1
|
Ninoyu Y, Friedman RA. The genetic landscape of age-related hearing loss. Trends Genet 2024; 40:228-237. [PMID: 38161109 DOI: 10.1016/j.tig.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Age-related hearing loss (ARHL) is a prevalent concern in the elderly population. Recent genome-wide and phenome-wide association studies (GWASs and PheWASs) have delved into the identification of causative variants and the understanding of pleiotropy, highlighting the polygenic intricacies of this complex condition. While recent large-scale GWASs have pinpointed significant SNPs and risk variants associated with ARHL, the detailed mechanisms, encompassing both genetic and epigenetic modifications, remain to be fully elucidated. This review presents the latest advances in association studies, integrating findings from both human studies and model organisms. By juxtaposing historical perspectives with contemporary genomics, we aim to catalyze innovative research and foster the development of novel therapeutic strategies for ARHL.
Collapse
Affiliation(s)
- Yuzuru Ninoyu
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rick A Friedman
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Sutton DC, Andrews JC, Dolezal DM, Park YJ, Li H, Eberl DF, Yamamoto S, Groves AK. Comparative exploration of mammalian deafness gene homologues in the Drosophila auditory organ shows genetic correlation between insect and vertebrate hearing. PLoS One 2024; 19:e0297846. [PMID: 38412189 PMCID: PMC10898740 DOI: 10.1371/journal.pone.0297846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024] Open
Abstract
Johnston's organ, the Drosophila auditory organ, is anatomically very different from the mammalian organ of Corti. However, recent evidence indicates significant cellular and molecular similarities exist between vertebrate and invertebrate hearing, suggesting that Drosophila may be a useful platform to determine the function of the many mammalian deafness genes whose underlying biological mechanisms are poorly characterized. Our goal was a comprehensive screen of all known orthologues of mammalian deafness genes in the fruit fly to better understand conservation of hearing mechanisms between the insect and the fly and ultimately gain insight into human hereditary deafness. We used bioinformatic comparisons to screen previously reported human and mouse deafness genes and found that 156 of them have orthologues in Drosophila melanogaster. We used fluorescent imaging of T2A-GAL4 gene trap and GFP or YFP fluorescent protein trap lines for 54 of the Drosophila genes and found 38 to be expressed in different cell types in Johnston's organ. We phenotypically characterized the function of strong loss-of-function mutants in three genes expressed in Johnston's organ (Cad99C, Msp-300, and Koi) using a courtship assay and electrophysiological recordings of sound-evoked potentials. Cad99C and Koi were found to have significant courtship defects. However, when we tested these genes for electrophysiological defects in hearing response, we did not see a significant difference suggesting the courtship defects were not caused by hearing deficiencies. Furthermore, we used a UAS/RNAi approach to test the function of seven genes and found two additional genes, CG5921 and Myo10a, that gave a statistically significant delay in courtship but not in sound-evoked potentials. Our results suggest that many mammalian deafness genes have Drosophila homologues expressed in the Johnston's organ, but that their requirement for hearing may not necessarily be the same as in mammals.
Collapse
Affiliation(s)
- Daniel C. Sutton
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jonathan C. Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Dylan M. Dolezal
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ye Jin Park
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Hongjie Li
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Shinya Yamamoto
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
3
|
Boyan G, Williams L, Ehrhardt E. Central projections from Johnston's organ in the locust: Axogenesis and brain neuroarchitecture. Dev Genes Evol 2023; 233:147-159. [PMID: 37695323 PMCID: PMC10746777 DOI: 10.1007/s00427-023-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Johnston's organ (Jo) acts as an antennal wind-sensitive and/or auditory organ across a spectrum of insect species and its axons universally project to the brain. In the locust, this pathway is already present at mid-embryogenesis but the process of fasciculation involved in its construction has not been investigated. Terminal projections into the fine neuropilar organization of the brain also remain unresolved, information essential not only for understanding the neural circuitry mediating Jo-mediated behavior but also for providing comparative data offering insights into its evolution. In our study here, we employ neuron-specific, axon-specific, and epithelial domain labels to show that the pathway to the brain of the locust is built in a stepwise manner during early embryogenesis as processes from Jo cell clusters in the pedicel fasciculate first with one another, and then with the two tracts constituting the pioneer axon scaffold of the antenna. A comparison of fasciculation patterns confirms that projections from cell clusters of Jo stereotypically associate with only one axon tract according to their location in the pedicellar epithelium, consistent with a topographic plan. At the molecular level, all neuronal elements of the Jo pathway to the brain express the lipocalin Lazarillo, a cell surface epitope that regulates axogenesis in the primary axon scaffold itself, and putatively during fasciculation of the Jo projections to the brain. Central projections from Jo first contact the primary axon scaffold of the deutocerebral brain at mid-embryogenesis, and in the adult traverse mechanosensory/motor neuropils similar to those in Drosophila. These axons then terminate among protocerebral commissures containing premotor interneurons known to regulate flight behavior.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany
- Institute of Zoology, AG Ito, Universität Zu Köln, Zülpicher Str. 47B, 50674, Cologne, Germany
| |
Collapse
|
4
|
Boyan G, Ehrhardt E. Early embryonic development of Johnston's organ in the antenna of the desert locust Schistocerca gregaria. Dev Genes Evol 2022; 232:103-113. [PMID: 36138225 PMCID: PMC9691482 DOI: 10.1007/s00427-022-00695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 01/30/2023]
Abstract
Johnston's organ has been shown to act as an antennal auditory organ across a spectrum of insect species. In the hemimetabolous desert locust Schistocerca gregaria, Johnston's organ must be functional on hatching and so develops in the pedicellar segment of the antenna during embryogenesis. Here, we employ the epithelial cell marker Lachesin to identify the pedicellar domain of the early embryonic antenna and then triple-label against Lachesin, the mitosis marker phosphohistone-3, and neuron-specific horseradish peroxidase to reveal the sense-organ precursors for Johnston's organ and their lineages. Beginning with a single progenitor at approximately a third of embryogenesis, additional precursors subsequently appear in both the ventral and dorsal pedicellar domains, each generating a lineage or clone. Lineage locations are remarkably conserved across preparations and ages, consistent with the epithelium possessing an underlying topographic coordinate system that determines the cellular organization of Johnston's organ. By mid-embryogenesis, twelve lineages are arranged circumferentially in the pedicel as in the adult structure. Each sense-organ precursor is associated with a smaller mitotically active cell from which the neuronal complement of each clone may derive. Neuron numbers within a clone increase in discrete steps with age and are invariant between clones and across preparations of a given age. At mid-embryogenesis, each clone comprises five cells consolidated into a tightly bound cartridge. A long scolopale extends apically from each cartridge to an insertion point in the epithelium, and bundled axons project basally toward the brain. Comparative data suggest mechanisms that might also regulate the developmental program of Johnston's organ in the locust.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany.
