1
|
Zacharovová K, Berková Z, Girman P, Saudek F. Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons. Transpl Immunol 2024; 86:102106. [PMID: 39128811 DOI: 10.1016/j.trim.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.
Collapse
Affiliation(s)
- Klára Zacharovová
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - Zuzana Berková
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - Peter Girman
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic; Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - František Saudek
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic; Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| |
Collapse
|
2
|
Feng Y, Zhao X, Ruan Z, Li Z, Mo H, Lu F, Shi D. Zinc improves the developmental ability of bovine in vitro fertilization embryos through its antioxidative action. Theriogenology 2024; 221:47-58. [PMID: 38554613 DOI: 10.1016/j.theriogenology.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 μg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 μg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 μg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.
Collapse
Affiliation(s)
- Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Hongfang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
3
|
Zhao K, Wang L, Qiu D, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D, Qi Y, Zhao K, Gong F, Li Z, Ren R, Ma X, Zhang X, Yu F, Yin D. PSW1, an LRR receptor kinase, regulates pod size in peanut. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2113-2124. [PMID: 37431286 PMCID: PMC10502750 DOI: 10.1111/pbi.14117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pod size is a key agronomic trait that greatly determines peanut yield, the regulatory genes and molecular mechanisms that controlling peanut pod size are still unclear. Here, we used quantitative trait locus analysis to identify a peanut pod size regulator, POD SIZE/WEIGHT1 (PSW1), and characterized the associated gene and protein. PSW1 encoded leucine-rich repeat receptor-like kinase (LRR-RLK) and positively regulated pod stemness. Mechanistically, this allele harbouring a 12-bp insertion in the promoter and a point mutation in the coding region of PSW1 causing a serine-to-isoleucine (S618I) substitution substantially increased mRNA abundance and the binding affinity of PSW1 for BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). Notably, PSW1HapII (super-large pod allele of PSW1) expression led to up-regulation of a positive regulator of pod stemness PLETHORA 1 (PLT1), thereby resulting in larger pod size. Moreover, overexpression of PSW1HapII increased seed/fruit size in multiple plant species. Our work thus discovers a conserved function of PSW1 that controls pod size and provides a valuable genetic resource for breeding high-yield crops.
Collapse
Affiliation(s)
- Kunkun Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Ding Qiu
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zenghui Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Kuopeng Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zhan Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xiaoxuan Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Jinzhi Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Qian Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Yinyao Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Kai Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zhongfeng Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Rui Ren
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xingli Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xingguo Zhang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Dongmei Yin
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| |
Collapse
|
4
|
Pang C, Dong K, Guo Y, Ding G, Lu Y, Guo Z, Wu J, Huang J. Effects of Three Types of Pollen on the Growth and Development of Honey Bee Larvae (Hymenoptera, Apidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.870081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pollen serves as an essential protein source for honey bee larvae. The nutrients in pollen greatly influence larval growth and development. Here, the survival, prepupal weight, developmental stage, pollen digestibility and midgut cells in honey bee (Apis mellifera L.) larvae were evaluated by performing in vitro and 5-ethynyl-2′-deoxyuridine (EdU) assays on larvae reared on three single pollens (Brassica napus L., Armeniaca sibirica L., and Pyrus bretschneideri Rehd.) and a pollen mixture (mixture of the three pollens in equal proportions). The results showed that the survival rate of larvae fed 10 mg of rape pollen was lowest (P < 0.05), but there were no notable differences in the survival rate among the groups receiving the other types and doses of pollen (P > 0.05). The prepupal weight of larvae fed apricot pollen was significantly lower than those of the other groups (P < 0.05). The digestibility of rape pollen and the pollen mixture were dramatically higher than those of apricot and pear pollen (P < 0.05). Pear and mixed pollen exerted negative effects on the nuclear area of midgut cells in the early larval stage (P < 0.05). In conclusion, detection of larval midgut cells using the EdU assay might be an effective method to assess the pollen nutritive value in honey bees. Compared to apricot and pear pollen, rape pollen was more beneficial in larval honey bee growth and development.
Collapse
|
5
|
Yang Q, Li S, Zhou Z, Yang X, Liu Y, Hao K, Fu M. Trimetazidine mitigates high glucose-induced retinal endothelial dysfunction by inhibiting PI3K/Akt/mTOR pathway-mediated autophagy. Bioengineered 2022; 13:7515-7527. [PMID: 35259050 PMCID: PMC8974130 DOI: 10.1080/21655979.2022.2048993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trimetazidine (TMZ), as a metabolic regulator, has been widely testified to exhibit positive therapeutic effects on various disease models, but its role in diabetic retinopathy has not been reported. Therefore, this study was designed with the purpose of exploring the effects of TMZ on high-glucose (HG)-induced retinal endothelial dysfunction and its underlying mechanism. To establish DR model in vitro, 30 mM glucose was applied to induce human retinal endothelial cells (HRECs). Cell proliferation, invasion, and migration were examined by means of Cell Counting Kit-8, transwell, and wound healing assays, respectively. The tubule formation experiment was used to test the tubulogenesis ability and fluorescein isothiocyanate (FITC)-albumin was utilized to measure the permeability of monolayer HRECs. In addition, immunofluorescence and Western blot were employed to detect protein expression. Compared with the HG-induced group, TMZ concentration dependently inhibited the proliferation, migration, and angiogenesis of HG-induced HRECs, decreased the permeability of monolayer HRECs, and increased the protein expression levels of Claudin-5 and VE-cadherin. In addition, TMZ intervention increased the expression of p-PI3K, p-AKT, and p-mTOR but decreased the expression of LC3I, LC3II, and Beclin 1, which were then partially reversed by P13 K inhibitor (LY294002). Moreover, the autophagy agonist rapamycin (RAPA) was also testified to reverse the inhibitory effects of TMZ on the proliferation, migration, and angiogenesis of HG-induced HRECs. In summary, TMZ inhibited excessive autophagy by activating PI3K/Akt/mTOR pathway, thereby improving retinal endothelial dysfunction induced by HG.
Collapse
Affiliation(s)
- Qingsong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Sizhen Li
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Zixiu Zhou
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Xiaodong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Yating Liu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Kuanxiao Hao
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| | - Min Fu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine Southeast University, Nanjing, P.R. China
| |
Collapse
|
6
|
Hao X, Zhang F, Yang Y, Shang S. The Evaluation of Cellular Immunity to Avian Viral Diseases: Methods, Applications, and Challenges. Front Microbiol 2021; 12:794514. [PMID: 34950125 PMCID: PMC8689181 DOI: 10.3389/fmicb.2021.794514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Cellular immune responses play critical roles in the control of viral infection. However, the immune protection against avian viral diseases (AVDs), a major challenge to poultry industry, is yet mainly evaluated by measuring humoral immune response though antibody-independent immune protection was increasingly evident in the development of vaccines against some of these diseases. The evaluation of cellular immune response to avian viral infection has long been neglected due to limited reagents and methods. Recently, with the availability of more immunological reagents and validated approaches, the evaluation of cellular immunity has become feasible and necessary for AVD. Herein, we reviewed the methods used for evaluating T cell immunity in chickens following infection or vaccination, which are involved in the definition of different cellular subset, the analysis of T cell activation, proliferation and cytokine secretion, and in vitro culture of antigen-presenting cells (APC) and T cells. The pros and cons of each method were discussed, and potential future directions to enhance the studies of avian cellular immunity were suggested. The methodological improvement and standardization in analyzing cellular immune response in birds after viral infection or vaccination would facilitate the dissection of mechanism of immune protection and the development of novel vaccines and therapeutics against AVD.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Versaevel M, Alaimo L, Seveau V, Luciano M, Mohammed D, Bruyère C, Vercruysse E, Théodoly O, Gabriele S. Collective migration during a gap closure in a two-dimensional haptotactic model. Sci Rep 2021; 11:5811. [PMID: 33712641 PMCID: PMC7954790 DOI: 10.1038/s41598-021-84998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/19/2021] [Indexed: 01/11/2023] Open
Abstract
The ability of cells to respond to substrate-bound protein gradients is crucial for many physiological processes, such as immune response, neurogenesis and cancer cell migration. However, the difficulty to produce well-controlled protein gradients has long been a limitation to our understanding of collective cell migration in response to haptotaxis. Here we use a photopatterning technique to create circular, square and linear fibronectin (FN) gradients on two-dimensional (2D) culture substrates. We observed that epithelial cells spread preferentially on zones of higher FN density, creating rounded or elongated gaps within epithelial tissues over circular or linear FN gradients, respectively. Using time-lapse experiments, we demonstrated that the gap closure mechanism in a 2D haptotaxis model requires a significant increase of the leader cell area. In addition, we found that gap closures are slower on decreasing FN densities than on homogenous FN-coated substrate and that fresh closed gaps are characterized by a lower cell density. Interestingly, our results showed that cell proliferation increases in the closed gap region after maturation to restore the cell density, but that cell–cell adhesive junctions remain weaker in scarred epithelial zones. Taken together, our findings provide a better understanding of the wound healing process over protein gradients, which are reminiscent of haptotaxis.
