1
|
Wei Y, Zhang E, Yu L, Ci B, Sakurai M, Guo L, Zhang X, Lin S, Takii S, Liu L, Liu J, Schmitz DA, Su T, Zhang J, Shen Q, Ding Y, Zhan L, Sun HX, Zheng C, Xu L, Okamura D, Ji W, Tan T, Wu J. Dissecting embryonic and extraembryonic lineage crosstalk with stem cell co-culture. Cell 2023; 186:5859-5875.e24. [PMID: 38052213 PMCID: PMC10916932 DOI: 10.1016/j.cell.2023.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-β, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - E Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shino Takii
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junmei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaoyan Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | | | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Koike S, Keino-Masu K, Tanimoto Y, Takahashi S, Masu M. The autotaxin-LPA axis promotes membrane trafficking and secretion in yolk sac visceral endoderm cells. Biol Open 2023; 12:bio060081. [PMID: 37795611 PMCID: PMC10629499 DOI: 10.1242/bio.060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Autotaxin, encoded by the Enpp2 gene, is an exoenzyme that produces lysophosphatidic acid, thereby regulating many biologic functions. We previously reported that Enpp2 mRNA was abundantly expressed in yolk sac visceral endoderm (VE) cells and that Enpp2-/- mice were lethal at embryonic day 9.5 owing to angiogenic defects in the yolk sac. Enpp2-/- mice showed lysosome fragmentation in VE cells and embryonic abnormalities including allantois malformation, neural tube defects, no axial turning, and head cavity formation. However, whether the defects in endocytic vesicle formation affect membrane trafficking in VE cells remained to be directly examined. In this study, we found that pinocytosis, transcytosis, and secretion of angiogenic factors such as vascular endothelial growth factor and transforming growth factor β1 were impaired in Enpp2-/- VE cells. Moreover, pharmacologic inhibition of membrane trafficking phenocopied the defects of Enpp2-/- mice. These findings demonstrate that Enpp2 promotes endocytosis and secretion of angiogenic factors in VE cells, thereby regulating angiogenesis/vasculogenesis and embryonic development.
Collapse
Affiliation(s)
- Seiichi Koike
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Neurobiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory of Organelle Synthetic Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-855, Japan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Neurobiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Neurobiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
3
|
Zhang Y, Yi Y, Xiao X, Hu L, Xu J, Zheng D, Koc HC, Chan UI, Meng Y, Lu L, Liu W, Xu X, Shao N, Cheung ECW, Xu RH, Chen G. Definitive Endodermal Cells Supply an in vitro Source of Mesenchymal Stem/Stromal Cells. Commun Biol 2023; 6:476. [PMID: 37127734 PMCID: PMC10151361 DOI: 10.1038/s42003-023-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Mesenchymal stem/Stromal cells (MSCs) have great therapeutic potentials, and they have been isolated from various tissues and organs including definitive endoderm (DE) organs, such as the lung, liver and intestine. MSCs have been induced from human pluripotent stem cells (hPSCs) through multiple embryonic lineages, including the mesoderm, neural crest, and extraembryonic cells. However, it remains unclear whether hPSCs could give rise to MSCs in vitro through the endodermal lineage. Here, we report that hPSC-derived, SOX17+ definitive endoderm progenitors can further differentiate to cells expressing classic MSC markers, which we name definitive endoderm-derived MSCs (DE-MSCs). Single cell RNA sequencing demonstrates the stepwise emergence of DE-MSCs, while endoderm-specific gene expression can be elevated by signaling modulation. DE-MSCs display multipotency and immunomodulatory activity in vitro and possess therapeutic effects in a mouse ulcerative colitis model. This study reveals that, in addition to the other germ layers, the definitive endoderm can also contribute to MSCs and DE-MSCs could be a cell source for regenerative medicine.
Collapse
Affiliation(s)
- Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ye Yi
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingling Hu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaqi Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Dejin Zheng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ho Cheng Koc
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ya Meng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ningyi Shao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Edwin Chong Wing Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Pereira VM, Pinto PAF, Motta LCB, Almeida MF, de Andrade AFC, Pavaneli APP, Ambrósio CE. Initial Characterization of 3D Culture of Yolk Sac Tissue. Animals (Basel) 2023; 13:ani13091435. [PMID: 37174472 PMCID: PMC10177165 DOI: 10.3390/ani13091435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The role of the yolk sac (YS) in miscarriage is not yet clear, largely due to ethical reasons that make in vivo studies difficult to conduct. However, 3D cultures could provide a solution to this problem by enabling cells to be arranged in a way that more closely mimics the structure of the YS as it exists in vivo. In this study, three domestic species (porcine, canine, and bovine) were chosen as models to standardize 3D culture techniques for the YS. Two techniques of 3D culture were chosen: the Matrigel® and Hanging-Drop techniques, and the 2D culture technique was used as a standardized method. The formed structures were initially characterized using scanning electron microscopy (SEM), immunohistochemistry (IHC), and quantitative real-time PCR (RT-qPCR). In general, the 3D culture samples showed better organization of the YS cells compared to 2D cultures. The formed structures from both 3D methods assemble the mesothelial layer of YS tissue. Regarding the IHC assay, all in vitro models were able to express zinc and cholesterol transport markers, although only 3D culture techniques were able to generate structures with different markers pattern, indicating a cell differentiation process when compared to 2D cultures. Regarding mRNA expression, the 3D models had a greater gene expression pattern on the Hemoglobin subunit zeta-like (HBZ) gene related to the YS tissue, although no significant expression was found in Alpha-fetoprotein (AFP), indicating a lack of endodermal differentiation in our 3D model. With the initial technique and characterization established, the next step is to maintain the cultures and characterize the diversity of cell populations, stemness, functions, and genetic stability of each 3D in vitro model.
Collapse
Affiliation(s)
- Vitória Mattos Pereira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
- School of Pharmacy, University of Wyoming, Laramie, WY 82072, USA
| | - Priscila Avelino Ferreira Pinto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Lina Castelo Branco Motta
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Matheus F Almeida
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo USP, Pirassununga 13635-900, SP, Brazil
| | - Ana Paula Pinoti Pavaneli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
5
|
Wei Y, Zhang E, Yu L, Ci B, Guo L, Sakurai M, Takii S, Liu J, Schmitz DA, Ding Y, Zhan L, Zheng C, Sun HX, Xu L, Okamura D, Ji W, Tan T, Wu J. Dissecting embryonic and extra-embryonic lineage crosstalk with stem cell co-culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531525. [PMID: 36945498 PMCID: PMC10028955 DOI: 10.1101/2023.03.07.531525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et al., 1998; Thomson et al., 1998; Vandevoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b; Zhong et al., 2018), they are grown in different culture conditions with diverse media composition, which makes it difficult to study cross-lineage communication. Here, by using the same culture condition that activates FGF, TGF-β and WNT signaling pathways, we derived stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling. Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic stem cell co-culture strategy developed here will open new avenues for creating more faithful embryo models and developing more developmentally relevant differentiation protocols.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - E Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shino Takii
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Jian Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Daniel A. Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Jia Y, Guo Z, Zhu J, Qin G, Sun W, Yin Y, Wang H, Guo R. Snap29 Is Dispensable for Self-Renewal Maintenance but Required for Proper Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2023; 24:ijms24010750. [PMID: 36614195 PMCID: PMC9821219 DOI: 10.3390/ijms24010750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Pluripotent embryonic stem cells (ESCs) can self-renew indefinitely and are able to differentiate into all three embryonic germ layers. Synaptosomal-associated protein 29 (Snap29) is implicated in numerous intracellular membrane trafficking pathways, including autophagy, which is involved in the maintenance of ESC pluripotency. However, the function of Snap29 in the self-renewal and differentiation of ESCs remains elusive. Here, we show that Snap29 depletion via CRISPR/Cas does not impair the self-renewal and expression of pluripotency-associated factors in mouse ESCs. However, Snap29 deficiency enhances the differentiation of ESCs into cardiomyocytes, as indicated by heart-like beating cells. Furthermore, transcriptome analysis reveals that Snap29 depletion significantly decreased the expression of numerous genes required for germ layer differentiation. Interestingly, Snap29 deficiency does not cause autophagy blockage in ESCs, which might be rescued by the SNAP family member Snap47. Our data show that Snap29 is dispensable for self-renewal maintenance, but required for the proper differentiation of mouse ESCs.