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany
- Institute of Zoology, Universität Zu Köln, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
5
|
Diakova AV, Makarova AA, Pang S, Xu CS, Hess H, Polilov AA. The 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified. Sci Rep 2022; 12:20172. [PMID: 36424494 PMCID: PMC9691716 DOI: 10.1038/s41598-022-24390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Insect antennae are astonishingly versatile and have multiple sensory modalities. Audition, detection of airflow, and graviception are combined in the antennal chordotonal organs. The miniaturization of these complex multisensory organs has never been investigated. Here we present a comprehensive study of the structure and scaling of the antennal chordotonal organs of the extremely miniaturized parasitoid wasp Megaphragma viggianii based on 3D electron microscopy. Johnston's organ of M. viggianii consists of 19 amphinematic scolopidia (95 cells); the central organ consists of five scolopidia (20 cells). Plesiomorphic composition includes one accessory cell per scolopidium, but in M. viggianii this ratio is only 0.3. Scolopale rods in Johnston's organ have a unique structure. Allometric analyses demonstrate the effects of scaling on the antennal chordotonal organs in insects. Our results not only shed light on the universal principles of miniaturization of sense organs, but also provide context for future interpretation of the M. viggianii connectome.
Collapse
Affiliation(s)
- Anna V Diakova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia A Makarova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Song Pang
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
- Yale School of Medicine, New Haven, CT, USA
| | - C Shan Xu
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Harald Hess
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
| | - Alexey A Polilov
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Kundu P, Choi N, Rundus AS, Santer RD, Hebets EA. Uncovering ‘Hidden’ Signals: Previously Presumed Visual Signals Likely Generate Air Particle Movement. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wolf spiders within the genus Schizocosa have become a model system for exploring the form and function of multimodal communication. In terms of male signaling, much past research has focused on the role and importance of dynamic and static visual and substrate-borne vibratory communication. Studies on S. retrorsa, however, have found that female-male pairs were able to successfully mate in the absence of both visual and vibratory stimuli, suggesting a reduced or non-existent role of these signaling modalities in this species. Given these prior findings, it has been suggested that S. retrorsa males may utilize an additional signaling modality during courtship—air particle movement, often referred to as near-field sound—which they likely produce with rapid leg waving and receive using thin filiform sensory hairs called trichobothria. In this study, we tested the role of air-particle movement in mating success by conducting two independent sets of mating trials with randomly paired S. retrorsa females and males in the dark and on granite (i.e., without visual or vibratory signals) in two different signaling environments—(i) without (“No Noise”) and (ii) with (“Noise”) introduced air-particle movement intended to disrupt signaling in that modality. We also ran foraging trials in No Noise/Noise environments to explore the impact of our treatments on overall behavior. Across both mating experiments, our treatments significantly impacted mating success, with more mating in the No Noise signaling environments compared to the Noise environments. The rate of leg waving—a previously assumed visual dynamic movement that has also been shown to be able to produce air particle displacement—was higher in the No Noise than Noise environments. Across both treatments, males with higher rates of leg waving had higher mating success. In contrast to mating trials results, foraging success was not influenced by Noise. Our results indicate that artificially induced air particle movement disrupts successful mating and alters male courtship signaling but does not interfere with a female’s ability to receive and assess the rate of male leg waving.
Collapse
|
7
|
Ozment E, Tamvacakis AN, Zhou J, Rosiles-Loeza PY, Escobar-Hernandez EE, Fernandez-Valverde SL, Nakanishi N. Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity. eLife 2021; 10:74336. [PMID: 34939935 PMCID: PMC8846589 DOI: 10.7554/elife.74336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types – a lineage-specific sensory effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here, we show that the class IV POU homeodomain transcription factor (POU-IV) – an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria – controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes – including the transmembrane receptor-encoding gene polycystin 1 – specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.
Collapse
Affiliation(s)
- Ethan Ozment
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Arianna N Tamvacakis
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Pablo Yamild Rosiles-Loeza
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| |
Collapse
|
8
|
Nicolson T. Navigating Hereditary Hearing Loss: Pathology of the Inner Ear. Front Cell Neurosci 2021; 15:660812. [PMID: 34093131 PMCID: PMC8172992 DOI: 10.3389/fncel.2021.660812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Inherited forms of deafness account for a sizable portion of hearing loss among children and adult populations. Many patients with sensorineural deficits have pathological manifestations in the peripheral auditory system, the inner ear. Within the hearing organ, the cochlea, most of the genetic forms of hearing loss involve defects in sensory detection and to some extent, signaling to the brain via the auditory cranial nerve. This review focuses on peripheral forms of hereditary hearing loss and how these impairments can be studied in diverse animal models or patient-derived cells with the ultimate goal of using the knowledge gained to understand the underlying biology and treat hearing loss.
Collapse
Affiliation(s)
- Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Fernández-Hernández I, Marsh EB, Bonaguidi MA. Mechanosensory neuron regeneration in adult Drosophila. Development 2021; 148:dev.187534. [PMID: 33597190 DOI: 10.1242/dev.187534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Auditory and vestibular mechanosensory hair cells do not regenerate following injury or aging in the adult mammalian inner ear, inducing irreversible hearing loss and balance disorders for millions of people. Research on model systems showing replacement of mechanosensory cells can provide mechanistic insights into developing new regenerative therapies. Here, we developed lineage tracing systems to reveal the generation of mechanosensory neurons in the Johnston's organ (JO) of intact adult Drosophila, which are the functional counterparts to hair cells in vertebrates. New JO neurons develop cilia and target central brain circuitry. Unexpectedly, mitotic recombination clones point to JO neuron self-replication as a likely source of neuronal plasticity. This mechanism is further enhanced upon treatment with experimental and ototoxic compounds. Our findings introduce a new platform to expedite research on mechanisms and compounds mediating mechanosensory cell regeneration, with nascent implications for hearing and balance restoration.
Collapse
Affiliation(s)
- Ismael Fernández-Hernández
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Evan B Marsh
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA .,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Department of Gerontology, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
10
|
Hou Y, Wu Z, Zhang Y, Chen H, Hu J, Guo Y, Peng Y, Wei Q. Functional Analysis of Hydrolethalus Syndrome Protein HYLS1 in Ciliogenesis and Spermatogenesis in Drosophila. Front Cell Dev Biol 2020; 8:301. [PMID: 32509774 PMCID: PMC7253586 DOI: 10.3389/fcell.2020.00301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cilia and flagella are conserved subcellular organelles, which arise from centrioles and play critical roles in development and reproduction of eukaryotes. Dysfunction of cilia leads to life-threatening ciliopathies. HYLS1 is an evolutionarily conserved centriole protein, which is critical for ciliogenesis, and its mutation causes ciliopathy–hydrolethalus syndrome. However, the molecular function of HYLS1 remains elusive. Here, we investigated the function of HYLS1 in cilia formation using the Drosophila model. We demonstrated that Drosophila HYLS1 is a conserved centriole and basal body protein. Deletion of HYLS1 led to sensory cilia dysfunction and spermatogenesis abnormality. Importantly, we found that Drosophila HYLS1 is essential for giant centriole/basal body elongation in spermatocytes and is required for spermatocyte centriole to efficiently recruit pericentriolar material and for spermatids to assemble the proximal centriole-like structure (the precursor of the second centriole for zygote division). Hence, by taking advantage of the giant centriole/basal body of Drosophila spermatocyte, we uncover previously uncharacterized roles of HYLS1 in centriole elongation and assembly.