Collapse
Affiliation(s)
- Marie Versaevel
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Laura Alaimo
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Valentine Seveau
- Adhesion and Inflammation Laboratory, INSERM U1067, UMR 7333, CNRS, 163 avenue de Luminy-Case 937, 13288, Marseille Cedex 09, France
| | - Marine Luciano
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Danahe Mohammed
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Céline Bruyère
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Eléonore Vercruysse
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Olivier Théodoly
- Adhesion and Inflammation Laboratory, INSERM U1067, UMR 7333, CNRS, 163 avenue de Luminy-Case 937, 13288, Marseille Cedex 09, France
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, University of Mons, 20 Place du Parc, 7000, Mons, Belgium.
| |
Collapse
|
8
|
Yang H, Wang X, Wang C, Yin F, Qu L, Shi C, Zhao J, Li S, Ji L, Peng W, Luo H, Cheng M, Kong L. Optimization of WZ4003 as NUAK inhibitors against human colorectal cancer. Eur J Med Chem 2020; 210:113080. [PMID: 33310286 DOI: 10.1016/j.ejmech.2020.113080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
NUAK, the member of AMPK (AMP-activated protein kinase) family of protein kinases, is phosphorylated and activated by the LKB1 (liver kinase B1) tumor suppressor protein kinase. Recent work has indicated that NUAK1 is a key component of the antioxidant stress response pathway, and the inhibition of NUAK1 will suppress the growth and survival of colorectal tumors. As a promising target for anticancer drugs, few inhibitors of NUAK were developed. With this goal in mind, based on NUAK inhibitor WZ4003, a series of derivatives has been synthesized and evaluated for anticancer activity. Compound 9q, a derivative of WZ4003 by removing a methoxy group, was found to be the most potential one with stronger inhibitory against NUAK1/2 enzyme activity, tumor cell proliferation and inducing apoptosis of tumor cells. By in vivo efficacy evaluations of colorectal SW480 xenografts, 9q suppresses tumor growth more effectively with an excellent safety profile in vivo and is therefore seen as a suitable candidate for further investigation.
Collapse
Affiliation(s)
- Huali Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Cunjian Shi
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinhua Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Maosheng Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
9
|
Niklasson CU, Fredlund E, Monni E, Lindvall JM, Kokaia Z, Hammarlund EU, Bronner ME, Mohlin S. Hypoxia inducible factor-2α importance for migration, proliferation, and self-renewal of trunk neural crest cells. Dev Dyn 2020; 250:191-236. [PMID: 32940375 PMCID: PMC7891386 DOI: 10.1002/dvdy.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background The neural crest is a transient embryonic stem cell population. Hypoxia inducible factor (HIF)‐2α is associated with neural crest stem cell appearance and aggressiveness in tumors. However, little is known about its role in normal neural crest development. Results Here, we show that HIF‐2α is expressed in trunk neural crest cells of human, murine, and avian embryos. Knockdown as well as overexpression of HIF‐2α in vivo causes developmental delays, induces proliferation, and self‐renewal capacity of neural crest cells while decreasing the proportion of neural crest cells that migrate ventrally to sympathoadrenal sites. Reflecting the in vivo phenotype, transcriptome changes after loss of HIF‐2α reveal enrichment of genes associated with cancer, invasion, epithelial‐to‐mesenchymal transition, and growth arrest. Conclusions Taken together, these results suggest that expression levels of HIF‐2α must be strictly controlled during normal trunk neural crest development and that dysregulated levels affects several important features connected to stemness, migration, and development.
Collapse
Affiliation(s)
- Camilla U Niklasson
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Elina Fredlund
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jessica M Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emma U Hammarlund
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Sofie Mohlin
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
10
|
Alvarez KLF, Poma-Acevedo A, Fernández-Sánchez M, Fernández-Díaz M. An EdU-based flow cytometry assay to evaluate chicken T lymphocyte proliferation. BMC Vet Res 2020; 16:230. [PMID: 32631319 PMCID: PMC7336446 DOI: 10.1186/s12917-020-02433-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Background In the poultry industry, quantitative analysis of chicken T cell proliferation is important in many biological applications such as drug screening, vaccine production, and cytotoxicity assessment. Several assays have been established to evaluate this immunological response in chicken cells. However, these assays have some disadvantages including use of radioactive labels ([3H]-Thymidine assay), necessity of DNA denaturation or digestion (BrdU incorporation assay), lack of sensitivity and underestimation of anti-proliferative effects (MTT assay), and modulation of activation molecules and cell viability reduction (CFSE assay). Overcoming these limitations, the EdU proliferation assay is sensitive and advantageous compared to [3H]-Thymidine radioactive labels in studies on cell proliferation in vitro and allows simultaneous identification of T cell populations. However, this assay has not been established using primary chicken cells to evaluate T cell proliferation by flow cytometry. Results Here, we established an assay to evaluate the proliferation of primary chicken splenocytes based on the incorporation of a thymidine analog (EdU) and a click reaction with a fluorescent azide, detected by a flow cytometer. We also established a protocol that combines EdU incorporation and immunostaining to detect CD4+ and CD8+ proliferating T cells. By inducing cell proliferation with increasing concentrations of a mitogen (Concanavalin A), we observed a linear increase in EdU positive cells, indicating that our protocol does not present any deficiency in the quantity and quality of reagents that were used to perform the click reaction. Conclusions In summary, we established a reliable protocol to evaluate the proliferation of CD4+ and CD8+ chicken T cells by flow cytometry. Moreover, as this is an in-house protocol, the cost per sample using this protocol is low, allowing its implementation in laboratories that process a large number of samples.