Collapse
Affiliation(s)
- Yumei Jia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyuan Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Yin
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
7
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Dienelt A, Keller KC, zur Nieden NI. High glucose impairs osteogenic differentiation of embryonic stem cells via early diversion of beta-catenin from Forkhead box O to T cell factor interaction. Birth Defects Res 2022; 114:1056-1074. [PMID: 36164276 PMCID: PMC9708100 DOI: 10.1002/bdr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Diabetes, which is characterized by an increase in blood glucose concentration, is accompanied by low bone turnover, increased fracture risk, and the formation of embryonic skeletal malformations. Yet, there are few studies elucidating the underlying alterations in signaling pathways leading to these osteogenic defects. We hypothesized here that bone formation deficiencies in a high glucose environment result from altered activity of beta-catenin (CTNNB1), a key contributor to osteogenic differentiation, dysregulation of which has also been implicated in the development of diabetes. METHODS To test this hypothesis, we used a previously established embryonic stem cell (ESC) model of differentiation that mimics the diabetic environment of the developing embryo. We differentiated murine ESCs within osteogenic-inducing media containing either high (diabetic) or low (physiological) levels of D-glucose and performed time course analyses to study the influence of high glucose on early and late bone cell differentiation. RESULTS Endpoint measures for osteogenic differentiation were reduced in a glucose-dependent manner and expression of precursor-specific markers altered at multiple time points. Furthermore, transcriptional activity of the lymphoid enhancer factor (LEF)/T cell factor (TCF) transcription factors during precursor formation stages was significantly elevated while levels of CTNNB1 complexed with Forkhead box O 3a (FOXO3a) declined. Modulation of AKT, a known upstream regulator of both LEF/TCF and FOXO3a, as well as CTNNB1 rescued some of the reductions in osteogenic output seen in the high glucose condition. CONCLUSIONS Within our in vitro model, we found a clear involvement of LEF/TCF and FOXO3a signaling pathways in the regulation of osteogenic differentiation, which may account for the skeletal deficiencies found in newborns of diabetic mothers.
Collapse
Affiliation(s)
- Anke Dienelt
- Department of Cell Therapy, Applied Stem Cell Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kevin C. Keller
- Department of Molecular, Cell and Systems Biology & Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Nicole I. zur Nieden
- Department of Cell Therapy, Applied Stem Cell Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Department of Molecular, Cell and Systems Biology & Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
9
|
Abuhashem A, Chivu AG, Zhao Y, Rice EJ, Siepel A, Danko CG, Hadjantonakis AK. RNA Pol II pausing facilitates phased pluripotency transitions by buffering transcription. Genes Dev 2022; 36:gad.349565.122. [PMID: 35981753 PMCID: PMC9480856 DOI: 10.1101/gad.349565.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023]
Abstract
Promoter-proximal RNA Pol II pausing is a critical step in transcriptional control. Pol II pausing has been predominantly studied in tissue culture systems. While Pol II pausing has been shown to be required for mammalian development, the phenotypic and mechanistic details of this requirement are unknown. Here, we found that loss of Pol II pausing stalls pluripotent state transitions within the epiblast of the early mouse embryo. Using Nelfb -/- mice and a NELFB degron mouse pluripotent stem cell model, we show that embryonic stem cells (ESCs) representing the naïve state of pluripotency successfully initiate a transition program but fail to balance levels of induced and repressed genes and enhancers in the absence of NELF. We found an increase in chromatin-associated NELF during transition from the naïve to later pluripotent states. Overall, our work defines the acute and long-term molecular consequences of NELF loss and reveals a role for Pol II pausing in the pluripotency continuum as a modulator of cell state transitions.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | - Alexandra G Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Yixin Zhao
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| |
Collapse
|
10
|
Mashinchian O, De Franceschi F, Nassiri S, Michaud J, Migliavacca E, Aouad P, Metairon S, Pruvost S, Karaz S, Fabre P, Molina T, Stuelsatz P, Hegde N, Le Moal E, Dammone G, Dumont NA, Lutolf MP, Feige JN, Bentzinger CF. An engineered multicellular stem cell niche for the 3D derivation of human myogenic progenitors from iPSCs. EMBO J 2022; 41:e110655. [PMID: 35703167 DOI: 10.15252/embj.2022110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Patrick Aouad
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Solenn Pruvost
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Sonia Karaz
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Paul Fabre
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Thomas Molina
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Pascal Stuelsatz
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nagabhooshan Hegde
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Emmeran Le Moal
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriele Dammone
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nicolas A Dumont
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Florian Bentzinger
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Morgani SM, Su J, Nichols J, Massagué J, Hadjantonakis AK. The transcription factor Rreb1 regulates epithelial architecture, invasiveness, and vasculogenesis in early mouse embryos. eLife 2021; 10:e64811. [PMID: 33929320 PMCID: PMC8131102 DOI: 10.7554/elife.64811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/16/2021] [Indexed: 12/23/2022] Open
Abstract
Ras-responsive element-binding protein 1 (Rreb1) is a zinc-finger transcription factor acting downstream of RAS signaling. Rreb1 has been implicated in cancer and Noonan-like RASopathies. However, little is known about its role in mammalian non-disease states. Here, we show that Rreb1 is essential for mouse embryonic development. Loss of Rreb1 led to a reduction in the expression of vasculogenic factors, cardiovascular defects, and embryonic lethality. During gastrulation, the absence of Rreb1 also resulted in the upregulation of cytoskeleton-associated genes, a change in the organization of F-ACTIN and adherens junctions within the pluripotent epiblast, and perturbed epithelial architecture. Moreover, Rreb1 mutant cells ectopically exited the epiblast epithelium through the underlying basement membrane, paralleling cell behaviors observed during metastasis. Thus, disentangling the function of Rreb1 in development should shed light on its role in cancer and other diseases involving loss of epithelial integrity.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Jie Su
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
12
|
Melton S, Ramanathan S. Discovering a sparse set of pairwise discriminating features in high-dimensional data. Bioinformatics 2021; 37:202-212. [PMID: 32730566 PMCID: PMC8599814 DOI: 10.1093/bioinformatics/btaa690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Recent technological advances produce a wealth of high-dimensional descriptions of biological processes, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that discovering informative features in the data is crucial for statistical analysis as well as making experimental predictions. RESULTS We identify features based on their ability to discriminate between clusters of the data points. We define a class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an unsupervised method to identify the subset of features that define a low-dimensional subspace in which clustering can be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster configurations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key transcription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the correct low-dimensional subspace. AVAILABILITY AND IMPLEMENTATION https://github.com/smelton/SMD. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Samuel Melton
- Applied Mathematics Harvard University, Cambridge, MA 02138, USA
| | - Sharad Ramanathan
