vesicular transport and reveals a novel, broadly applied mechanism governing SNARE protein function.
Collapse
|
13
|
Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF. Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Dev Biol 2008; 320:351-65. [DOI: 10.1016/j.ydbio.2008.05.547] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 04/30/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
|
14
|
Keller R, Shook D. Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore. Philos Trans R Soc Lond B Biol Sci 2008; 363:1317-32. [PMID: 18192174 DOI: 10.1098/rstb.2007.2250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
15
|
Beloussov LV, Korvin-Pavlovskaya EG, Luchinskaya NN, Kornikova ES. Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Iimura T, Yang X, Weijer CJ, Pourquié O. Dual mode of paraxial mesoderm formation during chick gastrulation. Proc Natl Acad Sci U S A 2007; 104:2744-9. [PMID: 17299044 PMCID: PMC1815252 DOI: 10.1073/pnas.0610997104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Indexed: 11/18/2022] Open
Abstract
The skeletal muscles and axial skeleton of vertebrates derive from the embryonic paraxial mesoderm. In amniotes, paraxial mesoderm is formed bilaterally to the nerve cord as a result of primitive streak and tail-bud regression during body axis formation. In chick and mouse embryos, paraxial mesoderm was proposed to derive from a population of resident cells located in the regressing primitive streak and tail bud. In contrast, in lower vertebrates, paraxial mesoderm is formed as a result of the continuation of ingression movements of gastrulation. Here, we reinvestigate paraxial mesoderm formation in the chicken embryo and demonstrate that these two modes are concomitantly at work to set up the paraxial mesoderm. Although the medial part of somites derives from stem cells resident in the primitive streak/tail bud, the lateral part derives from continuous ingression of epiblastic material. Our fate mapping further shows that the paraxial mesoderm territory in the epiblast is regionalized along the anteroposterior axis as in lower vertebrates. These observations suggest that the mechanisms responsible for paraxial mesoderm formation are largely conserved across vertebrates.
Collapse
Affiliation(s)
- Tadahiro Iimura
- *Howard Hughes Medical Institute, Kansas City, MO 64110
- Stowers Institute for Medical Research, Kansas City, MO 64110; and
| | - Xuesong Yang
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Olivier Pourquié
- *Howard Hughes Medical Institute, Kansas City, MO 64110
- Stowers Institute for Medical Research, Kansas City, MO 64110; and
| |
Collapse
|
17
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
18
|
Kumano G, Ezal C, Smith WC. ADMP2 is essential for primitive blood and heart development in Xenopus. Dev Biol 2006; 299:411-23. [PMID: 16959239 DOI: 10.1016/j.ydbio.2006.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 06/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
We describe here the cloning of a new member of the TGF-beta family with similarity to the anti-dorsalizing morphogenetic proteins (ADMPs). This new gene, ADMP2, is expressed in a broad band of mesendoderm cells that appear to include the progenitors of the endoderm and the ventral mesoderm. Antisense morpholino oligonucleotide knockdown of ADMP2 results in near-complete disruption of primitive blood and heart development, while the development of other mesoderm derivatives, including pronephros, muscle and lateral plate is not disrupted. Moreover, the development of the primitive blood in ADMP2 knockdown embryos cannot be rescued by BMP. These results suggests that ADMP2 plays an early role in specifying presumptive ventral mesoderm in the leading edge mesoderm, and that ADMP2 activity may be necessary to respond to BMP signaling in the context of ventral mesoderm induction.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
19
|
Schmerer M, Torregroza I, Pascal A, Umbhauer M, Evans T. STAT5 acts as a repressor to regulate early embryonic erythropoiesis. Blood 2006; 108:2989-97. [PMID: 16835375 PMCID: PMC1895518 DOI: 10.1182/blood-2006-05-022137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
STAT5 regulates definitive (adult stage) erythropoiesis through its ability to transduce signals from the erythropoietin receptor. A function for STAT-dependent signaling during primitive (embryonic) erythropoiesis has not been analyzed. We tested this in the Xenopus system, because STAT5 is expressed at the right time and place to regulate development of the embryonic primitive ventral blood island. Depletion of STAT5 activity results in delayed accumulation of the first globin-expressing cells, indicating that the gene does regulate primitive erythropoiesis. Our results suggest that in this context STAT5 functions as a repressor, since forced expression of an activator isoform blocks erythropoiesis, while embryos expressing a repressor isoform develop normally. The erythroid phenotype caused by the activator isoform of STAT5 resembles that caused by overexpression of fibroblast growth factor (FGF). We show that STAT5 isoforms can function epistatic to FGF and can be phosphorylated in response to hyperactivated FGF signaling in Xenopus embryos. Therefore, our data indicate that STAT5 functions in both primitive and definitive erythropoiesis, but by different mechanisms.