Collapse
Affiliation(s)
- Karla Lucía F Alvarez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru.
| | - Astrid Poma-Acevedo
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Sánchez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Díaz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur N°766 Km 198.5, Ica, Peru
| |
Collapse
|
11
|
Shunatova N, Borisenko I. Proliferating activity in a bryozoan lophophore. PeerJ 2020; 8:e9179. [PMID: 32523809 PMCID: PMC7263296 DOI: 10.7717/peerj.9179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/25/2023] Open
Abstract
Bryozoans are small benthic colonial animals; their colonies consist of zooids which are composed of a cystid and polypide. According to morphological and molecular data, three classes of bryozoans are recognized: Phylactolaemata, Gymnolaemata and Stenolaemata. Bryozoans are active suspension feeders and their feeding apparatus, the lophophore, is fringed with a single row of ciliated tentacles. In gymnolaemates, the lophophore is bell-shaped and its tentacles may be equal in length (equitentacled lophophores) or some tentacles may be longer than others (obliquely truncated lophophores). In encrusting colonies, polypides with obliquely truncated lophophores usually border specific sites of excurrent water outlets (colony periphery and chimneys) where depleted water has to be removed. It is known that during colony astogeny, colony-wide water currents rearrange: new chimneys are formed and/or location of the chimneys within a given colony changes with time. Such rearrangement requires remodeling of the lophophore shape and lengthening of some tentacles in polypides surrounding water outlets. However, proliferating activity has not been described for bryozoans. Here, we compared the distribution of S-phase and mitotic cells in young and adult polypides in three species of Gymnolaemata. We tested the hypothesis that tentacle growth/elongation is intercalary and cell proliferation takes place somewhere at the lophophore base because such pattern does not interfere with the feeding process. We also present a detailed description of ultrastructure of two parts of the lophophore base: the oral region and ciliated pits, and uncover the possible function of the latter. The presence of stem cells within the ciliated pits and the oral region of polypides provide evidence that both sites participate in tentacle elongation. This confirms the suggested hypothesis about intercalary tentacle growth which provides a potential to alter a lophophore shape in adult polypides according to rearrangement of colony wide water currents during colony astogeny. For the first time deuterosome-like structures were revealed during kinetosome biogenesis in the prospective multiciliated epithelial cells in invertebrates. Tentacle regeneration experiments in Electra pilosa demonstrated that among all epidermal cell types, only non-ciliated cells at the abfrontal tentacle surface are responsible for wound healing. Ciliated cells on the frontal and lateral tentacle surfaces are specialized and unable to proliferate, not even under wound healing. Tentacle regeneration in E. pilosa is very slow and similar to the morphallaxis type. We suggest that damaged tentacles recover their length by a mechanism similar to normal growth, powered by proliferation of cells both within ciliated pits and the oral region.
Collapse
Affiliation(s)
- Natalia Shunatova
- Department of Invertebrate Zoology, Biological Faculty, St. Petersburg State University, St. Petersburg, Russia
| | - Ilya Borisenko
- Department of Embryology, Biological Faculty, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
12
|
Ghinia Tegla MG, Buenaventura DF, Kim DY, Thakurdin C, Gonzalez KC, Emerson MM. OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification. eLife 2020; 9:e54279. [PMID: 32347797 PMCID: PMC7237216 DOI: 10.7554/elife.54279] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
During vertebrate retinal development, subsets of progenitor cells generate progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor cells. This confirmed that OTX2 is required for the generation of photoreceptors, but also for repression of specific retinal fates and alternative gene regulatory networks. These include specific subtypes of retinal ganglion and horizontal cells, suggesting that in this context, OTX2 functions to repress sister cell fate choices.
Collapse
Affiliation(s)
| | - Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
- PhD Program in Biology, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
| | - Diana Y Kim
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Cassandra Thakurdin
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Kevin C Gonzalez
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
- PhD Program in Biology, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
- PhD Program in Biochemistry, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
| |
Collapse
|
13
|
Garcia KE, Stewart WG, Espinosa MG, Gleghorn JP, Taber LA. Molecular and mechanical signals determine morphogenesis of the cerebral hemispheres in the chicken embryo. Development 2019; 146:146/20/dev174318. [PMID: 31604710 DOI: 10.1242/dev.174318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - M Gabriela Espinosa
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
14
|
Zhang H, Zhao Y, Wang M, Song W, Sun P, Jin X. A promising therapeutic option for diabetic bladder dysfunction: Adipose tissue-derived stem cells pretreated by defocused low-energy shock wave. J Tissue Eng Regen Med 2019; 13:986-996. [PMID: 30811857 DOI: 10.1002/term.2844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
Adipose tissue-derived stem cells (ADSCs) have shown effectiveness in treating diabetic bladder dysfunction (DBD). In the present study, ADSCs pretreated by defocused low-energy shock wave (DLSW) were first used to achieve better therapeutic effect. ADSCs were treated by DLSW prior to each passage. Secretions of vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were tested. Proliferation ability was examined by staining 5-ethynyl-2-deoxyuridine (EdU) and assessing expressions of proliferating cell nuclear antigen (PCNA) and Ki67. DBD rat model was created and subgrouped via therapeutic options of phosphate-buffered saline, ADSCs, pretreated ADSCs, and ADSCs lysate. Afterward, voiding functions were evaluated, and tissues were examined by histology. Neonatal rats received intraperitoneal injection of EdU. All rats were subgrouped and treated as narrated above. Bladder tissues were stained with EdU, Stro-1, and CD34. Results showed that shocked ADSCs were activated by secreting more VEGF and NGF, by higher EdU-retaining cells ratios, and by higher expressions of PCNA and Ki67 compared with unshocked ADSCs. Shocked ADSCs had the most effective efficacy in treating DBD by secreting the most VEGF and NGF to accelerate regenerations of revascularization and innervation. Migrations of EdU+ Stro-1+ CD34- endogenous stem cells to bladders were enhanced by injecting ADSCs. In conclusion, ADSCs pretreated by DLSW had potent therapeutic effect in treating DBD by secreting VEGF and NGF. Recruitment of endogenous stem cells was considered as an important mechanism in this regenerative process.
Collapse
Affiliation(s)
- Haiyang Zhang
- School of Basic Medical Sciences, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Yong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wei Song
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Peng Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
15
|
Abstract
The chicken embryo is a versatile and effective model for studying the effects of teratogenic compounds during early development. Easy access to the embryo allows for exposure and analysis of toxicant effects during embryogenesis. This chapter will provide detailed protocols for embryonic collection and toxicant exposure techniques, including EC culture and Cornish Pasty methods, LysoTracker staining, glutathione redox potential analysis, and 2',7'-dichlorodihydrofluorescein diacetate.
Collapse
|
16
|
Lin Y, Sui LC, Wu RH, Ma RJ, Fu HY, Xu JJ, Qiu XH, Chen L. Nrf2 inhibition affects cell cycle progression during early mouse embryo development. J Reprod Dev 2017; 64:49-55. [PMID: 29249781 PMCID: PMC5830358 DOI: 10.1262/jrd.2017-042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Brusatol, a quassinoid isolated from the fruit of Bruceajavanica, has recently been shown to inhibit nuclear factor erythroid 2-related factor 2 (Nrf2) via Keap1-dependent ubiquitination and
proteasomal degradation or protein synthesis. Nrf2 is a transcription factor that regulates the cellular defense response. Most studies have focused on the effects of Nrf2 in tumor development. Here, the critical roles
of Nrf2 in mouse early embryonic development were investigated. We found that brusatol treatment at the zygotic stage prevented the early embryo development. Most embryos stayed at the two-cell stage after 5 days of
culture (P < 0.05). This effect was associated with the cell cycle arrest, as the mRNA level of CDK1 and cyclin B decreased at the two-cell stage after brusatol treatment. The embryo
development potency was partially rescued by the injection of Nrf2 CRISPR activation plasmid. Thus, brusatol inhibited early embryo development by affecting Nrf2-related cell cycle transition from G2 to M
phase that is dependent on cyclin B-CDK1 complex.
