1
|
Brown W, Bardhan A, Darrah K, Tsang M, Deiters A. Optical Control of MicroRNA Function in Zebrafish Embryos. J Am Chem Soc 2022; 144:16819-16826. [PMID: 36073798 DOI: 10.1021/jacs.2c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs play crucial and dynamic roles in vertebrate development and diseases. Some, like miR-430, are highly expressed during early embryo development and regulate hundreds of transcripts, which can make it difficult to study their role in the timing and location of specific developmental processes using conventional morpholino oligonucleotide (MO) knockdown or genetic deletion approaches. We demonstrate that light-activated circular morpholino oligonucleotides (cMOs) can be applied to the conditional control of microRNA function. We targeted miR-430 in zebrafish embryos to study its role in the development of the embryo body and the heart. Using 405 nm irradiation, precise spatial and temporal control over miR-430 function was demonstrated, offering insight into the cell populations and developmental timepoints involved in each process.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Fu J, Zhu W, Wang L, Luo M, Jiang B, Dong Z. Dynamic Expression and Gene Regulation of MicroRNAs During Bighead Carp (Hypophthalmichthys nobilis) Early Development. Front Genet 2022; 12:821403. [PMID: 35126475 PMCID: PMC8809360 DOI: 10.3389/fgene.2021.821403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Zaijie Dong, ,
| |
Collapse
|
3
|
Assessment of Association between miR-146a Polymorphisms and Expression of miR-146a, TRAF-6, and IRAK-1 Genes in Patients with Brucellosis. Mol Biol Rep 2022; 49:1995-2002. [PMID: 34981334 DOI: 10.1007/s11033-021-07014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Brucellosis is a major zoonosis all over the world. MicroRNAs are significant gene expression regulators and could be involved during the infections and also genetic alterations in the miRNAs sequence can affect primary miRNAs and precursor miRNAs processing and thus alter miRNAs expression. Current research studied the impact of the miR-146a polymorphism on miR-146a, TRAF-6, and IRAK-1 genes expression in patients with brucellosis illness. METHODS AND RESULTS In this research, 25 patients with brucellosis and 25 healthy participants with determined genotypes for miR-SNP rs2910164 and miR-SNP rs57095329 were recruited. IRAK-1, TRAF-6, and miR-146a expressions in peripheral blood mononuclear cells (PBMCs) were specified by quantitative real- time PCR (qRT-PCR). Moreover, interleukin-1β (IL-1β) and tumor necrosis factor- alpha (TNF-α) serum levels were assessed by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. There was no significant difference in the expression level of miR-146a, IRAK-1, and TRAF-6, among the patients with brucellosis and control group. TRAF-6 PBMCs expression levels in the distinctive genotypes of rs2910164 were significantly observed in patients (P = 0.048). No significant distinctions were found in miR-146a, IRAK-1, and TRAF-6 expression levels and among the rs57095329 different genotypes in brucellosis patients and controls. Meanwhile, no significant relationship was found between the rs2910164 and rs57095329 genotypes and the serum level of cytokines mentioned between the two groups. We did not find any association between expression of TRAF-6, miR-146a, and IRAK-1 in PBMCs, and cytokines serum levels with two single nucleotide polymorphisms (SNPs) in miR-146a. CONCLUSIONS To the best of writers' knowledge, this research is the first one evaluating the probable link between the miR-146a rs2910164 and rs57095329 variant with miRNAs, relevant cytokine levels, and target genes in brucellosis.
Collapse
|
4
|
Herkenhoff ME, Bovolenta LA, Broedel O, Dos Santos LD, de Oliveira AC, Chuffa LGA, Ribeiro ADO, Lupi LA, Dias MAD, Hilsdorf AWS, Frohme M, Pinhal D. Variant expression signatures of microRNAs and protein related to growth in a crossbreed between two strains of Nile tilapia (Oreochromis niloticus). Genomics 2021; 113:4303-4312. [PMID: 34774982 DOI: 10.1016/j.ygeno.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Lucilene D Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arthur C de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Amanda de O Ribeiro
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz A Lupi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Marco A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Alexandre W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Martín L, Kamstra JH, Hurem S, Lindeman LC, Brede DA, Aanes H, Babiak I, Arenal A, Oughton D, Salbu B, Lyche JL, Aleström P. Altered non-coding RNA expression profile in F 1 progeny 1 year after parental irradiation is linked to adverse effects in zebrafish. Sci Rep 2021; 11:4142. [PMID: 33602989 PMCID: PMC7893006 DOI: 10.1038/s41598-021-83345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.
Collapse
Affiliation(s)
- Leonardo Martín
- grid.441252.40000 0000 9526 034XMorphophysiology Department, Faculty of Agricultural Sciences, University of Camagüey Ignacio Agramonte y Loynaz, 74 650 Camagüey, Cuba ,grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Jorke H. Kamstra
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.5477.10000000120346234Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Selma Hurem
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Leif C. Lindeman
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dag A. Brede
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Håvard Aanes
- grid.458778.1PatoGen AS, P.O.box 548, 6001 Ålesund, Norway
| | - Igor Babiak
- grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Amilcar Arenal
- grid.441252.40000 0000 9526 034XMorphophysiology Department, Faculty of Agricultural Sciences, University of Camagüey Ignacio Agramonte y Loynaz, 74 650 Camagüey, Cuba
| | - Deborah Oughton
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Brit Salbu
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Jan Ludvig Lyche
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Peter Aleström
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| |
Collapse
|
6
|
Wang L, Song F, Yin H, Zhu W, Fu J, Dong Z, Xu P. Comparative microRNAs expression profiles analysis during embryonic development of common carp, Cyprinus carpio. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100754. [PMID: 33186873 DOI: 10.1016/j.cbd.2020.100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) play important roles in biological processes by regulating specific gene expression. Limited miRNAs information is available on embryonic development in common carp (Cyprinus carpio) so far. In this study, six important embryonic development stages of C.carpio were collected to perform a times-series of small RNA-seq experiments from cleavage, blastocyst, gastrulation, organ formation, hatching stage to 1 day post-hatching larva. The expression profiles of miRNAs were identified and differentially expressed miRNAs (DEMs) were screened out based on pairwise comparison. A mean of 12,744,989 raw reads and 9,888,123 clean reads were obtained from each library. A total of 2565 miRNAs were identified. 68 of 204 DEMs were overlapped with stage-specific miRNAs, in which 15 were known miRNAs and seemed to play a key role in embryogenesis. Additionally, time-course expression reveals several intriguing fluctuations during embryogenesis. Numerous signaling pathways were identified in embryonic development, including the phototransduction, hippo signaling pathway, Wnt, melanogenesis, histidine metabolism and fatty acid biosynthesis. The results would provide new insight into the roles of miRNAs in embryonic development, and would help us to advance the understanding of miRNA-mediated mechanisms in embryonic development of fish.