- Applied Physics, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Lotto J, Drissler S, Cullum R, Wei W, Setty M, Bell EM, Boutet SC, Nowotschin S, Kuo YY, Garg V, Pe'er D, Church DM, Hadjantonakis AK, Hoodless PA. Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-parenchymal Cell Lineages. Cell 2020; 183:702-716.e14. [PMID: 33125890 PMCID: PMC7643810 DOI: 10.1016/j.cell.2020.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
The cellular complexity and scale of the early liver have constrained analyses examining its emergence during organogenesis. To circumvent these issues, we analyzed 45,334 single-cell transcriptomes from embryonic day (E)7.5, when endoderm progenitors are specified, to E10.5 liver, when liver parenchymal and non-parenchymal cell lineages emerge. Our data detail divergence of vascular and sinusoidal endothelia, including a distinct transcriptional profile for sinusoidal endothelial specification by E8.75. We characterize two distinct mesothelial cell types as well as early hepatic stellate cells and reveal distinct spatiotemporal distributions for these populations. We capture transcriptional profiles for hepatoblast specification and migration, including the emergence of a hepatomesenchymal cell type and evidence for hepatoblast collective cell migration. Further, we identify cell-cell interactions during the organization of the primitive sinusoid. This study provides a comprehensive atlas of liver lineage establishment from the endoderm and mesoderm through to the organization of the primitive sinusoid at single-cell resolution.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Manu Setty
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Bell
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
14
|
Nowotschin S, Hadjantonakis AK. Guts and gastrulation: Emergence and convergence of endoderm in the mouse embryo. Curr Top Dev Biol 2019; 136:429-454. [PMID: 31959298 DOI: 10.1016/bs.ctdb.2019.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrulation is a central process in mammalian development in which a spatiotemporally coordinated series of events driven by cross-talk between adjacent embryonic and extra-embryonic tissues results in stereotypical morphogenetic cell behaviors, massive cell proliferation and the acquisition of distinct cell identities. Gastrulation provides the blueprint of the body plan of the embryo, as well as generating extra-embryonic cell types of the embryo to make a connection with its mother. Gastrulation involves the specification of mesoderm and definitive endoderm from pluripotent epiblast, concomitant with a highly ordered elongation of tissue along the anterior-posterior (AP) axis. Interestingly, cells with an endoderm identity arise twice during mouse development. Cells with a primitive endoderm identity are specified in the preimplantation blastocyst, and which at gastrulation intercalate with the emergent definitive endoderm to form a mosaic tissue, referred to as the gut endoderm. The gut endoderm gives rise to the gut tube, which will subsequently become patterned along its AP axis into domains possessing unique visceral organ identities, such as thyroid, lung, liver and pancreas. In this way, proper endoderm development is essential for vital organismal functions, including the absorption of nutrients, gas exchange, detoxification and glucose homeostasis.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
15
|
Hunter A, Dai Y, Brown KJ, Muise-Helmericks RC, Foley AC. TAK1/Map3k7 enhances differentiation of cardiogenic endoderm from mouse embryonic stem cells. J Mol Cell Cardiol 2019; 137:132-142. [PMID: 31668971 DOI: 10.1016/j.yjmcc.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022]
Abstract
Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFβ-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFβ target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.
Collapse
Affiliation(s)
- Andrew Hunter
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC, United States of America
| | - Yunkai Dai
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC, United States of America
| | - Kemar J Brown
- Harvard Medical School/Massachusetts General Hospital, Corrigan Minehan Division of Cardiology, Boston, MA, United States of America
| | - Robin C Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Ann C Foley
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC, United States of America.
| |
Collapse
|
16
|
Perea-Gomez A, Cases O, Lelièvre V, Pulina MV, Collignon J, Hadjantonakis AK, Kozyraki R. Loss of Cubilin, the intrinsic factor-vitamin B12 receptor, impairs visceral endoderm endocytosis and endodermal patterning in the mouse. Sci Rep 2019; 9:10168. [PMID: 31308417 PMCID: PMC6629654 DOI: 10.1038/s41598-019-46559-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
The visceral endoderm is a polarized epithelial monolayer necessary for early embryonic development in rodents. A key feature of this epithelium is an active endocytosis and degradation of maternal nutrients, in addition to being the source of various signaling molecules or inhibitors required for the differentiation and patterning of adjacent embryonic tissues. Endocytosis across the visceral endoderm epithelium involves specific cell surface receptors and an extensive sub-membrane vesicular system with numerous apical vacuoles/lysosomes. We previously reported that Cubilin, the endocytic receptor for intrinsic factor-vitamin B12, albumin and apolipoproteinA-I/HDL allows maternal nutrient uptake by the visceral endoderm. In the present study, we show that the germline ablation of Cubilin impairs endodermal and mesodermal patterning, and results in developmental arrest at gastrulation. Notably, visceral endoderm dispersal is impeded in Cubilin null embryos. We further confirm the essential role of Cubilin in nutrient internalization by the early visceral endoderm and highlight its involvement in the formation of apical vacuoles. Our results reveal essential roles for Cubilin in early embryonic development, and suggest that in addition to its nutritive function, Cubilin sustains signaling pathways involved in embryonic differentiation and patterning.
Collapse
Affiliation(s)
- Aitana Perea-Gomez
- Institut Jacques Monod, Université de Paris, CNRS, Paris, F-75013, France.,Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, INSERM, UMRS-1138, Université de Paris, Paris, F-75006, France
| | - Vincent Lelièvre
- CNRS UPR 3212, INCI, 5 rue Blaise Pascal, F-67084, Strasbourg, France
| | - Maria V Pulina
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA.,The Rockefeller University, New York, USA
| | - Jérôme Collignon
- Institut Jacques Monod, Université de Paris, CNRS, Paris, F-75013, France
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, INSERM, UMRS-1138, Université de Paris, Paris, F-75006, France.
| |
Collapse
|
17
|
Nowotschin S, Setty M, Kuo YY, Liu V, Garg V, Sharma R, Simon CS, Saiz N, Gardner R, Boutet SC, Church DM, Hoodless PA, Hadjantonakis AK, Pe'er D. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 2019; 569:361-367. [PMID: 30959515 PMCID: PMC6724221 DOI: 10.1038/s41586-019-1127-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points-before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior-posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manu Setty
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent Liu
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Dana Pe'er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Dunn NR, Hogan BLM. The endoderm from a diverse perspective. Development 2018; 145:145/17/dev163550. [PMID: 30115640 DOI: 10.1242/dev.163550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
The historic town of Taos, New Mexico, with its rich multicultural history of art and craft, was the site of the second Keystone Symposium on 'Endoderm Development and Disease', which was held in February 2018. The theme of the meeting was 'Cross-Organ Comparison and Interplay', emphasizing an integrative and multisystem approach to the broad topics of organ physiology, homeostasis, repair, regeneration and disease. As we review here, participants shared their recent discoveries and discussed how new technologies developed in one organ system might be applied to answer crucial questions in another. Other integrative themes were how agents such as parasites, microbes, immune cells, physical forces and innervation can affect tissue organization and progenitor cell dynamics, and how defects in the development of an organ can impact its adult function. Participants came away with a broader vision of their field and a renewed sense of collective energy empowered by novel tools and fresh ideas.