Collapse
Affiliation(s)
- Ying Lin
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China.,School of Life Sciences, Nanjing Normal University, Jiangsu, People's Republic of China
| | - Liu-Cai Sui
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Rong-Hua Wu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Ru-Jun Ma
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Hai-Yan Fu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Juan-Juan Xu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Xu-Hua Qiu
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| | - Li Chen
- Reproductive Medical Center, Jinling Hospital, Clinical School of Medical College, Nanjing University, Jiangsu 210002, People's Republic of China
| |
Collapse
|
17
|
Andrews MG, Del Castillo LM, Ochoa-Bolton E, Yamauchi K, Smogorzewski J, Butler SJ. BMPs direct sensory interneuron identity in the developing spinal cord using signal-specific not morphogenic activities. eLife 2017; 6. [PMID: 28925352 PMCID: PMC5605194 DOI: 10.7554/elife.30647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
The Bone Morphogenetic Protein (BMP) family reiteratively signals to direct disparate cellular fates throughout embryogenesis. In the developing dorsal spinal cord, multiple BMPs are required to specify sensory interneurons (INs). Previous studies suggested that the BMPs act as concentration-dependent morphogens to direct IN identity, analogous to the manner in which sonic hedgehog patterns the ventral spinal cord. However, it remains unresolved how multiple BMPs would cooperate to establish a unified morphogen gradient. Our studies support an alternative model: BMPs have signal-specific activities directing particular IN fates. Using chicken and mouse models, we show that the identity, not concentration, of the BMP ligand directs distinct dorsal identities. Individual BMPs promote progenitor patterning or neuronal differentiation by their activation of different type I BMP receptors and distinct modulations of the cell cycle. Together, this study shows that a 'mix and match' code of BMP signaling results in distinct classes of sensory INs.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, United States.,Neuroscience Graduate Program, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| | - Lorenzo M Del Castillo
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States.,CIRM Bridges to Research Program, California State University, Northridge, United States
| | - Eliana Ochoa-Bolton
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States.,CIRM Bridges to Research Program, California State University, Northridge, United States
| | - Ken Yamauchi
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| | - Jan Smogorzewski
- Department of Dermatology, University of Southern California, California, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, United States.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, United States
| |
Collapse
|
18
|
Co-option of the cardiac transcription factor Nkx2.5 during development of the emu wing. Nat Commun 2017; 8:132. [PMID: 28743862 PMCID: PMC5526984 DOI: 10.1038/s41467-017-00112-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
The ratites are a distinctive clade of flightless birds, typified by the emu and ostrich that have acquired a range of unique anatomical characteristics since diverging from basal Aves at least 100 million years ago. The emu possesses a vestigial wing with a single digit and greatly reduced forelimb musculature. However, the embryological basis of wing reduction and other anatomical changes associated with loss of flight are unclear. Here we report a previously unknown co-option of the cardiac transcription factor Nkx2.5 to the forelimb in the emu embryo, but not in ostrich, or chicken and zebra finch, which have fully developed wings. Nkx2.5 is expressed in emu limb bud mesenchyme and maturing wing muscle, and mis-expression of Nkx2.5 throughout the limb bud in chick results in wing reductions. We propose that Nkx2.5 functions to inhibit early limb bud expansion and later muscle growth during development of the vestigial emu wing. The transcription factor Nkx2.5 is essential for heart development. Here, the authors identify a previously unknown expression domain for Nkx2.5 in the emu wing and explore its role in diminished wing bud development in the flightless emu, compared with three other birds that have functional wings.
Collapse
|
19
|
Ma AY, Xie SW, Zhou JY, Zhu Y. Nomegestrol Acetate Suppresses Human Endometrial Cancer RL95-2 Cells Proliferation In Vitro and In Vivo Possibly Related to Upregulating Expression of SUFU and Wnt7a. Int J Mol Sci 2017. [PMID: 28640224 PMCID: PMC5535830 DOI: 10.3390/ijms18071337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nomegestrol acetate (NOMAC) has been successfully used for the treatment of some gynecological disorders, and as a combined oral contraceptive with approval in many countries. In this study, we investigated the effects of NOMAC on human endometrial cancer cells in vitro and in vivo. The proliferation of human endometrial cancer cells (RL95-2 and KLE) were assessed using CCK-8 and EdU incorporation assays. Whole-genome cDNA microarray analysis was used to identify the effects of NOMAC on gene expression profiles in RL95-2 cells. RL95-2 xenograft nude mice were treated with NOMAC (50, 100, and 200 mg/kg) or medroxyprogesterone acetate (MPA; 100 and 200 mg/kg) for 28 consecutive days. The results showed that NOMAC significantly inhibited the growth of RL95-2 cells in a concentration-dependent manner, but not in KLE cells. Further investigation demonstrated that NOMAC produced a stronger inhibition of tumor growth (inhibition rates for 50, 100, and 200 mg/kg NOMAC were 24.74%, 47.04%, and 58.06%, respectively) than did MPA (inhibition rates for 100 and 200 mg/kg MPA were 41.06% and 27.01%, respectively) in the nude mice bearing the cell line of RL95-2. NOMAC altered the expression of several genes related to cancer cell proliferation, including SUFU and Wnt7a. The upregulation of SUFU and Wnt7a was confirmed using real-time quantitative polymerase chain reaction and Western blotting in RL95-2 cells and RL95-2 xenograft tumor tissues, but not in KLE cells. These data indicate that NOMAC can inhibit the proliferation of RL95-2 cell in vitro and suppress the growth of xenografts in the nude mice bearing the cell line of RL95-2 in vivo. This effect could be related to the upregulating expression of SUFU and Wnt7a.
Collapse
Affiliation(s)
- A-Ying Ma
- Lab of Reproductive Pharmacology, Key Lab of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China.
| | - Shu-Wu Xie
- Lab of Reproductive Pharmacology, Key Lab of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China.
| | - Jie-Yun Zhou
- Lab of Reproductive Pharmacology, Key Lab of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China.
| | - Yan Zhu
- Lab of Reproductive Pharmacology, Key Lab of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Hosseini HS, Garcia KE, Taber LA. A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction. Development 2017; 144:2381-2391. [PMID: 28526751 DOI: 10.1242/dev.145193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/14/2023]
Abstract
For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.
Collapse
Affiliation(s)
- Hadi S Hosseini
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.,Department of Physics, Washington University, St Louis, MO 63130, USA
| | - Kara E Garcia
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
21
|
Studies of HVC Plasticity in Adult Canaries Reveal Social Effects and Sex Differences as Well as Limitations of Multiple Markers Available to Assess Adult Neurogenesis. PLoS One 2017; 12:e0170938. [PMID: 28141859 PMCID: PMC5283688 DOI: 10.1371/journal.pone.0170938] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
In songbirds, neurogenesis in the song control nucleus HVC is sensitive to the hormonal and social environment but the dynamics of this process is difficult to assess with a single exogenous marker of new neurons. We simultaneously used three independent markers to investigate HVC neurogenesis in male and female canaries. Males were castrated, implanted with testosterone and housed either alone (M), with a female (M-F) or with another male (M-M) while females were implanted with 17β-estradiol and housed with a male (F-M). All subjects received injections of the two thymidine analogues, BrdU and of EdU, respectively 21 and 10 days before brain collection. Cells containing BrdU or EdU or expressing doublecortin (DCX), which labels newborn neurons, were quantified. Social context and sex differentially affected total BrdU+, EdU+, BrdU+EdU- and DCX+ populations. M-M males had a higher density of BrdU+ cells in the ventricular zone adjacent to HVC and of EdU+ in HVC than M-F males. M birds had a higher ratio of BrdU+EdU- to EdU+ cells than M-F subjects suggesting higher survival of newer neurons in the former group. Total number of HVC DCX+ cells was lower in M-F than in M-M males. Sex differences were also dependent of the type of marker used. Several technical limitations associated with the use of these multiple markers were also identified. These results indicate that proliferation, recruitment and survival of new neurons can be independently affected by environmental conditions and effects can only be fully discerned through the use of multiple neurogenesis markers.