Collapse
Affiliation(s)
- Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Feibiao Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Jianjun Fu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
7
|
Abo-Al-Ela HG, Burgos-Aceves MA. Exploring the role of microRNAs in axolotl regeneration. J Cell Physiol 2020; 236:839-850. [PMID: 32638401 DOI: 10.1002/jcp.29920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The axolotl, Ambystoma mexicanum, is used extensively for research in developmental biology, particularly for its ability to regenerate and restore lost organs, including in the nervous system, to full functionality. Regeneration in mammals typically depends on the healing process and scar formation with limited replacement of lost tissue. Other organisms, such as spiny mice (Acomys cahirinus), salamanders, and zebrafish, are able to regenerate some damaged body components. Blastema is a tissue that is formed after tissue injury in such organisms and is composed of progenitor cells or dedifferentiated cells that differentiate into various cell types during regeneration. Thus, identifying the molecules responsible for initiation of blastema formation is an important aspect for understanding regeneration. Introns, a major source of noncoding RNAs (ncRNAs), have characteristic sizes in the axolotl, particularly in genes associated with development. These ncRNAs, particularly microRNAs (miRNAs), exhibit dynamic regulation during regeneration. These miRNAs play an essential role in timing and control of gene expression to order and organize processes necessary for blastema creation. Master keys or molecules that underlie the remarkable regenerative abilities of the axolotl remain to be fully explored and exploited. Further and ongoing research on regeneration promises new knowledge that may allow improved repair and renewal of human tissues.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Mario A Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
8
|
Ruiz-Tagle C, Naves R, Balcells ME. Unraveling the Role of MicroRNAs in Mycobacterium tuberculosis Infection and Disease: Advances and Pitfalls. Infect Immun 2020; 88:e00649-19. [PMID: 31871103 PMCID: PMC7035921 DOI: 10.1128/iai.00649-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease of extremely high epidemiological burden worldwide that is easily acquired through the inhalation of infected respiratory droplets. The complex pathogenesis of this infection spans from subjects never developing this disease despite intense exposure, to others in which immune containment fails catastrophically and severe or disseminated forms of disease ensue. In recent decades, microRNAs (miRNAs) have gained increasing attention due to their role as gene silencers and because of their altered expression in diverse human diseases, including some infections. Recent research regarding miRNAs and TB has revealed that the expression profile for particular miRNAs clearly changes upon Mycobacterium tuberculosis infection and also varies in the different stages of this disease. However, despite the growing number of studies-some of which have even proposed some miRNAs as potential biomarkers-methodological variations and key differences in relevant factors, such as sex and age, cell type analyzed, M. tuberculosis strain, and antimicrobial therapy status, strongly hinder the comparison of data. In this review, we summarize and discuss the literature and highlight the role of selected miRNAs that have specifically and more consistently been associated with M. tuberculosis infection, together with a discussion of the possible gene and immune regulation pathways involved.
Collapse
Affiliation(s)
- Cinthya Ruiz-Tagle
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Naves
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Romney ALT, Podrabsky JE. Small noncoding RNA profiles along alternative developmental trajectories in an annual killifish. Sci Rep 2018; 8:13364. [PMID: 30190591 PMCID: PMC6127099 DOI: 10.1038/s41598-018-31466-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Embryonic development of Austrofundulus limnaeus can occur along two phenotypic trajectories that are physiologically and biochemically distinct. Phenotype appears to be influenced by maternal provisioning based on the observation that young females produce predominately non-diapausing embryos and older females produce mostly diapausing embryos. Embryonic incubation temperature can override this pattern and alter trajectory. We hypothesized that temperature-induced phenotypic plasticity may be regulated by post-transcriptional modification via noncoding RNAs. As a first step to exploring this possibility, RNA-seq was used to generate transcriptomic profiles of small noncoding RNAs in embryos developing along the two alternative trajectories. We find distinct profiles of mature sequences belonging to the miR-10 family expressed in increasing abundance during development and mature sequences of miR-430 that follow the opposite pattern. Furthermore, miR-430 sequences are enriched in escape trajectory embryos. MiR-430 family members are known to target maternally provisioned mRNAs in zebrafish and may operate similarly in A. limnaeus in the context of normal development, and also by targeting trajectory-specific mRNAs. This expression pattern and function for miR-430 presents a potentially novel model for maternal-embryonic conflict in gene regulation that provides the embryo the ability to override maternal programming in the face of altered environmental conditions.
Collapse
Affiliation(s)
- Amie L T Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
- Department of Anatomy, Physiology & Cell Biology, University of California at Davis School of Veterinary Medicine, One Shields Ave, Davis, CA, 95616, USA.
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
| |
Collapse
|
10
|
Hu J, Lin C, Liu M, Tong Q, Xu S, Wang D, Zhao Y. Analysis of the microRNA transcriptome of Daphnia pulex during aging. Gene 2018; 664:101-110. [PMID: 29684489 DOI: 10.1016/j.gene.2018.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023]
Abstract
Daphnia pulex is an important food organism that exhibits a particular mode of reproduction known as cyclical parthenogenesis (asexual) and sexual reproduction. Regulation of the aging process by microRNAs (miRNAs) is a research hotspot in miRNA studies. To investigate a possible role of miRNAs in regulating aging and senescence, we used Illumina HiSeq to sequence two miRNA libraries from 1-day-old (1d) and 25-day-old (25d) D. pulex specimens. In total, we obtained 11,218,097 clean reads and 28,569 unique miRNAs from 1d specimens and 11,819,106 clean reads and 44,709 unique miRNAs from 25d specimens. Bioinformatic analyses was used to identify 1335 differentially expressed miRNAs from known miRNAs, including 127 miRNAs that exhibited statistically significant differences (P < 0.01); 92 miRNAs were upregulated and 35 were downregulated. Quantitative real-time (qRT)-PCR experiments were performed for nine miRNAs from five samples (1d, 5d, 10d, 15d, 20d and 25d) during the aging process, and the sequencing and qRT-PCR data were found to be consistent. Ninety-four miRNAs were predicted to correspond to 2014 target genes in known miRNAs with 4032 target gene sites. Sixteen pathways changed significantly (P < 0.05) at different developmental stages, revealing many important principles of the miRNA regulatory aging network of D. pulex. Overall, the difference in miRNA expression profile during aging of D. pulex forms a basis for further studies aimed at understanding the role of miRNAs in regulating aging, reproductive transformation, senescence, and longevity.
Collapse
Affiliation(s)
- Jiabao Hu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chongyuan Lin
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mengdi Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiaoqiong Tong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Danli Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
11
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Riggs CL, Podrabsky JE. Small noncoding RNA expression during extreme anoxia tolerance of annual killifish (Austrofundulus limnaeus) embryos. Physiol Genomics 2017; 49:505-518. [DOI: 10.1152/physiolgenomics.00016.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance.