Collapse
Affiliation(s)
- N Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138648 .,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Brigid L M Hogan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Freyer L, Hsu CW, Nowotschin S, Pauli A, Ishida J, Kuba K, Fukamizu A, Schier AF, Hoodless PA, Dickinson ME, Hadjantonakis AK. Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Rep 2018; 20:2116-2130. [PMID: 28854362 DOI: 10.1016/j.celrep.2017.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023] Open
Abstract
Apela (also known as Elabela, Ende, and Toddler) is a small signaling peptide that activates the G-protein-coupled receptor Aplnr to stimulate cell migration during zebrafish gastrulation. Here, using CRISPR/Cas9 to generate a null, reporter-expressing allele, we study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low-penetrance cardiovascular defects that manifest after the onset of circulation. Three-dimensional micro-computed tomography revealed a higher penetrance of vascular remodeling defects, from which some mutants recover, and identified extraembryonic anomalies as the earliest morphological distinction in Apela mutant embryos. Transcriptomics at late gastrulation identified aberrant upregulation of erythroid and myeloid markers in mutant embryos prior to the appearance of physical malformations. Double-mutant analyses showed that loss of Apela signaling impacts early Aplnr-expressing mesodermal populations independently of the alternative ligand Apelin, leading to lethal cardiac defects in some Apela null embryos.
Collapse
Affiliation(s)
- Laina Freyer
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Andrea Pauli
- The Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University, Akita 010-8543, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Wei W, Lotto J, Hoodless PA. Expression patterns of Yes-associated protein 1 in the developing mouse liver. Gene Expr Patterns 2018; 29:10-17. [PMID: 29627454 DOI: 10.1016/j.gep.2018.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023]
Abstract
The Hippo signaling pathway regulates many cellular processes, but has been specifically associated with control organ size and tumor growth. Yes-associated protein 1 (YAP1) is a transcriptional cofactor, in the Hippo pathway, that regulates gene expression when localized in the nucleus. Elevated expression of YAP1 in adult mouse liver leads to hepatomegaly and can cause hepatocellular carcinoma; while the loss of function studies reveal its importance in regulating cholangiocyte development. Here, we report the expression of YAP1 in mouse embryonic and postnatal hepatic cells, using AFP-GFP transgenic mice to identify the hepatocyte lineage. At embryonic day (E) 8.5, YAP1 is highly expressed in the endoderm, but is not present in the nucleus. Between E9.5-12.5, hepatic cells display low levels of nuclear and non-nuclear YAP1. The nuclear expression of YAP1 is first detected in a small subset of hepatic cells starting at E13.5 when the hepatoblasts begin to differentiate into hepatocytes and cholangiocytes. At E18.5, nuclear YAP1 is nearly undetectable in hepatoblasts and hepatocytes, but enriched within the nuclei of cholangiocytes. These levels remain similar postnatally, consistent with the role of YAP1 in cholangiocyte specification and maintenance.
Collapse
Affiliation(s)
- Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Medical Genetics and the School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
21
|
Abstract
At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE.
Collapse
|
22
|
Wu T, Hadjantonakis AK, Nowotschin S. Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biol Open 2017; 6:678-687. [PMID: 28288969 PMCID: PMC5450328 DOI: 10.1242/bio.024638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live imaging is the requisite tool for studying cell behaviors driving embryonic development and tissue formation. Genetically encoded reporters expressed under cell type-specific cis-regulatory elements that drive fluorescent protein expression at sufficient levels for visualization in living specimens have become indispensable for these studies. Increasingly dual-color (red-green) imaging is used for studying the coordinate behaviors of two cell populations of interest, identifying and characterizing subsets within broader cell populations or subcellular features. Many reporters have been generated using green fluorescent protein (GFP) due to its brightness and developmental neutrality. To compliment the large cohort of available GFP reporters that label cellular populations in early mouse embryos, we have generated a red fluorescent protein (RFP)-based transgenic reporter using the red fluorescent tdTomato protein driven by cis-regulatory elements from the mouse Hex locus. The Hex-tdTomato reporter predominantly labels endodermal cells. It is a bright RFP-based reporter of the distal visceral endoderm (DVE)/anterior visceral endoderm (AVE), a migratory population within the early post-implantation embryo. It also labels cells of the definitive endoderm (DE), which emerges at gastrulation. Dual-color visualization of these different early endodermal populations will provide a detailed understanding of the cellular behaviors driving key morphogenetic events involving the endoderm. Summary: A red fluorescent reporter under the regulatory control of the mouse Hex gene permits identification of different endodermal populations and visualization of dynamic cellular behaviors driving endoderm specification and morphogenesis.
Collapse
Affiliation(s)
- Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
23
|
Aguado T, Gutiérrez FJ, Aix E, Schneider RP, Giovinazzo G, Blasco MA, Flores I. Telomere Length Defines the Cardiomyocyte Differentiation Potency of Mouse Induced Pluripotent Stem Cells. Stem Cells 2016; 35:362-373. [PMID: 27612935 DOI: 10.1002/stem.2497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated in vitro and in vivo to all cardiovascular lineages and are therefore a promising cell source for cardiac regenerative therapy. However, iPSC lines do not all differentiate into cardiomyocytes (CMs) with the same efficiency. Here, we show that telomerase-competent iPSCs with relatively long telomeres and high expression of the shelterin-complex protein TRF1 (iPSChighT ) differentiate sooner and more efficiently into CMs than those with relatively short telomeres and low TRF1 expression (iPSClowT ). Ascorbic acid, an enhancer of cardiomyocyte differentiation, further increases the cardiomyocyte yield from iPSChighT but does not rescue the cardiomyogenic potential of iPSClowT . Interestingly, although iPSCslowT differentiate very poorly to the mesoderm and endoderm lineages, they differentiate very efficiently to the ectoderm lineage, indicating that cell fate can be determined by in vitro selection of iPSCs with different telomere content. Our findings highlight the importance of selecting iPSCs with ample telomere reserves in order to generate high numbers of CMs in a fast, reliable, and efficient way. Stem Cells 2017;35:362-373.
Collapse
Affiliation(s)
- Tania Aguado
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Francisco J Gutiérrez
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Esther Aix
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Ralph P Schneider
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ignacio Flores
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| |
Collapse
|
24
|
Balmer S, Nowotschin S, Hadjantonakis AK. Notochord morphogenesis in mice: Current understanding & open questions. Dev Dyn 2016; 245:547-57. [PMID: 26845388 DOI: 10.1002/dvdy.24392] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022] Open
Abstract
The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
25
|
Costello I, Nowotschin S, Sun X, Mould AW, Hadjantonakis AK, Bikoff EK, Robertson EJ. Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes Dev 2016; 29:2108-22. [PMID: 26494787 PMCID: PMC4617976 DOI: 10.1101/gad.268979.115] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Costello et al. demonstrate that Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. In proteomic experiments, they characterize a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. Gene regulatory networks controlling functional activities of spatially and temporally distinct endodermal cell populations in the early mouse embryo remain ill defined. The T-box transcription factor Eomes, acting downstream from Nodal/Smad signals, directly activates the LIM domain homeobox transcription factor Lhx1 in the visceral endoderm. Here we demonstrate Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. Conditional inactivation of Lhx1 disrupts anterior definitive endoderm development and impedes node and midline morphogenesis in part due to severe disturbances in visceral endoderm displacement. Transcriptional profiling and ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) experiments identified Lhx1 target genes, including numerous anterior definitive endoderm markers and components of the Wnt signaling pathway. Interestingly, Lhx1-binding sites were enriched at enhancers, including the Nodal-proximal epiblast enhancer element and enhancer regions controlling Otx2 and Foxa2 expression. Moreover, in proteomic experiments, we characterized a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. These partnerships cooperatively regulate development of the anterior mesendoderm, node, and midline cell populations responsible for establishment of the left–right body axis and head formation.