Collapse
|
22
|
Bénazéraf B, Beaupeux M, Tchernookov M, Wallingford A, Salisbury T, Shirtz A, Shirtz A, Huss D, Pourquié O, François P, Lansford R. Multiscale quantification of tissue behavior during amniote embryo axis elongation. Development 2017; 144:4462-4472. [DOI: 10.1242/dev.150557] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
Embryonic axis elongation is a complex multi-tissue morphogenetic process responsible for the formation of the posterior part of the amniote body. How movements and growth are coordinated between the different posterior tissues (e.g. neural tube, axial and paraxial mesoderm, lateral plate, ectoderm, endoderm) to drive axis morphogenesis remain largely unknown. Here, we use quail embryos to quantify cell behavior and tissue movements during elongation. We quantify the tissue-specific contribution to axis elongation by using 3D volumetric techniques, then quantify tissue-specific parameters such as cell density and proliferation. To study cell behavior at a multi-tissue scale, we used high-resolution 4D imaging of transgenic quail embryos expressing fluorescent proteins. We developed specific tracking and image analysis techniques to analyze cell motion and compute tissue deformations in 4D. This analysis reveals extensive sliding between tissues during axis extension. Further quantification of tissue tectonics showed patterns of rotations, contractions and expansions, which are coherent with the multi-tissue behavior observed previously. Our approach defines a quantitative and multiscale method to analyze the coordination between tissue behaviors during early vertebrate embryo morphogenetic events.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch Graffenstaden, France
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Mathias Beaupeux
- Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montréal, QC, Canada
| | - Martin Tchernookov
- Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montréal, QC, Canada
| | - Allison Wallingford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tasha Salisbury
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Amelia Shirtz
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Andrew Shirtz
- Northern Michigan University Computer Science and Mathematics Department, Marquette, MI, 49855, USA
| | - David Huss
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch Graffenstaden, France
- Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Woman's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Paul François
- Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montréal, QC, Canada
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Liu L, Wang D, Li L, Ding X, Ma H. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells. Mol Med Rep 2016; 14:705-14. [PMID: 27220727 PMCID: PMC4918596 DOI: 10.3892/mmr.2016.5343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/09/2016] [Indexed: 12/03/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti-aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose-dependent manner, whereas it improved cell viability in a time-dependent and dose-dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Dian Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiao Ding
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
24
|
Figueroa F, Singer SS, LeClair EE. Making maxillary barbels with a proximal-distal gradient of Wnt signals in matrix-bound mesenchymal cells. Evol Dev 2015; 17:367-79. [PMID: 26492827 PMCID: PMC4620582 DOI: 10.1111/ede.12167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolution of specific appendages is made possible by the ontogenetic deployment of general cell signaling pathways. Many fishes, amphibians and reptiles have unique skin appendages known as barbels, which are poorly understood at the cellular and molecular level. In this study, we examine the cell arrangements, cell division patterns, and gene expression profiles associated with the zebrafish maxillary barbel, or ZMB. The earliest cellular organization of the ZMB is an internal whorl of mesenchymal cells in the dermis of the maxilla; there is no epithelial placode, nor any axially-elongated epithelial cells as expected of an apical ectodermal ridge (AER). As the ZMB develops, cells in S-phase are at first distributed randomly throughout the appendage, gradually transitioning to a proliferative population concentrated at the distal end. By observing ZMB ontogenetic stages in a Wnt-responsive transgenic reporter line, TCFsiam, we identified a strongly fluorescent mesenchymal cell layer within these developing appendages. Using an in vitro explant culture technique on developing barbel tissues, we co-localized the fluorescent label in these cells with the mitotic marker EdU. Surprisingly, the labeled cells showed little proliferation, indicating a slow-cycling subpopulation. Transmission electron microscopy of the ZMB located these cells in a single, circumferential layer within the barbel's matrix core. Morphologically, these cells resemble fibroblasts or osteoblasts; in addition to their matrix-bound location, they are identified by their pancake-shaped nuclei, abundant rough endoplasmic reticulum, and cytoplasmic extensions into the surrounding extracellular matrix. Taken together, these features define a novel mesenchymal cell population in zebrafish, the "TCF(+) core cells." A working model of barbel development is proposed, in which these minimally mitotic mesodermal cells produce collagenous matrix in response to ectodermally-derived Wnt signals deployed in a proximal-distal gradient along the appendage. This documents a novel mechanism of vertebrate appendage outgrowth. Similar genetic signals and cell behaviors may be responsible for the independent and repeated evolution of barbel structures in other fish species.
Collapse
Affiliation(s)
- Francisco Figueroa
- DePaul University Department of Biological Sciences, Chicago, Il 60614 USA
| | - Susan S. Singer
- DePaul University Department of Biological Sciences, Chicago, Il 60614 USA
| | | |
Collapse
|
25
|
Ray P, Chapman SC. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling. PLoS One 2015; 10:e0134702. [PMID: 26237312 PMCID: PMC4523177 DOI: 10.1371/journal.pone.0134702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
Collapse
Affiliation(s)
- Poulomi Ray
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
26
|
Denans N, Iimura T, Pourquié O. Hox genes control vertebrate body elongation by collinear Wnt repression. eLife 2015; 4. [PMID: 25719209 PMCID: PMC4384752 DOI: 10.7554/elife.04379] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/20/2015] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, the total number of vertebrae is precisely defined. Vertebrae derive
from embryonic somites that are continuously produced posteriorly from the presomitic
mesoderm (PSM) during body formation. We show that in the chicken embryo, activation
of posterior Hox genes (paralogs 9–13) in the tail-bud
correlates with the slowing down of axis elongation. Our data indicate that a subset
of progressively more posterior Hox genes, which are collinearly
activated in vertebral precursors, repress Wnt activity with increasing strength.
This leads to a graded repression of the Brachyury/T transcription
factor, reducing mesoderm ingression and slowing down the elongation process. Due to
the continuation of somite formation, this mechanism leads to the progressive
reduction of PSM size. This ultimately brings the retinoic acid (RA)-producing
segmented region in close vicinity to the tail bud, potentially accounting for the
termination of segmentation and axis elongation. DOI:http://dx.doi.org/10.7554/eLife.04379.001 In humans and other vertebrates, the number of bones (vertebrae) in the spine is
determined early in development. The vertebrae form from blocks of tissue called
somites that make segments along the body axis—a virtual line running from the
head to the tail-end—of the embryo. The somites form as the embryo increases
in length, with new somites forming periodically at the back near the embryo's
tail-end. A family of genes called the Hox genes are involved in controlling
the formation of the somites. However, it is not known whether they directly control
the number of somites that form, or whether they control the length of the body of
the embryo. Denans et al. studied the Hox genes in chicken embryos. The
experiments suggest that the activation of some of the Hox genes in
a structure called the tail-bud, which is found at the tail-end of the embryo, slow
down the elongation of the body. The Hox genes achieve this by
repressing the activity of a signaling pathway called Wnt so that Wnt activity in the
tail-bud progressively decreases as the embryo develops. The elongation of the body stops when the levels of a molecule called retinoic acid
increase in the tail-bud, which causes the loss of the stem cells that are needed to
make the somites. Denans et al.'s findings suggest that Hox
genes influence the timing of the halt in elongation, which in turn is important for
determining the total number of somites that form. Understanding how
Hox genes control the formation of the cells that will make up
the somites and influence Wnt signaling is a major challenge for the future. DOI:http://dx.doi.org/10.7554/eLife.04379.002
Collapse
Affiliation(s)
- Nicolas Denans
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, University of Strasbourg, Illkirch, France
| | - Tadahiro Iimura
- Stowers Institute for Medical Research, Kansas City, United States
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, University of Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Freese NH, Lam BA, Staton M, Scott A, Chapman SC. A novel gain-of-function mutation of the proneural IRX1 and IRX2 genes disrupts axis elongation in the Araucana rumpless chicken. PLoS One 2014; 9:e112364. [PMID: 25372603 PMCID: PMC4221472 DOI: 10.1371/journal.pone.0112364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/14/2014] [Indexed: 12/02/2022] Open
Abstract
Axis elongation of the vertebrate embryo involves the generation of cell lineages from posterior progenitor populations. We investigated the molecular mechanism governing axis elongation in vertebrates using the Araucana rumpless chicken. Araucana embryos exhibit a defect in axis elongation, failing to form the terminal somites and concomitant free caudal vertebrae, pygostyle, and associated tissues of the tail. Through whole genome sequencing of six Araucana we have identified a critical 130 kb region, containing two candidate causative SNPs. Both SNPs are proximal to the IRX1 and IRX2 genes, which are required for neural specification. We show that IRX1 and IRX2 are both misexpressed within the bipotential chordoneural hinge progenitor population of Araucana embryos. Expression analysis of BRA and TBX6, required for specification of mesoderm, shows that both are downregulated, whereas SOX2, required for neural patterning, is expressed in ectopic epithelial tissue. Finally, we show downregulation of genes required for the protection and maintenance of the tailbud progenitor population from the effects of retinoic acid. Our results support a model where the disruption in balance of mesoderm and neural fate results in early depletion of the progenitor population as excess neural tissue forms at the expense of mesoderm, leading to too few mesoderm cells to form the terminal somites. Together this cascade of events leads to axis truncation.