Collapse
Affiliation(s)
- Yanan Hou
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhimao Wu
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huicheng Chen
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Wei
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
11
|
Li C, Bademci G, Subasioglu A, Diaz-Horta O, Zhu Y, Liu J, Mitchell TG, Abad C, Seyhan S, Duman D, Cengiz FB, Tokgoz-Yilmaz S, Blanton SH, Farooq A, Walz K, Zhai RG, Tekin M. Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proc Natl Acad Sci U S A 2019; 116:1347-1352. [PMID: 30610177 PMCID: PMC6347722 DOI: 10.1073/pnas.1810951116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a GRAP variant (c.311A>T; p.Gln104Leu) cosegregating with autosomal recessive nonsyndromic deafness in two unrelated families. GRAP encodes a member of the highly conserved growth factor receptor-bound protein 2 (GRB2)/Sem-5/drk family of proteins, which are involved in Ras signaling; however, the function of the growth factor receptor-bound protein 2 (GRB2)-related adaptor protein (GRAP) in the auditory system is not known. Here, we show that, in mouse, Grap is expressed in the inner ear and the protein localizes to the neuronal fibers innervating cochlear and utricular auditory hair cells. Downstream of receptor kinase (drk), the Drosophila homolog of human GRAP, is expressed in Johnston's organ (JO), the fly hearing organ, and the loss of drk in JO causes scolopidium abnormalities. drk mutant flies present deficits in negative geotaxis behavior, which can be suppressed by human wild-type but not mutant GRAP. Furthermore, drk specifically colocalizes with synapsin at synapses, suggesting a potential role of such adaptor proteins in regulating actin cytoskeleton dynamics in the nervous system. Our findings establish a causative link between GRAP mutation and nonsyndromic deafness and suggest a function of GRAP/drk in hearing.
Collapse
Affiliation(s)
- Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Asli Subasioglu
- Department of Medical Genetics, Izmir Ataturk Education and Research Hospital, 35360 Izmir, Turkey
| | - Oscar Diaz-Horta
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005 Yantai, Shandong, China
| | - Timothy Gavin Mitchell
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Serhat Seyhan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, 06260 Ankara, Turkey
| | - Filiz Basak Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Suna Tokgoz-Yilmaz
- Department of Audiology, Ankara University School of Medicine, 06260 Ankara, Turkey
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Amjad Farooq
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136;
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005 Yantai, Shandong, China
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136;
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
12
|
Sun Y, Jia Y, Guo Y, Chen F, Yan Z. Taurine Transporter dEAAT2 is Required for Auditory Transduction in Drosophila. Neurosci Bull 2018; 34:939-950. [PMID: 30043098 PMCID: PMC6246829 DOI: 10.1007/s12264-018-0255-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Drosophila dEAAT2, a member of the excitatory amino-acid transporter (EAAT) family, has been described as mediating the high-affinity transport of taurine, which is a free amino-acid abundant in both insects and mammals. However, the role of taurine and its transporter in hearing is not clear. Here, we report that dEAAT2 is required for the larval startle response to sound stimuli. dEAAT2 was found to be enriched in the distal region of chordotonal neurons where sound transduction occurs. The Ca2+ imaging and electrophysiological results showed that disrupted dEAAT2 expression significantly reduced the response of chordotonal neurons to sound. More importantly, expressing dEAAT2 in the chordotonal neurons rescued these mutant phenotypes. Taken together, these findings indicate a critical role for Drosophila dEAAT2 in sound transduction by chordotonal neurons.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yanyan Jia
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yifeng Guo
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Department of Human Anatomy, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Li T, Bellen HJ, Groves AK. Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 2018; 11:11/6/dmm031492. [PMID: 29853544 PMCID: PMC6031363 DOI: 10.1242/dmm.031492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Johnston's organ - the hearing organ of Drosophila - has a very different structure and morphology to that of the hearing organs of vertebrates. Nevertheless, it is becoming clear that vertebrate and invertebrate auditory organs share many physiological, molecular and genetic similarities. Here, we compare the molecular and cellular features of hearing organs in Drosophila with those of vertebrates, and discuss recent evidence concerning the functional conservation of Usher proteins between flies and mammals. Mutations in Usher genes cause Usher syndrome, the leading cause of human deafness and blindness. In Drosophila, some Usher syndrome proteins appear to physically interact in protein complexes that are similar to those described in mammals. This functional conservation highlights a rational role for Drosophila as a model for studying hearing, and for investigating the evolution of auditory organs, with the aim of advancing our understanding of the genes that regulate human hearing and the pathogenic mechanisms that lead to deafness.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Rigon F, Gasparini F, Shimeld SM, Candiani S, Manni L. Developmental signature, synaptic connectivity and neurotransmission are conserved between vertebrate hair cells and tunicate coronal cells. J Comp Neurol 2018; 526:957-971. [PMID: 29277977 DOI: 10.1002/cne.24382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
In tunicates, the coronal organ represents a sentinel checking particle entrance into the pharynx. The organ differentiates from an anterior embryonic area considered a proto-placode. For their embryonic origin, morphological features and function, coronal sensory cells have been hypothesized to be homologues to vertebrate hair cells. However, vertebrate hair cells derive from a posterior placode. This contradicts one of the principle historical criteria for homology, similarity of position, which could be taken as evidence against coronal cells/hair cells homology. In the tunicates Ciona intestinalis and C. robusta, we found that the coronal organ expresses genes (Atoh, Notch, Delta-like, Hairy-b, and Musashi) characterizing vertebrate neural and hair cell development. Moreover, coronal cells exhibit a complex synaptic connectivity pattern, and express neurotransmitters (Glu, ACh, GABA, 5-HT, and catecholamines), or enzymes for their synthetic machinery, involved in hair cell activity. Lastly, coronal cells express the Trpa gene, which encodes an ion channel expressed in hair cells. These data lead us to hypothesize a model in which competence to make secondary mechanoreceptors was initially broadly distributed through placode territories, but has become confined to different placodes during the evolution of the vertebrate and tunicate lineages.