Collapse
Affiliation(s)
- Ita Costello
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Xin Sun
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Arne W Mould
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Elizabeth K Bikoff
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Elizabeth J Robertson
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
26
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
27
|
Jyoti S, Tandon S. Impact of homeopathic remedies on the expression of lineage differentiation genes: an in vitro approach using embryonic stem cells. HOMEOPATHY 2015; 105:148-59. [PMID: 27211322 DOI: 10.1016/j.homp.2015.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Well-documented studies of the potential effects and safety of homeopathic medicines in pregnancy are required. In this study, specific genes were studied which could serve as biomarkers for specification of three lineages to predict the safety of homeopathic remedies using mouse embryonic stem (ES) cells. Thus, the present work was to study the effects of homeopathic remedies taken during pregnancy using ES cells as the model. METHODS Mouse ES cells were exposed to 30C potency of Nux Vomica and Sepia, which are homeopathic medicines prescribed for the management of pregnancy related symptoms. Cytotoxicity studies were done using a modified Embryonic Stem cell test (EST). The expression levels of key genes and proteins were analyzed using real time polymerase chain reaction and immunocytochemistry, respectively. RESULTS Homeopathic treatment led to modulations in the expression of certain lineage specific genes but this difference was not significant with respect to solvent control and showed normal differentiation as demonstrated by the expression of α/β MHC and α-actinin proteins in the differentiated ES cells. CONCLUSIONS Our study for the first time has shown the feasibility of using ES cells in the developmental toxicity testing of remedies. The results suggest that they are not associated with developmental toxicity.
Collapse
Affiliation(s)
- Saras Jyoti
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, India.
| | - Simran Tandon
- Amity University Uttar Pradesh, Sector 125, Noida, 201313, UP, India.
| |
Collapse
|
28
|
Schneider WJ. Lipid transport to avian oocytes and to the developing embryo. J Biomed Res 2015; 30:174-80. [PMID: 26585559 PMCID: PMC4885163 DOI: 10.7555/jbr.30.20150048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022] Open
Abstract
Studies of receptor-mediated lipoprotein metabolic pathways in avian species have revealed that physiological intricacies of specific cell types are highly analogous to those in mammals. A prime example for the power of comparative studies across different animal kingdoms, elucidated in the chicken, is that the expression of different lipoprotein receptors in somatic cells and oocytes are the key to oocyte growth. In avian species, yolk precursor transport from the hen's liver to rapidly growing oocytes and the subsequent transfer of yolk nutrients via the yolk sac to the developing embryo are highly efficient processes. Oocytes grow from a diameter of 5 mm to 2.5-3 cm in only 7 days, and the yolk sac transfers nutrients from the yolk stored in the mature oocyte to the embryo within just 2 weeks. The underlying key transport mechanism is receptor-mediated endocytosis of macromolecules, i.e., of hepatically synthesized yolk precursors for oocyte growth, and of mature yolk components for embryo nutrition, respectively. Recently, the receptors involved, as well as the role of lipoprotein synthesis in the yolk sac have been identified. As outlined here, lipoprotein degradation/resynthesis cycles and the expression of lipoprotein receptors are not only coordinated with the establishment of the follicular architecture embedding the oocyte, but also with the generation of the yolk sac vasculature essential for nutrient transfer to the embryo.
Collapse
Affiliation(s)
- Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University and Biocenter Vienna, Austria.
| |
Collapse
|
29
|
Viotti M, Foley AC, Hadjantonakis AK. Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0547. [PMID: 25349455 DOI: 10.1098/rstb.2013.0547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the importance of the gut and its accessory organs, our understanding of early endoderm development is still incomplete. Traditionally, endoderm has been difficult to study because of its small size and relative fragility. However, recent advances in live cell imaging technologies have dramatically expanded our understanding of this tissue, adding a new appreciation for the complex molecular and morphogenetic processes that mediate gut formation. Several spatially and molecularly distinct subpopulations have been shown to exist within the endoderm before the onset of gastrulation. Here, we review findings that have uncovered complex cell movements within the endodermal layer, before and during gastrulation, leading to the conclusion that cells from primitive endoderm contribute descendants directly to gut.
Collapse
Affiliation(s)
- Manuel Viotti
- Genentech Incorporated, South San Francisco, CA 94080, USA
| | - Ann C Foley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | | |
Collapse
|
30
|
Jyoti S, Tandon S. Genetic basis for developmental toxicity due to statin intake using embryonic stem cell differentiation model. Hum Exp Toxicol 2015; 34:965-84. [PMID: 25712412 DOI: 10.1177/0960327114564795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The in utero environment is a key factor controlling the fate of the growing embryo. The deleterious effects of statins during the fetal development are still not very well understood. Data from animal studies and retrospective studies performed in pregnant women give conflicting reports. In this study, using in vitro differentiation model of embryonic stem cells, which mimic the differentiation process of the embryo, we have systematically exposed the cells to lipophilic statins, simvastatin, and atorvastatin at various doses and at critical times during differentiation. The analysis of key genes controlling the differentiation into ecto-, meso- and endodermal lineages was assessed by quantitative polymerase chain reaction. Our results show that genes of the mesodermal lineage were most sensitive to statins, leading to changes in the transcript levels of brachyury, Flk-1, Nkx2.5, and α/β-myosin heavy chain. In addition, changes to endodermal marker α-fetoprotein, along with ectodermal Nes and Neurofilament 200 kDa, imply that during early differentiation exposure to these drugs leads to altered signaling, which could translate to the congenital abnormalities seen in the heart and limbs.
Collapse
Affiliation(s)
- S Jyoti
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Biotechnology & Bioinformatics, Solan, India
| | - S Tandon
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Biotechnology & Bioinformatics, Solan, India
| |
Collapse
|
31
|
Bangs FK, Schrode N, Hadjantonakis AK, Anderson KV. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol 2015; 17:113-22. [PMID: 25599390 PMCID: PMC4406239 DOI: 10.1038/ncb3091] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022]
Abstract
Primary cilia are required for vertebrate cells to respond to specific intercellular signals. Here we define when and where primary cilia appear in the mouse embryo using a transgenic line that expresses ARL13B-mCherry in cilia and Centrin 2-GFP in centrosomes. Primary cilia first appear on cells of the epiblast at E6.0 and are subsequently present on all derivatives of the epiblast. In contrast, extraembryonic cells of the visceral endoderm and trophectoderm lineages have centrosomes but no cilia. Stem cell lines derived from embryonic lineages recapitulate the in vivo pattern: epiblast stem cells are ciliated, whereas trophoblast stem cells and extraembryonic endoderm (XEN) stem cells lack cilia. Basal bodies in XEN cells are mature and can form cilia when the AURKA-HDAC6 cilium disassembly pathway is inhibited. The lineage-dependent distribution of cilia is stable throughout much of gestation, defining which cells in the placenta and yolk sac are able to respond to Hedgehog ligands.
Collapse
Affiliation(s)
- Fiona K Bangs
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| | - Nadine Schrode
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| |
Collapse
|
32
|
Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med 2015; 4:165-77. [PMID: 25593208 DOI: 10.5966/sctm.2014-0179] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies.