Collapse
Affiliation(s)
- Claire L. Riggs
- Department of Biology, Portland State University, Portland, Oregon
| | | |
Collapse
|
13
|
Zhang P, Kong F, Deng X, Yu Y, Hou C, Liang T, Zhu L. MicroRNA-326 suppresses the proliferation, migration and invasion of cervical cancer cells by targeting ELK1. Oncol Lett 2017; 13:2949-2956. [PMID: 28529556 PMCID: PMC5431565 DOI: 10.3892/ol.2017.5852] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2017] [Indexed: 01/19/2023] Open
Abstract
Although microRNAs (miRNAs or miRs) are able to function as oncogenes or tumor suppressors, the role of miR-326 in regulating human cervical cancer cells remains unclear. In the present study, the expression of miR-326 was identified to be downregulated in cervical cancer cell lines and primary tumor samples, and the overexpression of miR-326 decreased cell proliferation, migration and invasion in cervical cell lines. Bioinformatics prediction and experimental validation results revealed that the function of miR-326 was achieved by targeting and repressing ETS domain-containing protein Elk-1 (ELK1) expression. ELK1 was targeted directly by miR-326, which was downregulated in human cervical cancer tissues compared with that in adjacent normal tissues. The results of the present study suggest that miR-326, a potential tumor suppressor, may be used in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xinchao Deng
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yunhai Yu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Congzhe Hou
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Tingting Liang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lin Zhu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
14
|
Schwanbeck R. The role of epigenetic mechanisms in Notch signaling during development. J Cell Physiol 2015; 230:969-81. [PMID: 25336183 DOI: 10.1002/jcp.24851] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
The Notch pathway is a highly conserved cell-cell communication pathway in metazoan involved in numerous processes during embryogenesis, development, and adult organisms. Ligand-receptor interaction of Notch components on adjacent cells facilitates controlled sequential proteolytic cleavage resulting in the nuclear translocation of the intracellular domain of Notch (NICD). There it binds to the Notch effector protein RBP-J, displaces a corepressor complex and enables the induction of target genes by recruitment of coactivators in a cell-context dependent manner. Both, the gene-specific repression and the context dependent activation require an intense communication with the underlying chromatin of the regulatory regions. Since the epigenetic landscape determines the function of the genome, processes like cell fate decision, differentiation, and self-renewal depend on chromatin structure and its remodeling during development. In this review, structural features enabling the Notch pathway to read these epigenetic marks by proteins interacting with RBP-J/Notch will be discussed. Furthermore, mechanisms of the Notch pathway to write and erase chromatin marks like histone acetylation and methylation are depicted as well as ATP-dependent chromatin remodeling during the activation of target genes. An additional fine-tuning of transcriptional regulation upon Notch activation seems to be controlled by the commitment of miRNAs. Since cells within an organism have to react to environmental changes, and developmental and differentiation cues in a proper manner, different signaling pathways have to crosstalk to each other. The chromatin status may represent one major platform to integrate these different pathways including the canonical Notch signaling.
Collapse
Affiliation(s)
- Ralf Schwanbeck
- Institute of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Olena AF, Rao MB, Thatcher EJ, Wu SY, Patton JG. miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development. Dev Biol 2015; 400:72-81. [PMID: 25645681 DOI: 10.1016/j.ydbio.2015.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 01/13/2023]
Abstract
Precise regulation of Notch signaling is essential for normal vertebrate development. Mind bomb (Mib) is a ubiquitin ligase that is required for activation of Notch by Notch׳s ligand, Delta. Sorting Nexin 5 (SNX5) co-localizes with Mib and Delta complexes and has been shown to directly bind to Mib. We show that microRNA-216a (miR-216a) is expressed in the retina during early development and regulates snx5 to precisely regulate Notch signaling. miR-216a and snx5 have complementary expression patterns. Knocking down miR-216a and/or overexpression of snx5 resulted in increased Notch activation. Conversely, knocking down snx5 and/or miR-216a overexpression caused a decrease in Notch activation. We propose a model in which SNX5, precisely controlled by miR-216a, is a vital partner of Mib in promoting endocytosis of Delta and subsequent activation of Notch signaling.
Collapse
Affiliation(s)
- Abigail F Olena
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Mahesh B Rao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | | | - Shu-Yu Wu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
16
|
Rajaram K, Harding RL, Bailey T, Patton JG, Hyde DR. Dynamic miRNA expression patterns during retinal regeneration in zebrafish: reduced dicer or miRNA expression suppresses proliferation of Müller glia-derived neuronal progenitor cells. Dev Dyn 2014; 243:1591-605. [PMID: 25220904 DOI: 10.1002/dvdy.24188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/06/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Adult zebrafish spontaneously regenerate their retinas after damage. Although a number of genes and signaling pathways involved in regeneration have been identified, the exact mechanisms regulating various aspects of regeneration are unclear. microRNAs (miRNAs) were examined for their potential roles in regulating zebrafish retinal regeneration. RESULTS To investigate the requirement of miRNAs during zebrafish retinal regeneration, we knocked down the expression of Dicer in retinas prior to light-induced damage. Reduced Dicer expression significantly decreased the number of proliferating Müller glia-derived neuronal progenitor cells during regeneration. To identify individual miRNAs with roles in neuronal progenitor cell proliferation, we collected retinas at different stages of light damage and performed small RNA high-throughput sequencing. We identified subsets of miRNAs that were differentially expressed during active regeneration but returned to basal levels once regeneration was completed. We then knocked down five different miRNAs that increased in expression and assessed the effects on retinal regeneration. Reduction of miR-142b and miR-146a expression significantly reduced INL proliferation at 51 h of light treatment, while knockdown of miR-7a, miR-27c, and miR-31 expression significantly reduced INL proliferation at 72 h of constant light. CONCLUSIONS miRNAs exhibit dynamic expression profiles during retinal regeneration and are necessary for neuronal progenitor cell proliferation.
Collapse
Affiliation(s)
- Kamya Rajaram
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
17
|
Campos C, Sundaram AYM, Valente LMP, Conceição LEC, Engrola S, Fernandes JMO. Thermal plasticity of the miRNA transcriptome during Senegalese sole development. BMC Genomics 2014; 15:525. [PMID: 24966054 PMCID: PMC4097167 DOI: 10.1186/1471-2164-15-525] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 06/17/2014] [Indexed: 12/17/2022] Open
Abstract
Background Several miRNAs are known to control myogenesis in vertebrates. Some of them are specifically expressed in muscle while others have a broader tissue expression but are still involved in establishing the muscle phenotype. In teleosts, water temperature markedly affects embryonic development and larval growth. It has been previously shown that higher embryonic temperatures promoted faster development and increased size of Senegalese sole (Solea senegalensis) larvae relatively to a lower temperature. The role of miRNAs in thermal-plasticity of growth is hitherto unknown. Hence, we have used high-throughput SOLiD sequencing to determine potential changes in the miRNA transcriptome in Senegalese sole embryos that were incubated at 15°C or 21°C until hatching and then reared at a common temperature of 21°C. Results We have identified 320 conserved miRNAs in Senegalese sole, of which 48 had not been previously described in teleosts. mir-17a-5p, mir-26a, mir-130c, mir-206-3p, mir-181a-5p, mir-181a-3p and mir-199a-5p expression levels were further validated by RT- qPCR. The majority of miRNAs were dynamically expressed during early development, with peaks of expression at pre-metamorphosis or metamorphosis. Also, a higher incubation temperature (21°C) was associated with expression of some miRNAs positively related with growth (e.g., miR-17a, miR-181-5p and miR-206) during segmentation and at hatching. Target prediction revealed that these miRNAs may regulate myogenesis through MAPK and mTOR pathways. Expression of miRNAs involved in lipid metabolism and energy production (e.g., miR-122) also differed between temperatures. A miRNA that can potentially target calpain (miR-181-3p), and therefore negatively regulate myogenesis, was preferentially expressed during segmentation at 15°C compared to 21°C. Conclusions Temperature has a strong influence on expression of miRNAs during embryonic and larval development in fish. Higher expression levels of miR-17a, miR-181-5p and miR-206-3p and down-regulation of miR-181a-3p at 21°C may promote myogenesis and are in agreement with previous studies in Senegalese sole, which reported enhanced growth at higher embryonic temperatures compared to 15°C. Moreover, miRNAs involved in lipid metabolism and energy production may also contribute to increased larval growth at 21°C compared to 15°C. Taken together, our data indicate that miRNAs may play a role in temperature-induced phenotypic plasticity of growth in teleosts. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-525) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway.
| |
Collapse
|
18
|
Rajaram K, Harding RL, Hyde DR, Patton JG. miR-203 regulates progenitor cell proliferation during adult zebrafish retina regeneration. Dev Biol 2014; 392:393-403. [PMID: 24858486 DOI: 10.1016/j.ydbio.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023]
Abstract
Damage of the zebrafish retina triggers a spontaneous regeneration response that is initiated by Müller Glia (MG) dedifferentiation and asymmetric cell division to produce multipotent progenitor cells. Subsequent expansion of the progenitor pool by proliferation is critical for retina regeneration. Pax6b expression in the progenitor cells is necessary for their proliferation, but exact regulation of its expression is unclear. Here, we show that miR-203 is downregulated during regeneration in proliferating progenitor cells. Elevated miR-203 levels inhibit progenitor cell expansion without affecting MG dedifferentiation or progenitor cell generation. Using GFP-reporter assays and gain and loss of function experiments in the retina, we show that miR-203 expression must be suppressed to allow pax6b expression and subsequent progenitor cell proliferation.