Collapse
Affiliation(s)
- Francesca Rigon
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| |
Collapse
|
15
|
Mills MK, Ruder MG, Nayduch D, Michel K, Drolet BS. Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae). PLoS One 2017; 12:e0188865. [PMID: 29176848 PMCID: PMC5703522 DOI: 10.1371/journal.pone.0188865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
Culicoides sonorensis biting midges are confirmed vectors of epizootic hemorrhagic disease virus (EHDV), which causes mortality in white-tailed deer and ruminant populations. Currently, of the seven EHDV serotypes, only 1, 2, and 6 are detected in the USA, and very few studies have focused on the infection time course of these serotypes within the midge. The objective of this current research was to characterize EHDV-2 infection within the midge by measuring infection prevalence, virus dissemination, and viral load over the course of infection. Midges were fed a blood meal containing 106.9 PFU/ml EHDV-2, collected every 12 h from 0-2 days post feeding (dpf) and daily from 3-10 dpf, and cohorts of 20 C. sonorensis were processed using techniques that assessed EHDV infection and dissemination. Cytopathic effect assays and quantitative (q)PCR were used to determine infection prevalence, revealing a 50% infection rate by 10 dpf using both methods. Using immunohistochemistry, EHDV-2 infection was detectable at 5 dpf, and shown to disseminate from the midgut to other tissues, including fat body, eyes, and salivary glands by 5 dpf. Stain intensity increased from 5-8 dpf, indicating replication of EHDV-2 in secondary infection sites after dissemination. This finding is also supported by trends in viral load over time as determined by plaque assays and qPCR. An increase in titer between 4-5 dpf correlated with viral replication in the midgut as seen with staining at day 5, while the subsequent gradual increase in viral load from 8-10 dpf suggested viral replication in midges with disseminated infection. Overall, the data presented herein suggest that EHDV-2 disseminates via the hemolymph to secondary infection sites throughout the midge and demonstrate a high potential for transmission at five days at 25°C after an infective blood-meal.
Collapse
Affiliation(s)
- Mary K. Mills
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, United States of America
| | - Dana Nayduch
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, Kansas, United States of America
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Barbara S. Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, Kansas, United States of America
| |
Collapse
|
16
|
|
17
|
Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell 2015; 162:1391-403. [PMID: 26359990 DOI: 10.1016/j.cell.2015.08.024] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/26/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
How metazoan mechanotransduction channels sense mechanical stimuli is not well understood. The NOMPC channel in the transient receptor potential (TRP) family, a mechanotransduction channel for Drosophila touch sensation and hearing, contains 29 Ankyrin repeats (ARs) that associate with microtubules. These ARs have been postulated to act as a tether that conveys force to the channel. Here, we report that these N-terminal ARs form a cytoplasmic domain essential for NOMPC mechanogating in vitro, mechanosensitivity of touch receptor neurons in vivo, and touch-induced behaviors of Drosophila larvae. Duplicating the ARs elongates the filaments that tether NOMPC to microtubules in mechanosensory neurons. Moreover, microtubule association is required for NOMPC mechanogating. Importantly, transferring the NOMPC ARs to mechanoinsensitive voltage-gated potassium channels confers mechanosensitivity to the chimeric channels. These experiments strongly support a tether mechanism of mechanogating for the NOMPC channel, providing insights into the basis of mechanosensitivity of mechanotransduction channels.
Collapse
|
18
|
Abstract
Nonlinear physics plays an essential role in hearing. We demonstrate on a mesoscopic description level that during the evolutionary perfection of the hearing sensor, nonlinear physics led to the unique design of the cochlea observed in mammals, and that this design requests as a consequence the perception of pitch. Our insight challenges the view that mostly genetics is responsible for the uniformity of the construction of the mammalian hearing sensor. Our analysis also suggests that scaleable and non-scaleable arrangements of nonlinear sound detectors may be at the origin of the differences between hearing sensors in amniotic lineages.
Collapse
|
19
|
Mhatre N. Active amplification in insect ears: mechanics, models and molecules. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:19-37. [PMID: 25502323 DOI: 10.1007/s00359-014-0969-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022]
Abstract
Active amplification in auditory systems is a unique and sophisticated mechanism that expends energy in amplifying the mechanical input to the auditory system, to increase its sensitivity and acuity. Although known for decades from vertebrates, active auditory amplification was only discovered in insects relatively recently. It was first discovered from two dipterans, mosquitoes and flies, who hear with their light and compliant antennae; only recently has it been observed in the stiffer and heavier tympanal ears of an orthopteran. The discovery of active amplification in two distinct insect lineages with independently evolved ears, suggests that the trait may be ancestral, and other insects may possess it as well. This opens up extensive research possibilities in the field of acoustic communication, not just in auditory biophysics, but also in behaviour and neurobiology. The scope of this review is to establish benchmarks for identifying the presence of active amplification in an auditory system and to review the evidence we currently have from different insect ears. I also review some of the models that have been posited to explain the mechanism, both from vertebrates and insects and then review the current mechanical, neurobiological and genetic evidence for each of these models.
Collapse
Affiliation(s)
- Natasha Mhatre
- School of Biological Sciences, University of Bristol, Woodland road, Bristol, BS8 1UG, UK,
| |
Collapse
|
20
|
Bokolia NP, Mishra M. Hearing molecules, mechanism and transportation: modeled in Drosophila melanogaster. Dev Neurobiol 2014; 75:109-30. [PMID: 25081222 DOI: 10.1002/dneu.22221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
Mechanosensory transduction underlies the perception of touch, sound and acceleration. The mechanical signals exist in the environment are resensed by the specialized mechanosensory cells, which convert the external forces into the electrical signals. Hearing is a magnificent example that relies on the mechanotransduction mediated by the auditory cells, for example the inner-ear hair cells in vertebrates and the Johnston's organ (JO) in fly. Previous studies have shown the fundamental physiological processes in the fly and vertebrate auditory organs are similar, suggesting that there might be a set of similar molecules underlying these processes. The molecular studies of the fly JO have been shown to be remarkably successful in discovering the developmental and functional genes that provided further implications in vertebrates. Several evolutionarily conserved molecules and signaling pathways have been shown to govern the development of the auditory organs in both vertebrates and invertebrates. The current review describes the similarities and differences between the vertebrate and fly auditory organs at developmental, structural, molecular, and transportation levels.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Orissa, India
| | | |
Collapse
|
21
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
22
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
23
|
Boekhoff-Falk G, Eberl DF. The Drosophila auditory system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:179-91. [PMID: 24719289 DOI: 10.1002/wdev.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022]
Abstract
Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston's organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular, and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here, we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system.
Collapse
Affiliation(s)
- Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
24
|
Ai H. Sensors and sensory processing for airborne vibrations in silk moths and honeybees. SENSORS (BASEL, SWITZERLAND) 2013; 13:9344-63. [PMID: 23877129 PMCID: PMC3758652 DOI: 10.3390/s130709344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/02/2013] [Accepted: 07/13/2013] [Indexed: 11/23/2022]
Abstract
Insects use airborne vibrations caused by their own movements to control their behaviors and produce airborne vibrations to communicate with conspecific mates. In this review, I use two examples to introduce how insects use airborne vibrations to accurately control behavior or for communication. The first example is vibration-sensitive sensilla along the wing margin that stabilize wingbeat frequency. There are two specialized sensors along the wing margin for detecting the airborne vibration caused by wingbeats. The response properties of these sensors suggest that each sensor plays a different role in the control of wingbeats. The second example is Johnston's organ that contributes to regulating flying speed and perceiving vector information about food sources to hive-mates. There are parallel vibration processing pathways in the central nervous system related with these behaviors, flight and communication. Both examples indicate that the frequency of airborne vibration are filtered on the sensory level and that on the central nervous system level, the extracted vibration signals are integrated with other sensory signals for executing quick adaptive motor response.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Department of Earth System Science, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
25
|
Dempsey K, Currall B, Hallworth R, Ali H. A New Approach for Sequence Analysis. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the structure-function relationship of proteins offers the key to biological processes, and can offer knowledge for better investigation of matters with widespread impact, such as pathological disease and drug intervention. This relationship is dictated at the simplest level by the primary protein sequence. Since useful structures and functions are conserved within biology, a sequence with known structure-function relationship can be compared to related sequences to aid in novel structure-function prediction. Sequence analysis provides a means for suggesting evolutionary relationships, and inferring structural or functional similarity. It is crucial to consider these parameters while comparing sequences as they influence both the algorithms used and the implications of the results. For example, proteins that are closely related on an evolutionary time scale may have very similar structure, but entirely different functions. In contrast, proteins which have undergone convergent evolution may have dissimilar primary structure, but perform similar functions. This chapter details how the aspects of evolution, structure, and function can be taken into account when performing sequence analysis, and proposes an expansion on traditional approaches resulting in direct improvement of said analysis. This model is applied to a case study in the prestin protein and shows that the proposed approach provides a better understanding of input and output and can improve the performance of sequence analysis by means of motif detection software.