Collapse
Affiliation(s)
- Britney O Pennington
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Biomolecular Science and Engineering Program and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA; Corning Life Sciences Development, Corning Inc., Corning, New York, USA; Asterias Biotherapeutics, Inc., Menlo Park, California, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Biomolecular Science and Engineering Program and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA; Corning Life Sciences Development, Corning Inc., Corning, New York, USA; Asterias Biotherapeutics, Inc., Menlo Park, California, USA
| | - Zara K Melkoumian
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Biomolecular Science and Engineering Program and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA; Corning Life Sciences Development, Corning Inc., Corning, New York, USA; Asterias Biotherapeutics, Inc., Menlo Park, California, USA
| | - Sherry T Hikita
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Biomolecular Science and Engineering Program and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA; Corning Life Sciences Development, Corning Inc., Corning, New York, USA; Asterias Biotherapeutics, Inc., Menlo Park, California, USA
| |
Collapse
|
33
|
Viotti M, Nowotschin S, Hadjantonakis AK. SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol 2014; 16:1146-56. [PMID: 25419850 PMCID: PMC4250291 DOI: 10.1038/ncb3070] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 10/20/2014] [Indexed: 12/11/2022]
Abstract
Gastrulation leads to three germ layers--ectoderm, mesoderm and endoderm--that are separated by two basement membranes. In the mouse embryo, the emergent gut endoderm results from the widespread intercalation of cells of two distinct origins: pluripotent epiblast-derived definitive endoderm (DE) and extra-embryonic visceral endoderm (VE). Here we image the trajectory of prospective DE cells before intercalating into the VE epithelium. We show that the transcription factor SOX17, which is activated in prospective DE cells before intercalation, is necessary for gut endoderm morphogenesis and the assembly of the basement membrane that separates gut endoderm from mesoderm. Our results mechanistically link gut endoderm morphogenesis and germ layer segregation, two central and conserved features of gastrulation.
Collapse
Affiliation(s)
- Manuel Viotti
- 1] Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York 10065, USA [2] Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York 10065, USA
| | | |
Collapse
|
34
|
Tabata Y, Horiguchi I, Lutolf MP, Sakai Y. Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors. Biomater Sci 2014; 2:176-183. [DOI: 10.1039/c3bm60183h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Vacaru AM, Isern J, Fraser ST, Baron MH. Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice. Genesis 2013; 51:751-62. [PMID: 23913596 DOI: 10.1002/dvg.22420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
Primitive erythropoiesis is a vital process for mammalian embryonic development. Here we report the generation and characterization of a new transgenic mouse line that expresses a histone H2B-CFP fusion protein in the nuclei of primitive erythroid cells. We demonstrate the potential of this ε-globin-histone H2B-CFP line for multicolor imaging and flow cytometry analysis. The ε-globin-H2B-CFP line was used to analyze the cell cycle distribution and proliferation of CFP-expressing primitive erythroblasts from E8.5-E13.5. We also evaluated phagocytosis of extruded CFP-positive nuclei by macrophages in fetal liver and placenta. The ε-globin-H2B-CFP transgenic mouse line adds to the available tools for studying the development of the primitive erythroid lineage.
Collapse
Affiliation(s)
- Andrei M Vacaru
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York; The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
36
|
Haase R, Magnusson T, Su B, Kopp F, Wagner E, Lipps H, Baiker A, Ogris M. Generation of a tumor- and tissue-specific episomal non-viral vector system. BMC Biotechnol 2013; 13:49. [PMID: 23734827 PMCID: PMC3728224 DOI: 10.1186/1472-6750-13-49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/28/2013] [Indexed: 02/08/2023] Open
Abstract
Background A key issue for safe and reproducible gene therapy approaches is the autologous and tissue-specific expression of transgenes. Tissue-specific expression in vivo is either achieved by transfer vectors that deliver the gene of interest into a distinct cell type or by use of tissue-specific expression cassettes. Here we present the generation of non-viral, episomally replicating vectors that are able to replicate in a tissue specific manner thus allowing tissue specific transgene expression in combination with episomal replication. The episomal replication of the prototype vector pEPI-1 and its derivatives depends exclusively on a transcription unit starting from a constitutively active promoter extending into the scaffold/matrix attachment region (S/MAR). Results Here, we exchanged the constitutive promoter in the pEPI derivative pEPito by the tumor specific alpha fetoprotein (AFP) or the muscle specific smooth muscle 22 (SM22) promoter leading to specific transgene expression in AFP positive human hepatocellular carcinoma (HUH7) and in a SM22 positive cell line, respectively. The incorporation of the hCMV enhancer element into the expression cassette further boosted the expression levels with both promoters. Tissue specific-replication could be exemplary proven for the smooth muscle protein 22 (SM22) promoter in vitro. With the AFP promoter-driven pEPito vector hepatocellular carcinoma-specific expression could be achieved in vivo after systemic vector application together with polyethylenimine as transfection enhancer. Conclusions In this study we present an episomal plasmid system designed for tissue specific transgene expression and replication. The human AFP-promoter in combination with the hCMV enhancer element was demonstrated to be a valuable tissue-specific promoter for targeting hepatocellular carcinomas with non-viral gene delivery system, and tissue specific replication could be shown in vitro with the muscle specific SM22 promoter. In combination with appropriate delivery systems, the tissue specific pEPito vector system will allow higher tissue-specificity with less undesired side effects and is suitable for long term transgene expression in vivo within gene therapeutical approaches.
Collapse
Affiliation(s)
- Rudolf Haase
- Department of Pharmacy, Center for Drug Research, Pharmaceutical Biotechnology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hepatic differentiation of mouse iPS cells and analysis of liver engraftment potential of multistage iPS progeny. J Physiol Biochem 2013; 69:835-45. [PMID: 23715756 DOI: 10.1007/s13105-013-0260-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 05/05/2013] [Indexed: 12/20/2022]
Abstract
Hepatocyte transplantation is considered a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) are an unlimited source for the generation of functional hepatocytes. While several protocols that direct the differentiation of iPSCs into hepatocyte-like cells have already been reported, the liver engraftment potential of iPSC progeny obtained at each step of hepatic differentiation has not yet been thoroughly investigated. In this study, we present an efficient strategy to differentiate mouse iPSCs into hepatocyte-like cells and evaluate their liver engraftment potential at different time points of the protocol (5, 10, 15, and 20 days of differentiation). iPSCs were differentiated in the presence of cytokines, growth factors, and small molecules to finally generate hepatocyte-like cells. These iPSC-derived hepatocyte-like cells exhibited hepatocyte-associated functions, such as albumin secretion and urea synthesis. When we transplanted iPSC progeny into the spleen, we found that 15- and 20-day iPSC progeny engrafted into the livers and further acquired hepatocyte morphology. In contrast, 5- and 10-day iPSC progeny were also able to engraft but did not generate hepatocyte-like cells in vivo. Our data may aid in improving current protocols geared towards the use of iPSCs as a new source of liver-targeted cell therapies.
Collapse
|
38
|
Abe T, Fujimori T. Reporter mouse lines for fluorescence imaging. Dev Growth Differ 2013; 55:390-405. [PMID: 23621623 DOI: 10.1111/dgd.12062] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
The use of live imaging approaches to examine and understand the dynamic processes that take place during mouse development has become widespread. Several groups have reported their success in generating different reporter mouse lines that express a variety of fluorescent markers for imaging. However, there is currently no established database of the reporter mouse lines available for live imaging, such as the Cre transgenic lines (Cre-X-Mice). Researchers therefore often have difficulties in determining which reporter mouse line meets their research purposes. In this review, we summarize some of the reporter mouse lines that have been generated for live imaging studies, and discuss their characteristics.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | |
Collapse
|
39
|
Bauer R, Plieschnig JA, Finkes T, Riegler B, Hermann M, Schneider WJ. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J Biol Chem 2012; 288:1088-98. [PMID: 23209291 DOI: 10.1074/jbc.m112.393090] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During chicken yolk sac (YS) growth, mesodermal cells in the area vasculosa follow the migrating endodermal epithelial cell (EEC) layer in the area vitellina. Ultimately, these cells form the vascularized YS that functions in nutrient transfer to the embryo. How and when EECs, with their apical aspect directly contacting the oocytic yolk, acquire the ability to take up yolk macromolecules during the vitellina-to-vasculosa transition has not been investigated. In addressing these questions, we found that with progressive vascularization, the expression level in EECs of the nutrient receptor triad, LRP2-cubilin-amnionless, changes significantly. The receptor complex, competent for uptake of yolk proteins, is produced by EECs in the area vasculosa but not in the area vitellina. Yolk components endocytosed by LRP2-cubilin-amnionless, preformed and newly formed lipid droplets, and yolk-derived very low density lipoprotein, shown to be efficiently endocytosed and lysosomally processed by EECs, probably provide substrates for resynthesis and secretion of nutrients, such as lipoproteins. In fact, as directly demonstrated by pulse-chase experiments, EECs in the vascularized, but not in the avascular, region efficiently produce and secrete lipoproteins containing apolipoprotein A-I (apoA-I), apoB, and/or apoA-V. In contrast, perilipin 2, a lipid droplet-stabilizing protein, is produced exclusively by the EECs of the area vitellina. These data suggest a differentiation process that orchestrates the vascularization of the developing YS with the induction of yolk uptake and lipoprotein secretion by EECs to ensure embryo nutrition.