Collapse
Affiliation(s)
- Kamya Rajaram
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rachel L Harding
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Aanes H, Collas P, Aleström P. Transcriptome dynamics and diversity in the early zebrafish embryo. Brief Funct Genomics 2013; 13:95-105. [PMID: 24335756 DOI: 10.1093/bfgp/elt049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent years advances in high-throughput sequencing have improved our understanding of how transcripts regulate early vertebrate development. Here, we review the transcriptome dynamics and diversity during early stages of zebrafish embryogenesis. Transcriptome dynamics is characterized by different patterns of mRNA degradation, activation of dormant transcripts and onset of transcription. Several studies have shown a striking diversity of both coding and non-coding transcripts. However, in the aftermath of this immense increase in data, functional studies of both protein-coding and non-coding transcripts are lagging behind. We anticipate that the forthcoming years will see studies relying on different high-throughput sequencing technologies and genomic tools developed for zebrafish embryos to further pin down yet un-annotated transcript-function relationships.
Collapse
Affiliation(s)
- Håvard Aanes
- BasAM, Norwegian School of Veterinary Science, Dep., 0033 Oslo, Norway.
| | | | | |
Collapse
|
20
|
Noto JM, Piazuelo MB, Chaturvedi R, Bartel CA, Thatcher EJ, Delgado A, Romero-Gallo J, Wilson KT, Correa P, Patton JG, Peek RM. Strain-specific suppression of microRNA-320 by carcinogenic Helicobacter pylori promotes expression of the antiapoptotic protein Mcl-1. Am J Physiol Gastrointest Liver Physiol 2013; 305:G786-96. [PMID: 24136787 PMCID: PMC3882435 DOI: 10.1152/ajpgi.00279.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori is the strongest risk factor for gastric cancer, and strains harboring the cag pathogenicity island, which translocates the oncoprotein CagA into host cells, further augment cancer risk. We previously reported that in vivo adaptation of a noncarcinogenic H. pylori strain (B128) generated a derivative strain (7.13) with the ability to induce adenocarcinoma, providing a unique opportunity to define mechanisms that mediate gastric carcinogenesis. MicroRNAs (miRNAs) are small noncoding RNAs that regulate expression of oncogenes or tumor suppressors and are frequently dysregulated in carcinogenesis. To identify miRNAs and their targets involved in H. pylori-mediated carcinogenesis, miRNA microarrays were performed on RNA isolated from gastric epithelial cells cocultured with H. pylori strains B128, 7.13, or a 7.13 cagA(-) isogenic mutant. Among 61 miRNAs differentially expressed in a cagA-dependent manner, the tumor suppressor miR-320 was significantly downregulated by strain 7.13. Since miR-320 negatively regulates the antiapoptotic protein Mcl-1, we demonstrated that H. pylori significantly induced Mcl-1 expression in a cagA-dependent manner and that suppression of Mcl-1 results in increased apoptosis. To extend these results, mice were challenged with H. pylori strain 7.13 or its cagA(-) mutant; consistent with cell culture data, H. pylori induced Mcl-1 expression in a cagA-dependent manner. In human subjects, cag(+) strains induced significantly higher levels of Mcl-1 than cag(-) strains, and Mcl-1 expression levels paralleled the severity of neoplastic lesions. Collectively, these results indicate that H. pylori suppresses miR-320, upregulates Mcl-1, and decreases apoptosis in a cagA-dependent manner, which likely confers an increased risk for gastric carcinogenesis.
Collapse
Affiliation(s)
- Jennifer M. Noto
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee;
| | - M. Blanca Piazuelo
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee;
| | - Rupesh Chaturvedi
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee;
| | - Courtney A. Bartel
- 2Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee;
| | | | - Alberto Delgado
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee;
| | - Judith Romero-Gallo
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee;
| | - Keith T. Wilson
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee; ,3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee; ,4Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; and ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Pelayo Correa
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee;
| | - James G. Patton
- 2Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee;
| | - Richard M. Peek
- 1Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee; ,3Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee;
| |
Collapse
|
21
|
Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicol Teratol 2013; 40:46-58. [PMID: 24126255 DOI: 10.1016/j.ntt.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Congenital malformations are a prevalent cause of infant mortality in the United States and their induction has been linked to a variety of factors, including exposure to teratogens. However, the molecular mechanisms of teratogenicity are not fully understood. MicroRNAs are an important group of small, non-coding RNAs that regulate mRNA expression. MicroRNA roles in early embryonic development are well established, and their disruption during development can cause abnormalities. We hypothesized that developmental exposure to teratogens such as valproic acid alters microRNA expression profiles in developing embryos. Valproic acid is an anticonvulsant and mood-stabilizing drug used to treat epilepsy, bipolar disorder and migraines. To examine the effects of valproic acid on microRNA expression during development, we used zebrafish embryos as a model vertebrate developmental system. Zebrafish embryos were continuously exposed to valproic acid (1mM) or vehicle control (ethanol) starting from 4h post-fertilization (hpf) and sampled at 48 and 96hpf to determine the miRNA expression profiles prior to and after the onset of developmental defects. At 96hpf, 95% of the larvae showed skeletal deformities, abnormal swimming behavior, and pericardial effusion. Microarray expression profiling was done using Agilent zebrafish miRNA microarrays. Microarray results revealed changes in miRNA expression at both time points. Thirteen miRNAs were differentially expressed at 48hpf and 22 miRNAs were altered at 96hpf. Among them, six miRNAs (miR-16a, 18c, 122, 132, 457b, and 724) were common to both time points. Bioinformatic target prediction and examination of published literature revealed that these miRNAs target several genes involved in the normal functioning of the central nervous system. These results suggest that the teratogenic effects of valproic acid could involve altered miRNA expression.
Collapse
|
22
|
MicroRNA-326 functions as a tumor suppressor in glioma by targeting the Nin one binding protein (NOB1). PLoS One 2013; 8:e68469. [PMID: 23869222 PMCID: PMC3711818 DOI: 10.1371/journal.pone.0068469] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
Malignant glioma is the most common type of primary brain tumor in adults, characterized by rapid tumor growth and infiltration of tumor cells throughout the brain. Alterations in the activity of the 26S proteasome have been associated with malignant glioma cells, although the specific defects have not been identified. Recently, microRNA-326 (miR-326) was shown to play an important role in glioblastoma and breast cancer, but the underlying molecular mechanisms remain unclear. In the present study, the human Nin one binding protein (NOB1) was identified as a direct target of miR-326 and a potential oncogene in human glioma. Similar to NOB1 silencing by shRNA, overexpression of miR-326 in human glioma cell lines (A172 and U373) caused cell cycle arrest at the G1 phase, delayed cell proliferation and enhanced apoptosis. MiR-326 inhibited colony formation in soft agar and decreased growth of a xenograft tumor model, suggesting that miR-326 and NOB1 are required for tumorigenesis in vitro and in vivo. Furthermore, these processes were shown to involve the MAPK pathway. NOB1 overexpression in human glioma samples was detected by Affymetrix array analysis, and NOB1 mRNA and protein levels were shown to be increased in high-grade glioma compared to low-grade glioma and normal brain tissue. Furthermore, high levels of NOB1 were associated with unfavorable prognosis of glioma patients. Taken together, these results indicate that miR-326 and NOB1 may play an important role in the development of glioma.