Collapse
Affiliation(s)
- Kathryn Dempsey
- University of Nebraska at Omaha, USA & University of Nebraska Medical Center, USA
| | | | | | - Hesham Ali
- University of Nebraska at Omaha, USA & University of Nebraska Medical Center, USA
| |
Collapse
|
26
|
Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation. Proc Natl Acad Sci U S A 2012; 110:181-6. [PMID: 23248276 DOI: 10.1073/pnas.1208866110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ion homeostasis is a fundamental cellular process particularly important in excitable cell activities such as hearing. It relies on the Na(+)/K(+) ATPase (also referred to as the Na pump), which is composed of a catalytic α subunit and a β subunit required for its transport to the plasma membrane and for regulating its activity. We show that α and β subunits are expressed in Johnston's organ (JO), the Drosophila auditory organ. We knocked down expression of α subunits (ATPα and α-like) and β subunits (nrv1, nrv2, and nrv3) individually in JO with UAS/Gal4-mediated RNAi. ATPα shows elevated expression in the ablumenal membrane of scolopale cells, which enwrap JO neuronal dendrites in endolymph-like compartments. Knocking down ATPα, but not α-like, in the entire JO or only in scolopale cells using specific drivers, resulted in complete deafness. Among β subunits, nrv2 is expressed in scolopale cells and nrv3 in JO neurons. Knocking down nrv2 in scolopale cells blocked Nrv2 expression, reduced ATPα expression in the scolopale cells, and caused almost complete deafness. Furthermore, knockdown of either nrv2 or ATPα specifically in scolopale cells causes abnormal, electron-dense material accumulation in the scolopale space. Similarly, nrv3 functions in JO but not in scolopale cells, suggesting neuron specificity that parallels nrv2 scolopale cell-specific support of the catalytic ATPα. Our studies provide an amenable model to investigate generation of endolymph-like extracellular compartments.
Collapse
|
27
|
Abstract
Many genes involved in deafness are yet to be discovered. Here, Senthilan et al. focus on the Drosophila Johnston's organ to uncover a wide variety of genes, including several unexpected candidates as well as those already known to underlie deafness in mice and humans.
Collapse
|
28
|
Marshall KL, Lumpkin EA. The molecular basis of mechanosensory transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:142-55. [PMID: 22399400 PMCID: PMC4060607 DOI: 10.1007/978-1-4614-1704-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple senses, including hearing, touch and osmotic regulation, require the ability to convert force into an electrical signal: A process called mechanotransduction. Mechanotransduction occurs through specialized proteins that open an ion channel pore in response to a mechanical stimulus. Many of these proteins remain unidentified in vertebrates, but known mechanotransduction channels in lower organisms provide clues into their identity and mechanism. Bacteria, fruit flies and nematodes have all been used to elucidate the molecules necessary for force transduction. This chapter discusses many different mechanical senses and takes an evolutionary approach to review the proteins responsible for mechanotransduction in various biological kingdoms.
Collapse
Affiliation(s)
- Kara L. Marshall
- Integrated Graduate Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Ellen A. Lumpkin
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University College of Physicians & Surgeons, New York, NY 10032
| |
Collapse
|
29
|
Dramatic changes in patterning gene expression during metamorphosis are associated with the formation of a feather-like antenna by the silk moth, Bombyx mori. Dev Biol 2011; 357:53-63. [PMID: 21664349 DOI: 10.1016/j.ydbio.2011.05.672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 11/22/2022]
Abstract
Many moths use sex pheromones to find their mates in the dark. Their antennae are well developed with lateral branches to receive the pheromone efficiently. However, how these structures have evolved remains elusive, because the mechanism of development of these antennae has not been studied at a molecular level. To elucidate the developmental mechanism of this type of antenna, we observed morphogenesis, cell proliferation, cell death and antennal patterning gene expression in the branched antenna of the silk moth, Bombyx mori. Region-specific cell proliferation and almost ubiquitous apoptosis occur during early pupal stages and appear to shape the lateral branch cooperatively. Antennal patterning genes are expressed in a pattern largely conserved among insects with branchless antennae until the late 5th larval instar but most of them change their expression dramatically to a pattern prefiguring the lateral branch during metamorphosis. These findings imply that although antennal primordium is patterned by conserved mechanisms before metamorphosis, most of the antennal patterning genes are reused to form the lateral branch during metamorphosis. We propose that the acquisition of a new regulatory circuit of antennal patterning genes may have been an important event during evolution of the sensory antenna with lateral branches in the Lepidoptera.
Collapse
|
30
|
Burighel P, Caicci F, Manni L. Hair cells in non-vertebrate models: Lower chordates and molluscs. Hear Res 2011; 273:14-24. [DOI: 10.1016/j.heares.2010.03.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
31
|
Nadrowski B, Effertz T, Senthilan PR, Göpfert MC. Antennal hearing in insects--new findings, new questions. Hear Res 2010; 273:7-13. [PMID: 20430076 DOI: 10.1016/j.heares.2010.03.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 03/02/2010] [Indexed: 12/13/2022]
Abstract
Mosquitoes, certain Drosophila species, and honey bees use Johnston's organ in their antennae to detect the wing-beat sounds of conspecifics. Recent studies on these insects have provided novel insights into the intricacies of insect hearing and sound communication, with main discoveries including transduction and amplification mechanisms as known from vertebrate hearing, functional and molecular diversifications of mechanosensory cells, and complex mating duets that challenge the frequency-limits of insect antennal ears. This review discusses these recent advances and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Björn Nadrowski
- Department of Cellular Neurobiology, University of Göttingen, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
32
|
Ebacher DJS, Todi SV, Eberl DF, Boekhoff-Falk GE. Cut mutant Drosophila auditory organs differentiate abnormally and degenerate. Fly (Austin) 2009; 1:86-94. [PMID: 18820445 DOI: 10.4161/fly.4242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Drosophila antenna is a sophisticated structure that functions in both olfaction and audition. Previous studies have identified Homothorax, Extradenticle, and Distal-less, three homeodomain transcription factors, as required for specification of antennal identity. Antennal expression of cut is activated by Homothorax and Extradenticle, and repressed by Distal-less. cut encodes the Drosophila homolog of human CAAT-displacement protein, a cell cycle-regulated homeodomain transcription factor. Cut is required for normal development of external mechanosensory structures and Malphigian tubules (kidney analogs). The role of cut in the Drosophila auditory organ, Johnston's organ, has not been characterized. We have employed the FLP/FRT system to generate cut null clones in developing Johnston's organ. In cut mutants, the scolopidial subunits that constitute Johnston's organ differentiate abnormally and subsequently degenerate. Electrophysiological experiments confirm that adult Drosophila with cut null antennae are deaf. We find that cut acts in parallel to atonal, spalt-major, and spalt-related, which encode other transcription factors required for Johnston's organ differentiation. We speculate that Cut functions in conjunction with these factors to regulate transcription of as yet unidentified targets.