Collapse
Affiliation(s)
- Raimund Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr Gasse 9/2, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Pharmacological manipulation of blood and lymphatic vascularization in ex vivo-cultured mouse embryos. Nat Protoc 2012; 7:1970-82. [PMID: 23060242 DOI: 10.1038/nprot.2012.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Formation of new blood and lymphatic vessels is involved in many physiological and pathological processes, including organ and tumor growth, cancer cell metastasis, fluid drainage and lymphedema. Therefore, the ability to manipulate vascularization in a mammalian system is of particular interest to researchers. Here we describe a method for pharmacological manipulation of de novo and sprouting blood and lymphatic vascular development in ex vivo-cultured mouse embryos. The described protocol can also be used to evaluate the properties of pharmacological agents in growing mammalian tissues and to manipulate other developmental processes. The whole procedure, from embryo isolation to image quantification, takes 3-5 d, depending on the analysis and age of the embryos.
Collapse
|
41
|
Cho LTY, Wamaitha SE, Tsai IJ, Artus J, Sherwood RI, Pedersen RA, Hadjantonakis AK, Niakan KK. Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development 2012; 139:2866-77. [PMID: 22791892 DOI: 10.1242/dev.078519] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner cell mass of the mouse pre-implantation blastocyst comprises epiblast progenitor and primitive endoderm cells of which cognate embryonic (mESCs) or extra-embryonic (XEN) stem cell lines can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of their in vivo tissue of origin. Recently, we demonstrated that XEN-like cells arise within mESC cultures. This raises the possibility that mESCs can generate self-renewing XEN cells without the requirement for gene manipulation. We have developed a novel approach to convert mESCs to XEN cells (cXEN) using growth factors. We confirm that the downregulation of the pluripotency transcription factor Nanog and the expression of primitive endoderm-associated genes Gata6, Gata4, Sox17 and Pdgfra are necessary for cXEN cell derivation. This approach highlights an important function for Fgf4 in cXEN cell derivation. Paracrine FGF signalling compensates for the loss of endogenous Fgf4, which is necessary to exit mESC self-renewal, but not for XEN cell maintenance. Our cXEN protocol also reveals that distinct pluripotent stem cells respond uniquely to differentiation promoting signals. cXEN cells can be derived from mESCs cultured with Erk and Gsk3 inhibitors (2i), and LIF, similar to conventional mESCs. However, we find that epiblast stem cells (EpiSCs) derived from the post-implantation embryo are refractory to cXEN cell establishment, consistent with the hypothesis that EpiSCs represent a pluripotent state distinct from mESCs. In all, these findings suggest that the potential of mESCs includes the capacity to give rise to both extra-embryonic and embryonic lineages.
Collapse
Affiliation(s)
- Lily T Y Cho
- The Anne McLaren Laboratory for Regenerative Medicine, Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rothova M, Thompson H, Lickert H, Tucker AS. Lineage tracing of the endoderm during oral development. Dev Dyn 2012; 241:1183-91. [DOI: 10.1002/dvdy.23804] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2012] [Indexed: 01/04/2023] Open
|
43
|
Norrman K, Strömbeck A, Semb H, Ståhlberg A. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level. Methods 2012; 59:59-70. [PMID: 22503774 DOI: 10.1016/j.ymeth.2012.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/12/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022] Open
Abstract
Characterization of directed differentiation of pluripotent stem cells towards therapeutically relevant cell types, including pancreatic beta-cells and hepatocytes, depends on molecular markers and assays that resolve the signature of individual cells. Pancreas and liver both have a common origin of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were useful to monitor the temporal expression of genes involved in primitive streak formation and endoderm formation, while single-cell analysis allowed us to study cell culture heterogeneity and fingerprint individual cells. In addition, single-cell analysis revealed distinct gene expression patterns for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize cell types and subpopulations.
Collapse
Affiliation(s)
- Karin Norrman
- Stem Cell and Pancreas Developmental Biology, Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC B10, Klinikgatan 26, SE-22184 Lund, Sweden.
| | | | | | | |
Collapse
|
44
|
Role of the gut endoderm in relaying left-right patterning in mice. PLoS Biol 2012; 10:e1001276. [PMID: 22412348 PMCID: PMC3295824 DOI: 10.1371/journal.pbio.1001276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
Analysis of Sox17 mutant mice reveals that gap junction coupling across the gut endoderm of the embryo transmits the left-right asymmetric signal from the node to the site of asymmetric organogenesis in mice. Establishment of left-right (LR) asymmetry occurs after gastrulation commences and utilizes a conserved cascade of events. In the mouse, LR symmetry is broken at a midline structure, the node, and involves signal relay to the lateral plate, where it results in asymmetric organ morphogenesis. How information transmits from the node to the distantly situated lateral plate remains unclear. Noting that embryos lacking Sox17 exhibit defects in both gut endoderm formation and LR patterning, we investigated a potential connection between these two processes. We observed an endoderm-specific absence of the critical gap junction component, Connexin43 (Cx43), in Sox17 mutants. Iontophoretic dye injection experiments revealed planar gap junction coupling across the gut endoderm in wild-type but not Sox17 mutant embryos. They also revealed uncoupling of left and right sides of the gut endoderm in an isolated domain of gap junction intercellular communication at the midline, which in principle could function as a barrier to communication between the left and right sides of the embryo. The role for gap junction communication in LR patterning was confirmed by pharmacological inhibition, which molecularly recapitulated the mutant phenotype. Collectively, our data demonstrate that Cx43-mediated communication across gap junctions within the gut endoderm serves as a mechanism for information relay between node and lateral plate in a process that is critical for the establishment of LR asymmetry in mice. Superficially, humans, like other vertebrates, are bilaterally symmetrical. Nonetheless, the internal configuration of visceral organs reveals a stereotypical asymmetry. For example, human hearts are generally located on the left and the liver on the right side within the body cavity. How this left-right asymmetry is established is an area of interest, for both intrinsic biological significance and its medical application. In the mouse, the initial event that breaks left-right symmetry occurs at the node, a specialized organ located in the midline of the developing embryo. Somehow this initial asymmetry leads to a cascade of events that results in the activation of a genetic circuit on the left side of the embryo, which then leads to asymmetric organ formation. Here we show that the laterality information that is generated at the node is transferred to the lateral extremity of the embryo across the gut endoderm, which is the precursor tissue of the respiratory and digestive tracts and associated organs such as lungs, liver, and pancreas. Sox17 mutant mouse embryos exhibit defects in gut endoderm formation and fail to establish left-right asymmetry. Analysis of the mutants reveals that gap junction coupling across the gut endoderm is the mechanism of left-right information relay from the midline site of symmetry breaking to the site of asymmetric organogenesis in mice.