Collapse
|
23
|
Gays D, Santoro MM. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 2013; 70:2489-503. [PMID: 23069988 PMCID: PMC11113687 DOI: 10.1007/s00018-012-1181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Massimo Mattia Santoro
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
24
|
Ketley A, Warren A, Holmes E, Gering M, Aboobaker AA, Brook JD. The miR-30 microRNA family targets smoothened to regulate hedgehog signalling in zebrafish early muscle development. PLoS One 2013; 8:e65170. [PMID: 23755189 PMCID: PMC3673911 DOI: 10.1371/journal.pone.0065170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.
Collapse
Affiliation(s)
- Ami Ketley
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Anne Warren
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Emily Holmes
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Martin Gering
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - J. David Brook
- Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Wei C, Thatcher EJ, Olena AF, Cha DJ, Perdigoto AL, Marshall AF, Carter BD, Broadie K, Patton JG. miR-153 regulates SNAP-25, synaptic transmission, and neuronal development. PLoS One 2013; 8:e57080. [PMID: 23451149 PMCID: PMC3581580 DOI: 10.1371/journal.pone.0057080] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/16/2013] [Indexed: 01/01/2023] Open
Abstract
SNAP-25 is a core component of the trimeric SNARE complex mediating vesicle exocytosis during membrane addition for neuronal growth, neuropeptide/growth factor secretion, and neurotransmitter release during synaptic transmission. Here, we report a novel microRNA mechanism of SNAP-25 regulation controlling motor neuron development, neurosecretion, synaptic activity, and movement in zebrafish. Loss of miR-153 causes overexpression of SNAP-25 and consequent hyperactive movement in early zebrafish embryos. Conversely, overexpression of miR-153 causes SNAP-25 down regulation resulting in near complete paralysis, mimicking the effects of treatment with Botulinum neurotoxin. miR-153-dependent changes in synaptic activity at the neuromuscular junction are consistent with the observed movement defects. Underlying the movement defects, perturbation of miR-153 function causes dramatic developmental changes in motor neuron patterning and branching. Together, our results indicate that precise control of SNAP-25 expression by miR-153 is critically important for proper neuronal patterning as well as neurotransmission.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Elizabeth J. Thatcher
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Abigail F. Olena
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Diana J. Cha
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Ana L. Perdigoto
- Department of Biochemistry, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Andrew F. Marshall
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Bruce D. Carter
- Department of Biochemistry, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University and Medical School, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chiavacci E, Dolfi L, Verduci L, Meghini F, Gestri G, Evangelista AMM, Wilson SW, Cremisi F, Pitto L. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PLoS One 2012; 7:e50536. [PMID: 23226307 PMCID: PMC3511548 DOI: 10.1371/journal.pone.0050536] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/26/2012] [Indexed: 11/18/2022] Open
Abstract
tbx5, a member of the T-box gene family, encodes one of the key transcription factors mediating vertebrate heart development. Tbx5 function in heart development appears to be exquisitely sensitive to gene dosage, since both haploinsufficiency and gene duplication generate the cardiac abnormalities associated with Holt−Oram syndrome (HOS), a highly penetrant autosomal dominant disease characterized by congenital heart defects of varying severity and upper limb malformation. It is suggested that tight integration of microRNAs and transcription factors into the cardiac genetic circuitry provides a rich and robust array of regulatory interactions to control cardiac gene expression. Based on these considerations, we performed an in silico screening to identify microRNAs embedded in genes highly sensitive to Tbx5 dosage. Among the identified microRNAs, we focused our attention on miR-218-1 that, together with its host gene, slit2, is involved in heart development. We found correlated expression of tbx5 and miR-218 during cardiomyocyte differentiation of mouse P19CL6 cells. In zebrafish embryos, we show that both Tbx5 and miR-218 dysregulation have a severe impact on heart development, affecting early heart morphogenesis. Interestingly, down-regulation of miR-218 is able to rescue the heart defects generated by tbx5 over-expression supporting the notion that miR-218 is a crucial mediator of Tbx5 in heart development and suggesting its possible involvement in the onset of heart malformations.
Collapse
Affiliation(s)
| | - Luca Dolfi
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | | | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Letizia Pitto
- Institute of Clinical Physiology, CNR, Pisa, Italy
- * E-mail:
| |
Collapse
|
27
|
Bioinformatic identification and validation of conservative microRNAs in Ictalurus punctatus. Mol Biol Rep 2012; 39:10395-405. [PMID: 23053943 DOI: 10.1007/s11033-012-1918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/07/2023]
Abstract
Catfish (Ictalurus spp.) is an important aquaculture species around the world, accounting for over 60 % of the domestic aquaculture output in the United States. However, little information is available about I. punctatus miRNAs which play an important role in the regulation of almost every biological process. In the present studies, we applied a bioinformatic strategy to identify 16 miRNAs which represent 12 miRNA families in I. punctatus by searching both expressed sequence tags and genome survey sequences databases. The A + U contents of the candidate pre-miRNA sequence range from 51 to 63 %, and the pre-miRNA sequences vary from 55 to 63 bp in length. To verify the predicted miRNAs, real-time PCR was used to profile the expression of 16 miRNAs with different tissues of I. punctatus. All the miRNA candidates were detectable in five tissues except for ipu-miR-9-3p. Based on sequence complementarity between miRNAs and their mRNA targets, potential targets for I. punctatus miRNAs were predicted. Due to the limited information for the I. punctatus transcripts, only one sequence targeted by ipu-miR-135 was identified to be an I. punctatus EB1 mRNA. Bioinformatic analyses indicated that the 3' untranslated region (3'-UTR) of EB1 mRNA contains an ipu-miR-135 target site, which are perfectly complementary to the seed region (positions 2-8) of the mature ipu-miR-135. I. punctatus miRNAs characterized in this study may provide useful information for the miRNAs research in I. punctatus and other aquaculture species.
Collapse
|
28
|
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos. Toxicol Appl Pharmacol 2012; 264:262-73. [PMID: 22921993 DOI: 10.1016/j.taap.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 12/26/2022]
Abstract
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ~22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5nM) for 1h at 30hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60hpf. TCDD caused strong induction of CYP1A at 36hpf (62-fold) and 60hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development.