Collapse
Affiliation(s)
- Dominic J S Ebacher
- Department of Anatomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Okoruwa OE, Weston MD, Sanjeevi DC, Millemon AR, Fritzsch B, Hallworth R, Beisel KW. Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evol Dev 2008; 10:300-15. [PMID: 18460092 DOI: 10.1111/j.1525-142x.2008.00239.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through the amalgamation of comparative genomic, evolution, and structural diversification approaches. Comparisons were done among nonmammalian vertebrates, eutherian mammalian species, and the opossum and platypus. The opossum and platypus SLC26A5 proteins were comparable to the eutherian consensus sequence. Suggested from the point-accepted mutation analysis, the meEM motif spans all the transmembrane segments and represented residues 66-503. Within the eutherian clade, the meEM was highly conserved with a substitution frequency of only 39/7497 (0.5%) residues, compared with 5.7% in SLC26A4 and 12.8% in SLC26A6 genes. Clade-specific substitutions were not observed and there was no sequence correlation with low or high hearing frequency specialists. We were able to identify that within the highly conserved meEM motif two regions, which are unique to all therian species, appear to be the most derived features in the SLC26A5 peptide.
Collapse
Affiliation(s)
- Oseremen E Okoruwa
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Barembaum M, Bronner-Fraser M. Spalt4 mediates invagination and otic placode gene expression in cranial ectoderm. Development 2008; 134:3805-14. [PMID: 17933791 DOI: 10.1242/dev.02885] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate placodes are regions of thickened head ectoderm that contribute to paired sensory organs and cranial ganglia. We demonstrate that the transcription factor Spalt4 (also known as Sall4) is broadly expressed in chick preplacodal epiblast and later resolves to otic, lens and olfactory placodes. Ectopic expression of Spalt4 by electroporation is sufficient to induce invagination of non-placodal head ectoderm and prevent neurogenic placodes from contributing to cranial ganglia. Conversely, loss of Spalt4 function in the otic placode results in abnormal otic vesicle development. Intriguingly, Spalt4 appears to initiate a placode program appropriate for the axial level but is not involved in later development of specific placode fates. Fgfs can regulate Spalt4, since implantation of Fgf2 beads into the area opaca induces its expression. The results suggest that Spalt4 is involved in early stages of placode development, initiating cranial ectodermal invagination and region-specific gene regulatory networks.
Collapse
Affiliation(s)
- Meyer Barembaum
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
36
|
Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 2008; 10:106-13. [PMID: 18184361 PMCID: PMC2637451 DOI: 10.1111/j.1525-142x.2007.00217.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are an integral component of the metazoan genome and affect posttranscriptional repression of target messenger RNAs. The extreme phylogenetic conservation of certain miRNAs suggests their ancient origin and crucial function in conserved developmental processes. We demonstrate that highly conserved miRNA-183 orthologs exist in both deuterostomes and protostomes and their expression is predominant in ciliated ectodermal cells and organs. The miRNA-183 family members are expressed in vertebrate sensory hair cells, in innervated regions of invertebrate deuterostomes, and in sensilla of Drosophila and C. elegans. Thus, miRNA-183 family member expression is conserved in possibly homologous but morphologically distinct sensory cells and organs. The results suggest that miR-183 family members contribute specifically to neurosensory development or function, and that extant metazoan sensory organs are derived from cells that share genetic programs of common evolutionary origin.
Collapse
Affiliation(s)
- Marsha L. Pierce
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Michael D. Weston
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Bernd Fritzsch
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Harrison W. Gabel
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
37
|
Williamson RE, Darrow KN, Michaud S, Jacobs JS, Jones MC, Eberl DF, Maas RL, Liberman MC, Morton CC. Methylthioadenosine phosphorylase (MTAP) in hearing: gene disruption by chromosomal rearrangement in a hearing impaired individual and model organism analysis. Am J Med Genet A 2007; 143A:1630-9. [PMID: 17534888 DOI: 10.1002/ajmg.a.31724] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genes with a role in the auditory system have been mapped by genetic linkage analysis of families with heritable deafness and then cloned through positional candidate gene approaches. Another positional method for gene discovery is to ascertain deaf individuals with balanced chromosomal translocations and identify disrupted or disregulated genes at the site(s) of rearrangement. We report herein the use of fluorescence in situ hybridization (FISH) to map the breakpoint regions on each derivative chromosome of a de novo apparently balanced translocation, t(8;9)(q12.1;p21.3)dn, in a deaf individual. Chromosomal breakpoints were assigned initially by GTG-banding of metaphase chromosomes and then BAC probes chosen to map precisely the breakpoints by FISH experiments. To facilitate cloning of the breakpoint sequences, further refinement of the breakpoints was performed by FISH experiments using PCR products and by Southern blot analysis. The chromosome 9 breakpoint disrupts methylthioadenosine phosphorylase (MTAP); no known or predicted genes are present at the chromosome 8 breakpoint. Disruption of MTAP is hypothesized to lead to deafness due to the role of MTAP in metabolizing an inhibitor of polyamine synthesis. Drosophila deficient for the MTAP ortholog, CG4,802, were created and their hearing assessed; no hearing loss phenotype was observed. A knockout mouse model for MTAP deficiency was also created and no significant hearing loss was detected in heterozygotes for Mtap. Homozygous Mtap-deficient mice were embryonic lethal.