Collapse
|
45
|
Sato T, Okumura F, Ariga T, Hatakeyama S. TRIM6 interacts with Myc and maintains the pluripotency of mouse embryonic stem cells. J Cell Sci 2012; 125:1544-55. [PMID: 22328504 DOI: 10.1242/jcs.095273] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proto-oncogene product Myc is a master regulator of cell proliferation through its specific binding to the E-box motif in genomic DNA. It has been reported that Myc has an important role in the proliferation and maintenance of the pluripotency of embryonic stem (ES) cells and that the transcriptional activity of Myc is regulated by several post-translational modifications, including ubiquitination. In this study, we showed that tripartite motif containing 6 (TRIM6), one of the TRIM family ubiquitin ligases, was selectively expressed in ES cells and interacted with Myc followed by attenuation of the transcriptional activity of Myc. Knockdown of TRIM6 in ES cells enhanced the transcriptional activity of Myc and repressed expression of NANOG, resulting in the promotion of ES cell differentiation. These findings indicate that TRIM6 regulates the transcriptional activity of Myc during the maintenance of ES cell pluripotency, suggesting that TRIM6 functions as a novel regulator for Myc-mediated transcription in ES cells.
Collapse
Affiliation(s)
- Tomonobu Sato
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita15, Nishi7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | |
Collapse
|
46
|
Xenopoulos P, Nowotschin S, Hadjantonakis AK. Live imaging fluorescent proteins in early mouse embryos. Methods Enzymol 2012; 506:361-89. [PMID: 22341233 DOI: 10.1016/b978-0-12-391856-7.00042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse embryonic development comprises highly dynamic and coordinated events that drive key cell lineage specification and morphogenetic events. These processes involve cellular behaviors including proliferation, migration, apoptosis, and differentiation, each of which is regulated both spatially and temporally. Live imaging of developing embryos provides an essential tool to investigate these coordinated processes in three-dimensional space over time. For this purpose, the development and application of genetically encoded fluorescent protein (FP) reporters has accelerated over the past decade allowing for the high-resolution visualization of developmental progression. Ongoing efforts are aimed at generating improved reporters, where spectrally distinct as well as novel FPs whose optical properties can be photomodulated, are exploited for live imaging of mouse embryos. Moreover, subcellular tags in combination with using FPs allow for the visualization of multiple subcellular characteristics, such as cell position and cell morphology, in living embryos. Here, we review recent advances in the application of FPs for live imaging in the early mouse embryo, as well as some of the methods used for ex utero embryo development that facilitate on-stage time-lapse specimen visualization.
Collapse
|
47
|
Artus J, Douvaras P, Piliszek A, Isern J, Baron MH, Hadjantonakis AK. BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Dev Biol 2011; 361:245-62. [PMID: 22051107 DOI: 10.1016/j.ydbio.2011.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/19/2011] [Accepted: 10/08/2011] [Indexed: 12/20/2022]
Abstract
The visceral endoderm (VE) is an epithelial tissue in the early postimplantation mouse embryo that encapsulates the pluripotent epiblast distally and the extraembryonic ectoderm proximally. In addition to facilitating nutrient exchange before the establishment of a circulation, the VE is critical for patterning the epiblast. Since VE is derived from the primitive endoderm (PrE) of the blastocyst, and PrE-derived eXtraembryonic ENdoderm (XEN) cells can be propagated in vitro, XEN cells should provide an important tool for identifying factors that direct VE differentiation. In this study, we demonstrated that BMP4 signaling induces the formation of a polarized epithelium in XEN cells. This morphological transition was reversible, and was associated with the acquisition of a molecular signature comparable to extraembryonic (ex) VE. Resembling exVE which will form the endoderm of the visceral yolk sac, BMP4-treated XEN cells regulated hematopoiesis by stimulating the expansion of primitive erythroid progenitors. We also observed that LIF exerted an antagonistic effect on BMP4-induced XEN cell differentiation, thereby impacting the extrinsic conditions used for the isolation and maintenance of XEN cells in an undifferentiated state. Taken together, our data suggest that XEN cells can be differentiated towards an exVE identity upon BMP4 stimulation and therefore represent a valuable tool for investigating PrE lineage differentiation.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
48
|
Migeotte I, Grego-Bessa J, Anderson KV. Rac1 mediates morphogenetic responses to intercellular signals in the gastrulating mouse embryo. Development 2011; 138:3011-20. [PMID: 21693517 DOI: 10.1242/dev.059766] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The establishment of the mammalian body plan depends on signal-regulated cell migration and adhesion, processes that are controlled by the Rho family of GTPases. Here we use a conditional allele of Rac1, the only Rac gene expressed early in development, to define its roles in the gastrulating mouse embryo. Embryos that lack Rac1 in the epiblast (Rac1Δepi) initiate development normally: the signaling pathways required for gastrulation are active, definitive endoderm and all classes of mesoderm are specified, and the neural plate is formed. After the initiation of gastrulation, Rac1Δepi embryos have an enlarged primitive streak, make only a small amount of paraxial mesoderm, and the lateral anlage of the heart do not fuse at the midline. Because these phenotypes are also seen in Nap1 mutants, we conclude that Rac1 acts upstream of the Nap1/WAVE complex to promote migration of the nascent mesoderm. In addition to migration phenotypes, Rac1Δepi cells fail to adhere to matrix, which leads to extensive cell death. Cell death is largely rescued in Rac1Δepi mutants that are heterozygous for a null mutation in Pten, providing evidence that Rac1 is required to link signals from the basement membrane to activation of the PI3K-Akt pathway in vivo. Surprisingly, the frequency of apoptosis is greater in the anterior half of the embryo, suggesting that cell survival can be promoted either by matrix adhesion or by signals from the posterior primitive streak. Rac1 also has essential roles in morphogenesis of the posterior notochordal plate (the node) and the midline.
Collapse
Affiliation(s)
- Isabelle Migeotte
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
49
|
Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE. Defining the nature of human pluripotent stem cell progeny. Cell Res 2011; 22:178-93. [PMID: 21844894 DOI: 10.1038/cr.2011.133] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely in vitro development mirrors that which occurs in vivo. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (OCT4, SOX2, REX1, and NANOG) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (LIN28A, LIN28B, DPPA4, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks). These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Park JH, Kim KI, Lee YJ, Lee TS, Kim KM, Nahm SS, Park YS, Cheon GJ, Lim SM, Kang JH. Non-invasive monitoring of hepatocellular carcinoma in transgenic mouse with bioluminescent imaging. Cancer Lett 2011; 310:53-60. [PMID: 21741167 DOI: 10.1016/j.canlet.2011.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 02/07/2023]
Abstract
A small animal imaging system for hepatocellular carcinoma (HCC)-specific reporter gene expression will enable monitoring of carcinogenesis or therapeutic intervention in vivo. Transgenic mouse was developed in which firefly luciferase (fLuc) expression was controlled by the AFP enhancer/promoter. The bioluminescent signals of the transgenic neonates were strong at their liver region and decreased after birth. Bioluminescent imaging (BLI) of a transgenic mouse treated with N-nitrosodiethylamine revealed distinct fLuc activity in the liver and an increased pattern with time. The transgenic mouse model can be used to monitor AFP producing HCC by a chemical carcinogen in a live animal by BLI.
Collapse
Affiliation(s)
- Ju Hui Park
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 139-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|