Collapse
Affiliation(s)
- Matthew J Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
29
|
MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One 2012; 7:e38562. [PMID: 22701667 PMCID: PMC3372529 DOI: 10.1371/journal.pone.0038562] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/08/2012] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) function is required for normal animal development, in particular in differentiation pathways from stem cell and precursor populations. In neurogenesis, it is becoming increasingly appreciated that miRNAs act at many stages to ensure proper progression. In this study we examined the role of miR-34a in neural progenitor cells (NPC) derived from murine embryonic cortex. We found that over-expression of miR-34a in NPC significantly reduced the neuron yield upon in vitro induction of differentiation. MiR-34a has several predicted targets in the Notch pathway, which operates to balance progenitor self-renewal and differentiation during cortical neurogenesis. We tested several Notch pathway players for regulation by miR-34a in undifferentiated NPC, and found that mRNA and protein levels of Numbl, a negative regulator of Notch signaling, as well as two downstream pro-neural genes usually blocked by Notch signaling, NeuroD1 and Mash1, were diminished, while Notch1 and Cbf1 transcripts were enhanced by miR-34a over-expression. Using a luciferase reporter assay, we verified the Numbl 3′-UTR as a direct miR-34a target. Correspondingly, knock-down of endogenous miR-34a resulted in increased Numbl, NeuroD1 and Mash1, and reduced Notch1 transcript levels. Together these results implicate Numbl as a physiologically relevant target of miR-34a in NPC, allowing for enhanced Notch signaling and inhibition of neuronal differentiation. This work extends our understanding of miR-34a-mediated control of cell differentiation from cancer to mammalian nervous system development.
Collapse
|
30
|
Wei C, Salichos L, Wittgrove CM, Rokas A, Patton JG. Transcriptome-wide analysis of small RNA expression in early zebrafish development. RNA (NEW YORK, N.Y.) 2012; 18:915-29. [PMID: 22408181 PMCID: PMC3334700 DOI: 10.1261/rna.029090.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During early vertebrate development, a large number of noncoding RNAs are maternally inherited or expressed upon activation of zygotic transcription. The exact identity, expression levels, and function for most of these noncoding RNAs remain largely unknown. miRNAs (microRNAs) and piRNAs (piwi-interacting RNAs) are two classes of small noncoding RNAs that play important roles in gene regulation during early embryonic development. Here, we utilized next-generation sequencing technology to determine temporal expression patterns for both miRNAs and piRNAs during four distinct stages of early vertebrate development using zebrafish as a model system. For miRNAs, the expression patterns for 198 known miRNAs within 122 different miRNA families and eight novel miRNAs were determined. Significant sequence variation was observed at the 5' and 3'ends of miRNAs, with most extra nucleotides added at the 3' end in a nontemplate directed manner. For the miR-430 family, the addition of adenosine and uracil residues is developmentally regulated and may play a role in miRNA stability during the maternal zygotic transition. Similar modification at the 3' ends of a large number of miRNAs suggests widespread regulation of stability during early development. Beside miRNAs, we also identified a large and unexpectedly diverse set of piRNAs expressed during early development.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Carli M. Wittgrove
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
- Corresponding author.E-mail .
| |
Collapse
|
31
|
Sana J, Hajduch M, Michalek J, Vyzula R, Slaby O. MicroRNAs and glioblastoma: roles in core signalling pathways and potential clinical implications. J Cell Mol Med 2012; 15:1636-44. [PMID: 21435175 PMCID: PMC4373357 DOI: 10.1111/j.1582-4934.2011.01317.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression. Dysregulation of these molecules has been indicated in the development of many cancers. Altered expression levels of several miRNAs were identified also in glioblastoma. It was repeatedly found that miRNAs are involved in important signalling pathways, which play roles in crucial cellular processes, such as proliferation, apoptosis, cell cycle regulation, invasion, angiogenesis and stem cell behaviour. Therefore, miRNAs represent promising therapeutic targets in glioblastoma. In this review, we summarize the current knowledge about miRNAs significance in glioblastoma, with special focus on their involvement in core signalling pathways, their roles in drug resistance and potential clinical implications.
Collapse
Affiliation(s)
- Jiri Sana
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
32
|
Notch and the p53 clan of transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:223-40. [PMID: 22399351 DOI: 10.1007/978-1-4614-0899-4_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways-the inhibition by Notch of p53 and differentiation-are operative in somatic stem cells as well as in tumour cells.
Collapse
|
33
|
“Fishing” for endothelial microRNA functions and dysfunction. Vascul Pharmacol 2011; 55:60-8. [DOI: 10.1016/j.vph.2011.08.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022]
|
34
|
Wiszniak SE, Dredge BK, Jensen KB. HuB (elavl2) mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL. PLoS One 2011; 6:e20773. [PMID: 21695151 PMCID: PMC3113899 DOI: 10.1371/journal.pone.0020773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Abstract
The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3'UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3'UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3'UTR. Our study suggests that DAZL specifically binds the HuB 3'UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein.
Collapse
Affiliation(s)
- Sophie E. Wiszniak
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - B. Kate Dredge
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Kirk B. Jensen
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
35
|
Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J. The zebrafish transcriptome during early development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:30. [PMID: 21609443 PMCID: PMC3118190 DOI: 10.1186/1471-213x-11-30] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/24/2011] [Indexed: 01/11/2023]
Abstract
Background The transition from fertilized egg to embryo is accompanied by a multitude of changes in gene expression, and the transcriptional events that underlie these processes have not yet been fully characterized. In this study RNA-Seq is used to compare the transcription profiles of four early developmental stages in zebrafish (Danio rerio) on a global scale. Results An average of 79 M total reads were detected from the different stages. Out of the total number of reads 65% - 73% reads were successfully mapped and 36% - 44% out of those were uniquely mapped. The total number of detected unique gene transcripts was 11187, of which 10096 were present at 1-cell stage. The largest number of common transcripts was observed between 1-cell stage and 16-cell stage. An enrichment of gene transcripts with molecular functions of DNA binding, protein folding and processing as well as metal ion binding was observed with progression of development. The sequence data (accession number ERP000635) is available at the European Nucleotide Archive. Conclusion Clustering of expression profiles shows that a majority of the detected gene transcripts are present at steady levels, and thus a minority of the gene transcripts clusters as increasing or decreasing in expression over the four investigated developmental stages. The three earliest developmental stages were similar when comparing highly expressed genes, whereas the 50% epiboly stage differed from the other three stages in the identity of highly expressed genes, number of uniquely expressed genes and enrichment of GO molecular functions. Taken together, these observations indicate a major transition in gene regulation and transcriptional activity taking place between the 512-cell and 50% epiboly stages, in accordance with previous studies.
Collapse
Affiliation(s)
- Liselotte Vesterlund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A. Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 2011; 286:21500-10. [PMID: 21518768 DOI: 10.1074/jbc.m110.207951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
37
|
Perruisseau-Carrier C, Jurga M, Forraz N, McGuckin CP. miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol 2011; 43:215-27. [PMID: 21541853 DOI: 10.1007/s12035-011-8179-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/10/2011] [Indexed: 12/15/2022]
Abstract
Mimicking the natural brain environment during neurogenesis represents the main challenge for efficient in vitro neuronal differentiation of stem cells. The discovery of miRNAs opens new possibilities in terms of modulation of stem cells lineage commitment and differentiation. Many studies demonstrated that in vitro transient overexpression or inhibition of brain-specific miRNAs in stem cells significantly directed differentiation along neuronal cell lineages. Modulating miRNA expression offers new pathways for post-transcriptional gene regulation and stem cell commitment. Neurotrophins and neuropoietins signaling pathways are the main field of investigation for neuronal commitment, differentiation, and maturation. This review will highlight examples of crosstalk between stem-cell-specific and brain-specific signaling pathways and key miRNA candidates for neuronal commitment. Recent progress on understanding miRNAs genetic networks offers promising prospects for their increasing application in the development of new cellular therapies in humans.