Collapse
MESH Headings
- Animals
- Base Sequence
- Child, Preschool
- Chromosomes, Human, Pair 9/genetics
- Disease Models, Animal
- Drosophila melanogaster
- Embryo, Nonmammalian/enzymology
- Embryo, Nonmammalian/metabolism
- Female
- Gene Expression Regulation, Enzymologic
- Genes, Lethal
- Hearing Loss/enzymology
- Hearing Loss/genetics
- Hearing Loss/pathology
- Humans
- Immunohistochemistry
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Purine-Nucleoside Phosphorylase/genetics
- Purine-Nucleoside Phosphorylase/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Robin E Williamson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ai H, Nishino H, Itoh T. Topographic organization of sensory afferents of Johnston's organ in the honeybee brain. J Comp Neurol 2007; 502:1030-46. [PMID: 17444491 DOI: 10.1002/cne.21341] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Johnston's organ (JO) in insects is a multicellular mechanosensory organ stimulated by movement of the distal part of the antenna. In honeybees JO is thought to be a primary sensor detecting air-particle movements caused by the waggling dance of conspecifics. In this study projection patterns of JO afferents within the brain were investigated. About 720 somata, distributed around the periphery of the second segment of the antenna (pedicel), were divided into three subgroups based on their soma location: an anterior group, a ventral group, and a dorsal group. These groups sent axons to different branches (N2 to N4) diverged from the antennal nerve. Dye injection into individual nerve branches revealed that all three groups of afferents, having fine collaterals in the dorsal lobe, sent axons broadly through tracts T6I, T6II, and T6III to terminate ipsilaterally in the medial posterior protocerebral lobe, the dorsal region of the subesophageal ganglion, and the central posterior protocerebral lobe, respectively. Within these termination fields only axon terminals running in T6I were characterized by thick processes with large varicosities. Differential staining using fluorescent dyes revealed that the axon terminals of the three groups were spatially segregated, especially in T6I, showing some degree of somatotopy. This spatial segregation was not observed in axon terminals running in other tracts. Our results show that projection patterns of JO afferents in the honeybee brain fundamentally resemble those in the dipteran brain. The possible roles of extensive termination fields of JO afferents in parallel processings of mechanosensory signals are discussed.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
39
|
Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud'homme B, Ferrier DEK, Balavoine G, Arendt D. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 2007; 129:277-88. [PMID: 17448990 DOI: 10.1016/j.cell.2007.02.040] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/22/2006] [Accepted: 02/13/2007] [Indexed: 12/21/2022]
Abstract
To elucidate the evolutionary origin of nervous system centralization, we investigated the molecular architecture of the trunk nervous system in the annelid Platynereis dumerilii. Annelids belong to Bilateria, an evolutionary lineage of bilateral animals that also includes vertebrates and insects. Comparing nervous system development in annelids to that of other bilaterians could provide valuable information about the common ancestor of all Bilateria. We find that the Platynereis neuroectoderm is subdivided into longitudinal progenitor domains by partially overlapping expression regions of nk and pax genes. These domains match corresponding domains in the vertebrate neural tube and give rise to conserved neural cell types. As in vertebrates, neural patterning genes are sensitive to Bmp signaling. Our data indicate that this mediolateral architecture was present in the last common bilaterian ancestor and thus support a common origin of nervous system centralization in Bilateria.
Collapse
Affiliation(s)
- Alexandru S Denes
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Baker DA, Beckingham KM, Armstrong JD. Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster. J Comp Neurol 2007; 501:756-64. [PMID: 17299758 DOI: 10.1002/cne.21257] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In animals, sensing gravity is supported by mechanosensory neurons that send information to the central brain for integration along with other modalities. In Drosophila, candidate sensory organs for detecting the gravity vector were predicted from the results of a recent forward genetic screen. This analysis also suggested possible roles for the central complex and antennal system in Drosophila. Using the same vertical maze assay employed in the original screen, we investigated the roles of these candidate neural structures by spatial and temporal inactivation of synaptic transmission with the GAL4/UAS-shibire[ts1] system. We correlate changes in the maze behavior of flies with specific inhibition of synaptic transmission for key brain neuropil that includes the central complex and antenno-glomerular tract. Further, our results point toward a minimal, or nonexistent, role for the mushroom bodies.
Collapse
Affiliation(s)
- Dean Adam Baker
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
41
|
Eberl DF, Boekhoff-Falk G. Development of Johnston's organ in Drosophila. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2007; 51:679-87. [PMID: 17891726 PMCID: PMC3417114 DOI: 10.1387/ijdb.072364de] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hearing is a specialized mechanosensory modality that is refined during evolution to meet the particular requirements of different organisms. In the fruitfly, Drosophila, hearing is mediated by Johnston's organ, a large chordotonal organ in the antenna that is exquisitely sensitive to the near-field acoustic signal of courtship songs generated by male wing vibration. We summarize recent progress in understanding the molecular genetic determinants of Johnston's organ development and discuss surprising differences from other chordotonal organs that likely facilitate hearing. We outline novel discoveries of active processes that generate motion of the antenna for acute sensitivity to the stimulus. Finally, we discuss further research directions that would probe remaining questions in understanding Johnston's organ development, function and evolution.
Collapse
Affiliation(s)
- Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324, USA.
| | | |
Collapse
|
42
|
Beisel KW, Rocha-Sanchez SM, Ziegenbein SJ, Morris KA, Kai C, Kawai J, Carninci P, Hayashizaki Y, Davis RL. Diversity of Ca2+-activated K+ channel transcripts in inner ear hair cells. Gene 2006; 386:11-23. [PMID: 17097837 DOI: 10.1016/j.gene.2006.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/13/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Hair cells express a complement of ion channels, representing shared and distinct channels that confer distinct electrophysiological signatures for each cell. This diversity is generated by the use of alternative splicing in the alpha subunit, formation of heterotetrameric channels, and combinatorial association with beta subunits. These channels are thought to play a role in the tonotopic gradient observed in the mammalian cochlea. Mouse Kcnma1 transcripts, 5' and 3' ESTs, and genomic sequences were examined for the utilization of alternative splicing in the mouse transcriptome. Comparative genomic analyses investigated the conservation of KCNMA1 splice sites. Genomes of mouse, rat, human, opossum, chicken, frog and zebrafish established that the exon-intron structure and mechanism of KCNMA1 alternative splicing were highly conserved with 6-7 splice sites being utilized. The murine Kcnma1 utilized 6 out of 7 potential splice sites. RT-PCR experiments using murine gene-specific oligonucleotide primers analyzed the scope and variety of Kcnma1 and Kcnmb1-4 expression profiles in the cochlea and inner ear hair cells. In the cochlea splice variants were present representing sites 3, 4, 6, and 7, while site 1 was insertionless and site 2 utilized only exon 10. However, site 5 was not present. Detection of KCNMA1 transcripts and protein exhibited a quantitative longitudinal gradient with a reciprocal gradient found between inner and outer hair cells. Differential expression was also observed in the usage of the long form of the carboxy-terminus tail. These results suggest that a diversity of splice variants exist in rodent cochlear hair cells and this diversity is similar to that observed for non-mammalian vertebrate hair cells, such as chicken and turtle.