Collapse
Affiliation(s)
- Nowlan H. Freese
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Brianna A. Lam
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Meg Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Allison Scott
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Balthazart J, Ball GF. Endogenous versus exogenous markers of adult neurogenesis in canaries and other birds: advantages and disadvantages. J Comp Neurol 2014; 522:4100-20. [PMID: 25131458 DOI: 10.1002/cne.23661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
Abstract
Although the existence of newborn neurons had originally been suggested, but not broadly accepted, based on studies in adult rodent brains, the presence of an active neurogenesis process in adult homoeothermic vertebrates was first firmly established in songbirds. Adult neurogenesis was initially studied with the tritiated thymidine technique, later replaced by the injection and detection of the marker of DNA replication 5-bromo-2'-deoxyuridine (BrdU). More recently, various endogenous markers were used to identify young neurons or cycling neuronal progenitors. We review here the respective advantages and pitfalls of these different approaches in birds, with specific reference to the microtubule-associated protein, doublecortin (DCX), that has been extensively used to identify young newly born neurons in adult brains. All these techniques of course have limitations. Exogenous markers label cells replicating their DNA only during a brief period and it is difficult to select injection doses that would exhaustively label all these cells without inducing DNA damage that will also result in some form of labeling during repair. On the other hand, specificity of endogenous markers is difficult to establish due to problems related to the specificity of antibodies (these problems can be, but are not always, addressed) and more importantly because it is difficult, if not impossible, to prove that a given marker exhaustively and specifically labels a given cell population. Despite these potential limitations, these endogenous markers and DCX staining in particular clearly represent a useful approach to the detailed study of neurogenesis especially when combined with other techniques such as BrdU.
Collapse
|
29
|
Murray JR, Stanciauskas ME, Aralere TS, Saha MS. Dissection and downstream analysis of zebra finch embryos at early stages of development. J Vis Exp 2014:e51596. [PMID: 24999108 PMCID: PMC4203306 DOI: 10.3791/51596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology, behavior, and memory and learning. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access.
Collapse
|
30
|
Activation of bone marrow-derived mesenchymal stromal cells-a new mechanism of defocused low-energy shock wave in regenerative medicine. Cytotherapy 2014; 15:1449-57. [PMID: 24199590 DOI: 10.1016/j.jcyt.2013.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/20/2013] [Accepted: 08/25/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND AIMS Defocused low-energy shock wave (DLSW) therapy has shown effectiveness in regenerative medicine. The mechanism of action was mainly focused on the pathophysiological improvement at the wound tissues. In this study, the activation of stem cells treated by DLSW was first examined as an important pathway during the healing process. METHODS Cultured rat bone marrow-derived mesenchymal stromal cells (BMSC) were treated by DLSW before each passage. The untreated BMSC served as a control. The secretions of vascular endothelial growth factor (VEGF) and CXC ligand 5 (CXCL5) were tested by means of enzyme-linked immunoassay. Flow cytometry was performed to analyze the BMSC (passage 4) surface antigen expressions (CD166, CD44 and CD34). The expressions of proliferating cell nuclear antigen and Ki67 were analyzed by means of Western blot. The healing abilities of conditioned media of shocked and unshocked BMSC were examined by Matrigel-based capillary-like tube formation assay and rat major pelvic ganglia culture test. RESULTS The shocked BMSC secreted more VEGF and CXCL5 than did those of unshocked BMSC. The expressions of CD166, CD44 and CD34 showed no significant differences (P > 0.05) between the shocked and unshocked BMSC. The shocked BMSC demonstrated higher expressions of proliferating cell nuclear antigen (P < 0.01) and Ki67 (P < 0.01) than did those of unshocked BMSC. The shocked BMSC conditioned medium showed higher ability to enhance the growth of major pelvic ganglia neurites (P < 0.05) and Matrigel-based endothelial tube-like formation (P < 0.05). CONCLUSIONS DLSW did not interfere with the expressions of cell surface markers. DLSW enhanced the secretion and proliferation of BMSC and promoted angiogenesis and nerve regeneration in vitro.
Collapse
|
31
|
Mamuya FA, Wang Y, Roop VH, Scheiblin DA, Zajac JC, Duncan MK. The roles of αV integrins in lens EMT and posterior capsular opacification. J Cell Mol Med 2014; 18:656-70. [PMID: 24495224 PMCID: PMC4000117 DOI: 10.1111/jcmm.12213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022] Open
Abstract
Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α-smooth muscle actin (α-SMA)-expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β-subunits β1, β5, β6, β8 are up-regulated concomitant with α-SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up-regulated the expression of α-SMA, β1-integrin, fibronectin, tenascin-C and transforming growth factor beta (TGF-β)-induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up-regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF-β activation as αV integrin null lenses do not exhibit detectable SMAD-3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF-β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.
Collapse
Affiliation(s)
- Fahmy A Mamuya
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | | | | | |
Collapse
|
32
|
Stronghill PE, Azimi W, Hasenkampf CA. A novel method to follow meiotic progression in Arabidopsis using confocal microscopy and 5-ethynyl-2'-deoxyuridine labeling. PLANT METHODS 2014; 10:33. [PMID: 25337148 PMCID: PMC4203904 DOI: 10.1186/1746-4811-10-33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/08/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Meiosis progression in the more recent past has been investigated using 5-bromo-2'-deoxyuridine (BrdU) uptake by S-phase meiocytes undergoing DNA replication. BrdU uptake is detected by reaction with BrdU antibody followed by epifluorescent microscopy examination of chromosome spreads and/or squashes. We here report using confocal microscopic examination of intact meiocytes in conjunction with the new thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). The simplicity of the EdU detection coupled with confocal examination of anthers provides a more exact temporal description of meiotic prophase I progression in Arabidopsis and opens up the possibility of examining the coordination of microsporocyte development with the other tissues of the anther. RESULTS Using our time course protocol, we have determined the duration of wild type Arabidopsis leptotene to be 5 h, zygotene -6 h, pachytene -10 h and a diplotene duration of approximately 1 h. We estimate G2 duration to be approximately 7 h based on the timing of the initial appearance of EdU signal in early leptotene meiocytes. In addition we have found that DNA replication in meiocytes is not done synchronously with the associated tapetal layer of cells. The EdU labeling suggests that S-phase replication of meiocyte DNA precedes the duplication of tapetal cell DNA. CONCLUSIONS The increased number of meiotic staging criteria that can be assessed in our confocal analysis, as compared to chromosome spreading or squashing, makes the identification of even the early and late portions of the prophase I substages attainable. This enhanced staging coupled with the ability to easily generate large data sets at hourly time points makes it possible to more exactly determine substage duration and to detect modest temporal abnormalities involving meiocyte entrance into and/or exit from leptotene, zygotene and pachytene. Confocal analysis also makes it possible to study the relationships between different cell types within the flower bud as meiosis proceeds.