Collapse
Affiliation(s)
- Claire Perruisseau-Carrier
- CTI-LYON, Cell Therapy Research Institute, Parc Technologique de Lyon Saint-Priest, Saint-Priest, Lyon, France
| | | | | | | |
Collapse
|
38
|
The Notch signaling pathway: molecular basis of cell context dependency. Eur J Cell Biol 2010; 90:572-81. [PMID: 21126799 DOI: 10.1016/j.ejcb.2010.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 11/21/2022] Open
Abstract
Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency. In this review, we summarize the influences of the cellular context that regulate Notch activity and propose a model how the interplay between the cell-intrinsically established chromatin state and the cell-extrinsic signals that modify chromatin may select for Notch target accessibility and activation in different cellular contexts.
Collapse
|
39
|
Comte A, Roux J, Robinson-Rechavi M. Molecular signaling in zebrafish development and the vertebrate phylotypic period. Evol Dev 2010; 12:144-56. [PMID: 20433455 PMCID: PMC2855863 DOI: 10.1111/j.1525-142x.2010.00400.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During development vertebrate embryos pass through a stage where their morphology is most conserved between species, the phylotypic period (approximately the pharyngula). To explain the resistance to evolutionary changes of this period, one hypothesis suggests that it is characterized by a high level of interactions. Based on this hypothesis, we examined protein–protein interactions, signal transduction cascades and miRNAs over the course of zebrafish development, and the conservation of expression of these genes in mouse development. We also investigated the characteristics of genes highly expressed before or during the presumed phylotypic period. We show that while there is a high diversity of interactions during the phylotypic period (protein–DNA, RNA–RNA, cell–cell, and between tissues), which is well conserved with mouse, there is no clear difference with later, more morphologically divergent, stages. We propose that the phylotypic period may rather be the expression at the morphological level of strong conservation of molecular processes earlier in development.
Collapse
Affiliation(s)
- Aurélie Comte
- Department of Ecology and Evolution, Biophore, Lausanne University, Lausanne, Switzerland
| | | | | |
Collapse
|
40
|
Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors. PLoS One 2010; 5:e11481. [PMID: 20628604 PMCID: PMC2900208 DOI: 10.1371/journal.pone.0011481] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/10/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. METHODOLOGY/PRINCIPAL FINDINGS To analyze how Notch signaling mediates its context dependent function(s), we utilized a Tamoxifen-inducible system to activate Notch1 in murine embryonic stem cells at different stages of mesodermal differentiation and performed global transcriptional analyses. We find that the majority of genes regulated by Notch1 are unique for the cell type and vary widely dependent on other signals. We further show that Notch1 signaling regulates expression of genes playing key roles in cell differentiation, cell cycle control and apoptosis in a context dependent manner. In addition to the known Notch1 targets of the Hes and Hey families of transcriptional repressors, Notch1 activates the expression of regulatory transcription factors such as Sox9, Pax6, Runx1, Myf5 and Id proteins that are critically involved in lineage decisions in the absence of protein synthesis. CONCLUSION/SIGNIFICANCE We suggest that Notch signaling determines lineage decisions and expansion of stem cells by directly activating both key lineage specific transcription factors and their repressors (Id and Hes/Hey proteins) and propose a model by which Notch signaling regulates cell fate commitment and self renewal in dependence of the intrinsic and extrinsic cellular context.
Collapse
|
41
|
Tang Y, Urs S, Boucher J, Bernaiche T, Venkatesh D, Spicer DB, Vary CPH, Liaw L. Notch and transforming growth factor-beta (TGFbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation. J Biol Chem 2010; 285:17556-63. [PMID: 20368328 PMCID: PMC2878520 DOI: 10.1074/jbc.m109.076414] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 03/05/2010] [Indexed: 12/29/2022] Open
Abstract
Notch and transforming growth factor-beta (TGFbeta) play pivotal roles during vascular development and the pathogenesis of vascular disease. The interaction of these two pathways is not fully understood. The present study utilized primary human smooth muscle cells (SMC) to examine molecular cross-talk between TGFbeta1 and Notch signaling on contractile gene expression. Activation of Notch signaling using Notch intracellular domain or Jagged1 ligand induced smooth muscle alpha-actin (SM actin), smooth muscle myosin heavy chain, and calponin1, and the expression of Notch downstream effectors hairy-related transcription factors. Similarly, TGFbeta1 treatment of human aortic smooth muscle cells induced SM actin, calponin1, and smooth muscle protein 22-alpha (SM22alpha) in a dose- and time-dependent manner. Hairy-related transcription factor proteins, which antagonize Notch activity, also suppressed the TGFbeta1-induced increase in SMC markers, suggesting a general mechanism of inhibition. We found that Notch and TGFbeta1 cooperatively activate SMC marker transcripts and protein through parallel signaling axes. Although the intracellular domain of Notch4 interacted with phosphoSmad2/3 in SMC, this interaction was not observed with Notch1 or Notch2. However, we found that CBF1 co-immunoprecipitated with phosphoSmad2/3, suggesting a mechanism to link canonical Notch signaling to phosphoSmad activity. Indeed, the combination of Notch activation and TGFbeta1 treatment led to synergistic activation of a TGFbeta-responsive promoter. This increase corresponded to increased levels of phosphoSmad2/3 interaction at Smad consensus binding sites within the SM actin, calponin1, and SM22alpha promoters. Thus, Notch and TGFbeta coordinately induce a molecular and functional contractile phenotype by co-regulation of Smad activity at SMC promoters.
Collapse
Affiliation(s)
- Yuefeng Tang
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Sumithra Urs
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Joshua Boucher
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Tyler Bernaiche
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Deepak Venkatesh
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas B. Spicer
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Calvin P. H. Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
42
|
Abstract
A number of lower vertebrates including urodele amphibians and teleost fish are remarkably adept at repairing and regenerating damaged tissues and organs. Freshwater planarians are even more amazing, capable of regenerating entire body plans from small amputated fragments. In contrast, mammalian regenerative capacity is quite limited but of intense interest, especially related to human health and disease. For those organisms capable of robust regeneration, a common theme is the use of stem cells to replace complex tissues. Key questions remain as to the origin of these cells, whether there are pools of such cells that migrate to injured regions or whether they are generated on site. Beyond their origin, how are the genetic pathways that enable differentiation into multiple cell types and tissues regulated? microRNAs (miRNAs) are small noncoding RNAs that have recently been shown to play important roles in controlling stem cell self-renewal, proliferation and differentiation. Some of these are thought to be required to maintain "stemness". Here, we summarize recent work on the role of miRNAs in stem cells and their roles during regeneration.
Collapse
|
43
|
Stegeman JJ, Goldstone JV, Hahn ME. Perspectives on zebrafish as a model in environmental toxicology. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)02910-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 2009; 29:15161-8. [PMID: 19955368 DOI: 10.1523/jneurosci.4966-09.2009] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Little is known of microRNA interactions with cellular pathways. Few reports have associated microRNAs with the Notch pathway, which plays key roles in nervous system development and in brain tumors. We previously implicated the Notch pathway in gliomas, the most common and aggressive brain tumors. While investigating Notch mediators, we noted microRNA-326 was upregulated following Notch-1 knockdown. This neuronally expressed microRNA was not only suppressed by Notch but also inhibited Notch proteins and activity, indicating a feedback loop. MicroRNA-326 was downregulated in gliomas via decreased expression of its host gene. Transfection of microRNA-326 into both established and stem cell-like glioma lines was cytotoxic, and rescue was obtained with Notch restoration. Furthermore, miR-326 transfection reduced glioma cell tumorigenicity in vivo. Additionally, we found microRNA-326 partially mediated the toxic effects of Notch knockdown. This work demonstrates a microRNA-326/Notch axis, shedding light on the biology of Notch and suggesting microRNA-326 delivery as a therapy.