Collapse
Affiliation(s)
- Matthew Schmerer
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
20
|
Li M, Sipe CW, Hoke K, August LL, Wright MA, Saha MS. The role of early lineage in GABAergic and glutamatergic cell fate determination in Xenopus laevis. J Comp Neurol 2006; 495:645-57. [PMID: 16506195 DOI: 10.1002/cne.20900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proper functioning of the adult nervous system is critically dependent on neurons adopting the correct neurotransmitter phenotype during early development. Whereas the importance of cell-cell communication in fate determination is well documented for a number of neurotransmitter phenotypes, the contributions made by early lineage to this process remain less clear. This is particularly true for gamma-aminobutyric acid (GABA)ergic and glutamatergic neurons, which are present as the most abundant inhibitory and excitatory neurons, respectively, in the central nervous system of all vertebrates. In the present study, we have investigated the role of early lineage in the determination of these two neurotransmitter phenotypes by constructing a fate map of GABAergic and glutamatergic neurons for the 32-cell stage Xenopus embryo with the goal of determining whether early lineage influences the acquisition of these two neurotransmitter phenotypes. To examine these phenotypes, we have cloned xGAT-1, a molecular marker for the GABAergic phenotype in Xenopus, and described its expression pattern over the course of development. Although we have identified isolated examples of a blastomere imparting a statistically significant bias, when taken together, our results suggest that blastomere lineage does not impart a widespread bias for subsequent GABAergic or glutamatergic fate determination. In addition, the fate map presented here suggests a general dorsal-anterior to ventral-posterior patterning progression of the nervous system for the 32-cell stage Xenopus embryo.
Collapse
Affiliation(s)
- Mei Li
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kourakis MJ, Smith WC. Did the first chordates organize without the organizer? Trends Genet 2005; 21:506-10. [PMID: 16023252 DOI: 10.1016/j.tig.2005.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/11/2005] [Accepted: 07/03/2005] [Indexed: 11/21/2022]
Abstract
Models of vertebrate development frequently portray the organizer as acting on a largely unpatterned embryo to induce major components of the body plan, such as the neural plate and somites. Recent experiments examining the molecular and genetic basis of major inductive events of vertebrate embryogenesis force a re-examination of this view. These newer observations, along with a proposed revised fate map for the frog Xenopus laevis, suggest a possible reconciliation between the seemingly disparate mechanisms present in the ontogeny of the common chordate body plan of vertebrate and invertebrate chordates. Here, we review data from vertebrates and from an ascidian urochordate and propose that the organizer was not present at the base of the chordate lineage, but could have been a later innovation in the lineage leading to vertebrates, where its role was more permissive than instructive.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
22
|
Trainor PA. Developmental biology is "Cruzing". Dev Cell 2004; 7:481-6. [PMID: 15469836 DOI: 10.1016/j.devcel.2004.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2004 Santa Cruz Developmental Biology Meeting took place August 5th-8th and covered a diverse range of current topics in developmental biology. This report discusses some of the highlights.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
23
|
Zhang C, Basta T, Hernandez-Lagunas L, Simpson P, Stemple DL, Artinger KB, Klymkowsky MW. Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish. Dev Biol 2004; 273:23-37. [PMID: 15302595 DOI: 10.1016/j.ydbio.2004.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/24/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
B1-type SOXs (SOXs 1, 2, and 3) are the most evolutionarily conserved subgroup of the SOX transcription factor family. To study their maternal functions, we used the affinity-purified antibody antiSOX3c, which inhibits the binding of Xenopus SOX3 to target DNA sequences [Development. 130(2003)5609]. The antibody also cross-reacts with zebrafish embryos. When injected into fertilized Xenopus or zebrafish eggs, antiSOX3c caused a profound gastrulation defect; this defect could be rescued by the injection of RNA encoding SOX3DeltaC-EnR, a SOX3-engrailed repression domain chimera. In antiSOX3c-injected Xenopus embryos, normal animal-vegetal patterning of mesodermal and endodermal markers was disrupted, expression domains were shifted toward the animal pole, and the levels of the endodermal markers SOX17 and endodermin increased. In Xenopus, SOX3 acts as a negative regulator of Xnr5, which encodes a nodal-related TGFbeta-family protein. Two nodal-related proteins are expressed in the early zebrafish embryo, squint and cyclops; antiSOX3c-injection leads to an increase in the level of cyclops expression. In both Xenopus and zebrafish, the antiSOX3c phenotype was rescued by the injection of RNA encoding the nodal inhibitor Cerberus-short (CerS). In Xenopus, antiSOX3c's effects on endodermin expression were suppressed by injection of RNA encoding a dominant negative version of Mixer or a morpholino against SOX17alpha2, both of which act downstream of nodal signaling in the endoderm specification pathway. Based on these data, it appears that maternal B1-type SOX functions together with the VegT/beta-catenin system to regulate nodal expression and to establish the normal pattern of germ layer formation in Xenopus. A mechanistically conserved system appears to act in a similar manner in the zebrafish.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kudoh T, Concha ML, Houart C, Dawid IB, Wilson SW. Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development 2004; 131:3581-92. [PMID: 15262889 PMCID: PMC2789263 DOI: 10.1242/dev.01227] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies in fish and amphibia have shown that graded Bmp signalling activity regulates dorsal-to-ventral (DV) patterning of the gastrula embryo. In the ectoderm, it is thought that high levels of Bmp activity promote epidermal development ventrally, whereas secreted Bmp antagonists emanating from the organiser induce neural tissue dorsally. However, in zebrafish embryos, the domain of cells destined to contribute to the spinal cord extends all the way to the ventral side of the gastrula, a long way from the organiser. We show that in vegetal (trunk and tail) regions of the zebrafish gastrula, neural specification is initiated at all DV positions of the ectoderm in a manner that is unaffected by levels of Bmp activity and independent of organiser-derived signals. Instead, we find that Fgf activity is required to induce vegetal prospective neural markers and can do so without suppressing Bmp activity. We further show that Bmp signalling does occur within the vegetal prospective neural domain and that Bmp activity promotes the adoption of caudal fate by this tissue.