Collapse
Affiliation(s)
- Patti E Stronghill
- />Department of Biology, University of Toronto, 1265 Military Trail, Scarborough, Canada
| | - Wajma Azimi
- />Kingston General Hospital, Kingston, Canada
| | - Clare A Hasenkampf
- />Department of Biology, University of Toronto, 1265 Military Trail, Scarborough, Canada
| |
Collapse
|
33
|
McGowan LD, Alaama RA, Striedter GF. FGF2 delays tectal neurogenesis, increases tectal cell numbers, and alters tectal lamination in embryonic chicks. PLoS One 2013; 8:e79949. [PMID: 24265789 PMCID: PMC3827156 DOI: 10.1371/journal.pone.0079949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/28/2013] [Indexed: 01/25/2023] Open
Abstract
Intraventricular injections of the fibroblast growth factor 2 (FGF2) are known to increase the size of the optic tectum in embryonic chicks. Here we show that this increase in tectum size is due to a delay in tectal neurogenesis, which by definition extends the proliferation of tectal progenitors. Specifically, we use cumulative labeling with the thymidine analog EdU to demonstrate that FGF2 treatment on embryonic day 4 (ED4) reduces the proportion and absolute number of unlabeled cells in the rostroventral tectum when EdU infusions are begun on ED5, as one would expect if FGF2 retards tectal neurogenesis. We also examined FGF2′s effect on neurogenesis in the caudodorsal tectum, which is born 2-3 days after the rostroventral tectum, by combining FGF2 treatment on ED4 with EDU infusions beginning on ED8. Again, FGF2 treatment reduced the proportion and number of EdU-negative (i.e., unlabeled) cells, consistent with a delay in neurogenesis. Collectively, these data indicate FGF2 in embryonic chicks delays neurogenesis throughout much of the tectum and continues to do so for several days after the FGF2 injection. One effect of this delay in neurogenesis is that tectal cell numbers more than double. In addition, tectal laminae that are born early in development become abnormally thin and cell-sparse after FGF2 treatment, whereas late-born layers remain unaffected. Combined with the results of prior work, these data indicate that FGF2 delays tectal neurogenesis and, thereby, triggers a cascade of changes in tectum size and morphology.
Collapse
Affiliation(s)
- Luke D. McGowan
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Roula A. Alaama
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
| | - Georg F. Striedter
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
34
|
Tu J, Yang F, Wan J, Liu Y, Zhang J, Wu B, Liu Y, Zeng S, Wang L. Light-controlled astrocytes promote human mesenchymal stem cells toward neuronal differentiation and improve the neurological deficit in stroke rats. Glia 2013; 62:106-21. [PMID: 24272706 DOI: 10.1002/glia.22590] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Astrocytes are key components of the central nervous system (CNS) and release factors to support neural stem cell proliferation, differentiation, and migration. Adenosine 5'-triphosphate (ATP) is one of the key factors released upon activation of astrocytes that regulates the neural stem cell's function. However, it is not clear whether ATP derived from the depolarized astrocytes plays a vital role in promoting the neuronal differentiation of mesenchymal stem cells (MSCs) in vitro and in vivo. Herein, for the first time, we co-cultured MSCs with light-stimulated-channelrhodopsin-2 (ChR2)-astrocytes, and observed that the neuronal differentiation of MSCs was enhanced by expressing more neuronal markers, Tuj1 and NeuN. The ChR2-astrocyte-conditioned medium also stimulated MSCs differentiating into neuronal lineage cells by expressing more Tuj1 and Pax6, which was blocked by the P2X receptor antagonist, TNP-ATP. Then we found that light-depolarization of astrocytes significantly increased ATP accumulation in their bathing medium without impairing the cell membrane. We further found that ATP up-regulated the Tuj1, Pax6, FZD8 and β-catenin mRNA levels of MSCs, which could be reversed by application of TNP-ATP. Together these in vitro data provided convergent evidence that ATP from light-depolarized-astrocytes activated the wnt/β-catenin signaling of MSCs through binding to the P2X receptors, and promoted the neuronal differentiation of MSCs. Finally but importantly, our study also demonstrated in stroke rats that light-controlled astrocytes stimulated endogenous ATP release into the ischemic area to influence the transplanted MSCs, resulting in promoting the MSCs towards neuronal differentiation and improvements of neurological deficit.
Collapse
Affiliation(s)
- Jie Tu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Key Laboratory for Health Informatics at Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo J, Li D, Bai S, Xu T, Zhou Z, Zhang Y. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2'-deoxyuridine. Cardiovasc Diabetol 2012; 11:150. [PMID: 23237526 PMCID: PMC3537571 DOI: 10.1186/1475-2840-11-150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/13/2012] [Indexed: 01/19/2023] Open
Abstract
Background Neointimal formation plays an important role in the pathogenesis of coronary restenosis after percutaneous coronary intervention (PCI), especially in patients with diabetes mellitus. Recently, some studies have shown that 5-ethynyl-2'-deoxyuridine (EdU) incorporation can serve as a novel alternative to the 5-bromo-2'-deoxyuridine (BrdU) antibody detection method for detection of DNA synthesis in regenerating avian cochlea, chick embryo and the adult nervous system. However, few studies have been performed to assess the suitability of EdU for detecting DNA synthesis in vascular neointima. Methods The carotid artery balloon injury model was established in Goto-Kakizaki (GK) and Wistar rats. A Cell-LightTM EdU Kit was used to detect EdU-labeled cell nuclei of common carotid arteries at day 7 after catheter balloon injury. Different methods of injecting EdU were tested. The protein levels of proliferating cell nuclear antigen (PCNA) and p-Akt (Ser473), as well as the mRNA levels of PCNA were evaluated by Western blotting and quantitative real-time PCR (qRT-PCR), respectively. Immunohistochemical staining was also employed to visualize PCNA-positive cells. Results At day 7 after catheter balloon injury, far more EdU-positive and PCNA-positive cells were observed in GK rats. When comparing groups that received different EdU doses, it was found that the percentage of EdU-positive cells at a dose of 100 mg/kg body weight was than at doses of 25 mg/kg and 50 mg/kg. The number of positive cells was significantly higher in the repeated injection group compared to the single injection group. Further, after balloon injury DNA synthesis in GK rats was more notable than in Wistar rats. Neointimal formation in GK rats was more obvious than in Wistar rats. The protein levels of PCNA and p-Akt (Ser473) and the mRNA levels of PCNA were increased in injured rats as compared to uninjured rats, and were significantly higher in GK rats than in Wistar rats. Conclusion By intraperitoneal injections of EdU at a dose of 100 mg/kg three times, EdU incorporation can detect carotid arterial DNA synthesis caused by neointimal formation in GK rats and Wistar rats at day 7 after balloon injury by the EdU click reaction quickly and effectively. Moreover, more obvious DNA synthesis in the vascular neointima could be observed in GK rats than in Wistar rats.