Collapse
Affiliation(s)
- Kirk W Beisel
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fritzsch B, Pauley S, Beisel KW. Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 2006; 1091:151-71. [PMID: 16643865 PMCID: PMC3904743 DOI: 10.1016/j.brainres.2006.02.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 01/19/2023]
Abstract
The development and evolution of mechanosensory cells and the vertebrate ear is reviewed with an emphasis on delineating the cellular, molecular and developmental basis of these changes. Outgroup comparisons suggests that mechanosensory cells are ancient features of multicellular organisms. Molecular evidence suggests that key genes involved in mechanosensory cell function and development are also conserved among metazoans. The divergent morphology of mechanosensory cells across phyla is interpreted here as 'deep molecular homology' that was in parallel shaped into different forms in each lineage. The vertebrate mechanosensory hair cell and its associated neuron are interpreted as uniquely derived features of vertebrates. It is proposed that the vertebrate otic placode presents a unique embryonic adaptation in which the diffusely distributed ancestral mechanosensory cells became concentrated to generate a large neurosensory precursor population. Morphogenesis of the inner ear is reviewed and shown to depend on genes expressed in and around the hindbrain that interact with the otic placode to define boundaries and polarities. These patterning genes affect downstream genes needed to maintain proliferation and to execute ear morphogenesis. We propose that fibroblast growth factors (FGFs) and their receptors (FGFRs) are a crucial central node to translate patterning into the complex morphology of the vertebrate ear. Unfortunately, the FGF and FGFR genes have not been fully analyzed in the many mutants with morphogenetic ear defects described thus far. Likewise, little information exists on the ear histogenesis and neurogenesis in many mutants. Nevertheless, a molecular mechanism is now emerging for the formation of the horizontal canal, an evolutionary novelty of the gnathostome ear. The existing general module mediating vertical canal growth and morphogenesis was modified by two sets of new genes: one set responsible for horizontal canal morphogenesis and another set for neurosensory formation of the horizontal crista and associated sensory neurons. The dramatic progress in deciphering the molecular basis of ear morphogenesis offers grounds for optimism for translational research toward intervention in human morphogenetic defects of the ear.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
44
|
Stoop R, Kern A, Göpfert MC, Smirnov DA, Dikanev TV, Bezrucko BP. A generalization of the van-der-Pol oscillator underlies active signal amplification in Drosophila hearing. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:511-6. [PMID: 16612585 DOI: 10.1007/s00249-006-0059-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/21/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
The antennal hearing organs of the fruit fly Drosophila melanogaster boost their sensitivity by an active mechanical process that, analogous to the cochlear amplifier of vertebrates, resides in the motility of mechanosensory cells. This process nonlinearly improves the sensitivity of hearing and occasionally gives rise to self-sustained oscillations in the absence of sound. Time series analysis of self-sustained oscillations now unveils that the underlying dynamical system is well described by a generalization of the van-der-Pol oscillator. From the dynamic equations, the underlying amplification dynamics can explicitly be derived. According to the model, oscillations emerge from a combination of negative damping, which reflects active amplification, and a nonlinear restoring force that dictates the amplitude of the oscillations. Hence, active amplification in fly hearing seems to rely on the negative damping mechanism initially proposed for the cochlear amplifier of vertebrates.
Collapse
Affiliation(s)
- R Stoop
- Institute of Neuroinformatics, University/ETH Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
SIVAN-LOUKIANOVA ELENA, EBERL DANIELF. Synaptic ultrastructure of Drosophila Johnston's organ axon terminals as revealed by an enhancer trap. J Comp Neurol 2006; 491:46-55. [PMID: 16127697 PMCID: PMC1802124 DOI: 10.1002/cne.20687] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of auditory circuitry is to decipher relevant information from acoustic signals. Acoustic parameters used by different insect species vary widely. All these auditory systems, however, share a common transducer: tympanal organs as well as the Drosophila flagellar ears use chordotonal organs as the auditory mechanoreceptors. We here describe the central neural projections of the Drosophila Johnston's organ (JO). These neurons, which represent the antennal auditory organ, terminate in the antennomechanosensory center. To ensure correct identification of these terminals we made use of a beta-galactosidase-expressing transgene that labels JO neurons specifically. Analysis of these projection pathways shows that parallel JO fibers display extensive contacts, including putative gap junctions. We find that the synaptic boutons show both chemical synaptic structures as well as putative gap junctions, indicating mixed synapses, and belong largely to the divergent type, with multiple small postsynaptic processes. The ultrastructure of JO fibers and synapses may indicate an ability to process temporally discretized acoustic information.
Collapse
Affiliation(s)
| | - DANIEL F. EBERL
- *Correspondence to: Daniel F. Eberl, Department of Biological Sciences, University of Iowa, Iowa City, IA 52242-1324. E-mail:
| |
Collapse
|
46
|
Gillespie PG, Dumont RA, Kachar B. Have we found the tip link, transduction channel, and gating spring of the hair cell? Curr Opin Neurobiol 2005; 15:389-96. [PMID: 16009547 DOI: 10.1016/j.conb.2005.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/30/2005] [Indexed: 11/25/2022]
Abstract
Recent reports have offered candidates for key components of the apparatus used for mechanotransduction in hair cells. TRPA1 and cadherin 23 have been proposed to be the transduction channel and component of the tip link, respectively; moreover, ankyrin repeats in TRPA1 have been proposed to be the gating spring. Although these are excellent candidates for the three components, definitive experiments supporting each identification have yet to be performed.
Collapse
Affiliation(s)
- Peter G Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
47
|
Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 2005; 436:395-400. [PMID: 15959468 DOI: 10.1038/nature03859] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/01/2005] [Indexed: 11/09/2022]
Abstract
Robust innate behaviours are attractive systems for genetically dissecting how environmental cues are perceived and integrated to generate complex behaviours. During courtship, Drosophila males engage in a series of innate, stereotyped behaviours that are coordinated by specific sensory cues. However, little is known about the specific neural substrates mediating this complex behavioural programme. Genetic, developmental and behavioural studies have shown that the fruitless (fru) gene encodes a set of male-specific transcription factors (FruM) that act to establish the potential for courtship in Drosophila. FruM proteins are expressed in approximately 2% of central nervous system neurons, at least one subset of which coordinates the component behaviours of courtship. Here we have inserted the yeast GAL4 gene into the fru locus by homologous recombination and show that (1) FruM is expressed in subsets of all peripheral sensory systems previously implicated in courtship, (2) inhibition of FruM function in olfactory system components reduces olfactory-dependent changes in courtship behaviour, (3) transient inactivation of all FruM-expressing neurons abolishes courtship behaviour, with no other gross changes in general behaviour, and (4) 'masculinization' of FruM-expressing neurons in females is largely sufficient to confer male courtship behaviour. Together, these data demonstrate that FruM proteins specify the neural substrates of male courtship.
Collapse
Affiliation(s)
- Devanand S Manoli
- Neurosciences Program, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The transient receptor potential (TRP) superfamily comprises a large group of related cation channels that display surprising diversity in the specific modes of activation and cation selectivities. However, a unifying theme is that many TRP channels play important roles in sensory physiology. The superfamily includes 28 mammalian members, which are subdivided into multiple subfamilies. Each of these subfamilies is represented by at least one of the 13 members in Drosophila, suggesting common evolutionary relationships. In recent years it has become clear that TRP channels in flies and mammals participate in similar sensory modalities. These include, but are not limited to, hearing, thermosensation, and certain specialized types of vision. With the recent flurry of new studies, 9 out of the 13 TRPs have been addressed in various contexts. As a result, the repertoire of biological roles attributed to Drosophila TRPs has increased considerably and is likely to lead to many additional surprises over the next few years.
Collapse
Affiliation(s)
- Craig Montell
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|