Collapse
Affiliation(s)
- Tetsuhiro Kudoh
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA
| | - Miguel L. Concha
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Corinne Houart
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- MRC Centre for Developmental Neurobiology, New Hunt’s House, Kings College London, London SE1 9RT, UK
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA
| | - Stephen W. Wilson
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
25
|
Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4: Its Role in Development of the Hematopoietic System and Potential as a Hematopoietic Growth Factor. Stem Cells 2004; 22:457-74. [PMID: 15277693 DOI: 10.1634/stemcells.22-4-457] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self-renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM- and CB-derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donor population. Although the origins of HSCs have become clearer and progress has been made in identifying genes that are critical for the formation and maintenance of HSCs, less is known about the signals that commit specific populations of mesodermal precursors to hematopoietic cell fate. Critical signals acting on these precursor cells are likely to be derived from visceral endoderm in yolk sac and from underlying stroma in the aorta-gonad-mesonephros region. Here we summarize briefly the origin of yolk sac and embryonic HSCs before detailing evidence that bone morphogenic protein-4 (BMP4) has a crucial role in Xenopus and mammalian HSC development. We discuss evidence that BMP4 acts as a hematopoietic growth factor and review its potential to modulate HSC in ex vivo expansion cultures from cord blood.
Collapse
Affiliation(s)
- Timothy J Sadlon
- Immunology Program, Child Health Research Institute, North Adelaide, South Australia
| | | | | |
Collapse
|
26
|
Wacker SA, McNulty CL, Durston AJ. The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev Biol 2004; 266:123-37. [PMID: 14729483 DOI: 10.1016/j.ydbio.2003.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hox genes encode a family of transcription factors that specify positional identities along the anterior-posterior (AP) axis during the development of vertebrate embryos. The earliest Hox expression in vertebrates is during gastrulation, at a position distant from the organiser or its equivalent. However, the mechanism that initiates this early expression is still not clear. Guided by the expression pattern, we identified upstream regulators in Xenopus laevis. The mesodermal transcription factor brachyury (Xbra) controls the early Hox expression domain in the animal-vegetal direction and the secreted growth factor BMP-4 limits it in the organiser/non-organiser direction. The overlap of these two signals, indicated by a Cartesian coordinate system, defines the initial Hox expression domain. We postulate that this system is a general mechanism for the activation of all Hox genes expressed during gastrulation.
Collapse
Affiliation(s)
- S A Wacker
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
27
|
Chen Y, Lin GF, Hu R, Chen Y, Ding X. Activin/Nodal signals mediate the ventral expression of myf-5 in Xenopus gastrula embryos. Biochem Biophys Res Commun 2003; 310:121-7. [PMID: 14511658 DOI: 10.1016/j.bbrc.2003.08.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Expression of myf-5, a key component of myogenic regulatory genes, expands into the ventral marginal zone during Xenopus gastrulation after the dorsal activation takes place. Little is known about how this dynamic expression pattern occurs. Here, we provide evidences to suggest that Activin/Nodal signals participate in the regulation of ventral expression of Xmyf-5 in gastrula embryos. Two Smad binding elements (SBEs) within the Xenopus myf-5 promoter can specifically interact with Smad4 protein. Furthermore, we demonstrate that the two SBEs are both indispensable for conferring responsiveness to Activin/Nodal signals and to ventral expression of myf-5 in Xenopus gastrula embryos.
Collapse
Affiliation(s)
- Ying Chen
- Laboratory of Molecular and Cell biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | | | |
Collapse
|
28
|
Zhang C, Basta T, Jensen ED, Klymkowsky MW. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 2003; 130:5609-24. [PMID: 14522872 DOI: 10.1242/dev.00798] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.
Collapse
Affiliation(s)
- Chi Zhang
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|