Collapse
|
45
|
Abstract
Understanding the complexity of cancer depends on an elucidation of the underlying regulatory networks, at the cellular and intercellular levels and in their temporal dimension. This Opinion article focuses on the multilevel crosstalk between the Notch pathway and the p53 and p63 pathways. These two coordinated signalling modules are at the interface of external damaging signals and control of stem cell potential and differentiation. Positive or negative reciprocal regulation of the two pathways can vary with cell type and cancer stage. Therefore, selective or combined targeting of the two pathways could improve the efficacy and reduce the toxicity of cancer therapies.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges CH-1066, Switzerland.
| |
Collapse
|
46
|
Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 2009; 94:125-31. [PMID: 19406225 DOI: 10.1016/j.ygeno.2009.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/23/2009] [Accepted: 04/22/2009] [Indexed: 12/27/2022]
Abstract
The importance of microRNAs at the post-transcriptional regulation level has recently been recognized in both animals and plants. We used the simple but effective sequential method of first Blasting known animal miRNAs against the horse genome and then using the located candidates to search for novel miRNAs by RNA folding method in the vicinity (+ -500 bp) of the candidates. Here, a total of 407 novel horse miRNA genes including 354 mature miRNAs were identified, of these, 75 miRNAs were grouped into 32 families based on seed sequence identity. MiRNA genes tend to be present as clusters in some chromosomes, and 146 miRNA genes accounted for 36% of the total were observed as part of polycistronic transcripts. Detailed analysis of sequence characteristics in novel horse and all previous known animal miRNAs were carried out. Our study will provide a reference point for further study on miRNAs identification in animals and improve the understanding of genome in horse.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Soares AR, Pereira PM, Santos B, Egas C, Gomes AC, Arrais J, Oliveira JL, Moura GR, Santos MAS. Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics 2009; 10:195. [PMID: 19397817 PMCID: PMC2684549 DOI: 10.1186/1471-2164-10-195] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/27/2009] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a new class of small RNAs of approximately 22 nucleotides in length that control eukaryotic gene expression by fine tuning mRNA translation. They regulate a wide variety of biological processes, namely developmental timing, cell differentiation, cell proliferation, immune response and infection. For this reason, their identification is essential to understand eukaryotic biology. Their small size, low abundance and high instability complicated early identification, however cloning/Sanger sequencing and new generation genome sequencing approaches overcame most technical hurdles and are being used for rapid miRNA identification in many eukaryotes. Results We have applied 454 DNA pyrosequencing technology to miRNA discovery in zebrafish (Danio rerio). For this, a series of cDNA libraries were prepared from miRNAs isolated at different embryonic time points and from fully developed organs. Each cDNA library was tagged with specific sequences and was sequenced using the Roche FLX genome sequencer. This approach retrieved 90% of the 192 miRNAs previously identified by cloning/Sanger sequencing and bioinformatics. Twenty five novel miRNAs were predicted, 107 miRNA star sequences and also 41 candidate miRNA targets were identified. A miRNA expression profile built on the basis of pyrosequencing read numbers showed high expression of most miRNAs throughout zebrafish development and identified tissue specific miRNAs. Conclusion This study increases the number of zebrafish miRNAs from 192 to 217 and demonstrates that a single DNA mini-chip pyrosequencing run is effective in miRNA identification in zebrafish. This methodology also produced sufficient information to elucidate miRNA expression patterns during development and in differentiated organs. Moreover, some zebrafish miRNA star sequences were more abundant than their corresponding miRNAs, suggesting a functional role for the former in gene expression control in this vertebrate model organism.
Collapse
Affiliation(s)
- Ana R Soares
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Flynt AS, Thatcher EJ, Burkewitz K, Li N, Liu Y, Patton JG. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. ACTA ACUST UNITED AC 2009; 185:115-27. [PMID: 19332888 PMCID: PMC2700511 DOI: 10.1083/jcb.200807026] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are highly conserved small RNAs that act as translational regulators of gene expression, exerting their influence by selectively targeting mRNAs bearing complementary sequence elements. These RNAs function in diverse aspects of animal development and physiology. Because of an ability to act as rapid responders at the level of translation, miRNAs may also influence stress response. In this study, we show that the miR-8 family of miRNAs regulates osmoregulation in zebrafish embryos. Ionocytes, which are a specialized cell type scattered throughout the epidermis, are responsible for pH and ion homeostasis during early development before gill formation. The highly conserved miR-8 family is expressed in ionocytes and enables precise control of ion transport by modulating the expression of Nherf1, which is a regulator of apical trafficking of transmembrane ion transporters. Ultimately, disruption of miR-8 family member function leads to an inability to respond to osmotic stress and blocks the ability to properly traffic and/or cluster transmembrane glycoproteins at the apical surface of ionocytes.
Collapse
Affiliation(s)
- Alex S Flynt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
A number of genes have been implicated in regeneration, but the regulation of these genes, particularly pertaining to regeneration in higher vertebrates, remains an interesting and mostly open question. We have studied microRNA (miRNA) regulation of regeneration and found that an intact miRNA pathway is essential for caudal fin regeneration in zebrafish. We also showed that miR-203 directly targets the Wnt signaling transcription factor Lef1 during this process. Repression of Lef1 by miR-203 blocks regeneration, whereas loss of miR-203 results in excess Lef1 levels and fin overgrowth. Expression of Lef1 from mRNAs lacking 3' UTR recognition elements can rescue the effects of excess miR-203, demonstrating that these effects are due to specific regulation of lef1 by miR-203. Our data support a model in which regulation of Lef1 protein levels by miR-203 is a key limiting step during regeneration.
Collapse
|
50
|
Kuchenbauer F, Morin RD, Argiropoulos B, Petriv OI, Griffith M, Heuser M, Yung E, Piper J, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Hansen CL, Marra MA, Humphries RK. In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 2008; 18:1787-97. [PMID: 18849523 DOI: 10.1101/gr.077578.108] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) have been shown to play important roles in physiological as well as multiple malignant processes, including acute myeloid leukemia (AML). In an effort to gain further insight into the role of miRNAs in AML, we have applied the Illumina massively parallel sequencing platform to carry out an in-depth analysis of the miRNA transcriptome in a murine leukemia progression model. This model simulates the stepwise conversion of a myeloid progenitor cell by an engineered overexpression of the nucleoporin 98 (NUP98)-homeobox HOXD13 fusion gene (ND13), to aggressive AML inducing cells upon transduction with the oncogenic collaborator Meis1. From this data set, we identified 307 miRNA/miRNA species in the ND13 cells and 306 miRNA/miRNA species in ND13+Meis1 cells, corresponding to 223 and 219 miRNA genes. Sequence counts varied between two and 136,558, indicating a remarkable expression range between the detected miRNA species. The large number of miRNAs expressed and the nature of differential expression suggest that leukemic progression as modeled here is dictated by the repertoire of shared, but differentially expressed miRNAs. Our finding of extensive sequence variations (isomiRs) for almost all miRNA and miRNA species adds additional complexity to the miRNA transcriptome. A stringent target prediction analysis coupled with in vitro target validation revealed the potential for miRNA-mediated release of oncogenes that facilitates leukemic progression from the preleukemic to leukemia inducing state. Finally, 55 novel miRNAs species were identified in our data set, adding further complexity to the emerging world of small RNAs.
Collapse
Affiliation(s)
- Florian Kuchenbauer
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|