Collapse
Affiliation(s)
- Jingsheng Guo
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
37
|
Lafontant PJ, Burns AR, Grivas JA, Lesch MA, Lala TD, Reuter SP, Field LJ, Frounfelter TD. The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration. Anat Rec (Hoboken) 2011; 295:234-48. [PMID: 22095914 DOI: 10.1002/ar.21492] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/24/2011] [Indexed: 12/22/2022]
Abstract
The paucity of mammalian adult cardiac myocytes (CM) proliferation following myocardial infarction (MI) and the remodeling of the necrotic tissue that ensues, result in non-regenerative repair. In contrast, zebrafish (ZF) can regenerate after an apical resection or cryoinjury of the heart. There is considerable interest in models where regeneration proceeds in the presence of necrotic tissue. We have developed and characterized a cautery injury model in the giant danio (GD), a species closely related to ZF, where necrotic tissue remains part of the ventricle, yet regeneration occurs. By light and transmission electron microscopy (TEM), we have documented four temporally overlapping processes: (1) a robust inflammatory response analogous to that observed in MI, (2) concomitant proliferation of epicardial cells leading to wound closure, (3) resorption of necrotic tissue and its replacement by granulation tissue, and (4) regeneration of the myocardial tissue driven by 5-EDU and [(3) H]thymidine incorporating CMs. In conclusion, our data suggest that the GD possesses robust repair mechanisms in the ventricle and can serve as an important model of cardiac inflammation, remodeling and regeneration.
Collapse
|
38
|
5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: Detection of proliferating cells. Anal Biochem 2011; 417:112-21. [DOI: 10.1016/j.ab.2011.05.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 12/25/2022]
|
39
|
Coe genes are expressed in differentiating neurons in the central nervous system of protostomes. PLoS One 2011; 6:e21213. [PMID: 21695052 PMCID: PMC3117877 DOI: 10.1371/journal.pone.0021213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022] Open
Abstract
Genes of the coe (collier/olfactory/early B-cell factor) family encode Helix-Loop-Helix transcription factors that are widely conserved in metazoans and involved in many developmental processes, neurogenesis in particular. Whereas their functions during vertebrate neural tube formation have been well documented, very little is known about their expression and role during central nervous system (CNS) development in protostomes. Here we characterized the CNS expression of coe genes in the insect Drosophila melanogaster and the polychaete annelid Platynereis dumerilii, which belong to different subgroups of protostomes and show strikingly different modes of development. In the Drosophila ventral nerve cord, we found that the Collier-expressing cells form a subpopulation of interneurons with diverse molecular identities and neurotransmitter phenotypes. We also demonstrate that collier is required for the proper differentiation of some interneurons belonging to the Eve-Lateral cluster. In Platynereis dumerilii, we cloned a single coe gene, Pdu-coe, and found that it is exclusively expressed in post mitotic neural cells. Using an original technique of in silico 3D registration, we show that Pdu-coe is co-expressed with many different neuronal markers and therefore that, like in Drosophila, its expression defines a heterogeneous population of neurons with diverse molecular identities. Our detailed characterization and comparison of coe gene expression in the CNS of two distantly-related protostomes suggest conserved roles of coe genes in neuronal differentiation in this clade. As similar roles have also been observed in vertebrates, this function was probably already established in the last common ancestor of all bilaterians.
Collapse
|
40
|
DeltaA/DeltaD regulate multiple and temporally distinct phases of notch signaling during dopaminergic neurogenesis in zebrafish. J Neurosci 2011; 30:16621-35. [PMID: 21148001 DOI: 10.1523/jneurosci.4769-10.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopaminergic neurons develop at distinct anatomical sites to form some of the major neuromodulatory systems in the vertebrate brain. Despite their relevance in neurodegenerative diseases and the interests in reconstitutive therapies from stem cells, mechanisms of the neurogenic switch from precursor populations to dopaminergic neurons are not well understood. Here, we investigated neurogenesis of different dopaminergic and noradrenergic neuron populations in the zebrafish embryo. Birth-dating analysis by EdU (5-ethynyl-2'-deoxyuridine) incorporation revealed temporal dynamics of catecholaminergic neurogenesis. Analysis of Notch signaling mutants and stage-specific pharmacological inhibition of Notch processing revealed that dopaminergic neurons form by temporally distinct mechanisms: dopaminergic neurons of the posterior tuberculum derive directly from neural plate cells during primary neurogenesis, whereas other dopaminergic groups form in continuous or wavelike neurogenesis phases from proliferating precursor pools. Systematic analysis of Notch ligands revealed that the two zebrafish co-orthologs of mammalian Delta1, DeltaA and DeltaD, control the neurogenic switch of all early developing dopaminergic neurons in a partially redundant manner. DeltaA/D may also be involved in maintenance of dopaminergic precursor pools, as olig2 expression in ventral diencephalic dopaminergic precursors is affected in dla/dld mutants. DeltaA/D act upstream of sim1a and otpa during dopaminergic specification. However, despite the fact that both dopaminergic and corticotropin-releasing hormone neurons derive from sim1a- and otpa-expressing precursors, DeltaA/D does not act as a lineage switch between these two neuronal types. Rather, DeltaA/D limits the size of the sim1a- and otpa-expressing precursor pool from which dopaminergic neurons differentiate.
Collapse
|
41
|
Lorent K, Moore JC, Siekmann AF, Lawson N, Pack M. Reiterative use of the notch signal during zebrafish intrahepatic biliary development. Dev Dyn 2010; 239:855-64. [PMID: 20108354 DOI: 10.1002/dvdy.22220] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Notch signaling pathway regulates specification of zebrafish liver progenitor cells towards a biliary cell fate. Here, using staged administration of a pharmacological inhibitor of Notch receptor processing, we show that activation of the Notch pathway is also important for growth and expansion of the intrahepatic biliary network in zebrafish larvae. Biliary expansion is accompanied by extensive cell proliferation and active remodeling of the nascent ductal network, as revealed by time lapse imaging of living zebrafish larvae that express a Notch responsive fluorescent reporter transgene. Together, these data support a model in which the Notch signal functions reiteratively during biliary development; first to specific biliary cells and then to direct remodeling of the nascent biliary network. As the Notch pathway plays a comparable role during mammalian biliary development, including humans, these studies also indicate broad conservation of the molecular mechanisms directing biliary development in vertebrates.
Collapse
Affiliation(s)
- Kristin Lorent
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19130, USA
| | | | | | | | | |
Collapse
|
42
|
Radial glial cells and the lamination of the cerebellar cortex. Brain Struct Funct 2010; 215:115-22. [PMID: 20878181 DOI: 10.1007/s00429-010-0278-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 09/14/2010] [Indexed: 01/10/2023]
Abstract
Radial glial cells are stem cells that play an important role in neuronal migration and proliferation in the developing brain. However, how radial glial cells contribute to the lamination of the cerebellar cortex is not well understood. We therefore used immunohistochemistry and BrdU labeling to follow radial glial cell differentiation, cell migration and cerebellar cortex development in mice from embryonic day 8 to postnatal day 180. We report that radial glial cells represent the stem cell population of the neuroepithelium of the neural tube, and act as progenitors for both neurons and neuroglia. In addition, radial glial cells not only give rise to the principal cells of the cerebellar cortex, the Purkinje and granule cells, but they also provide a scaffold for the migration of these cells. We conclude that radial glial cells play a pivotal role in establishing the laminar structure of the cerebellar cortex.
Collapse
|
43
|
BMP/SMAD signaling regulates the cell behaviors that drive the initial dorsal-specific regional morphogenesis of the otocyst. Dev Biol 2010; 347:369-81. [PMID: 20837004 DOI: 10.1016/j.ydbio.2010.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
During development of the otocyst, regional morphogenesis establishes a dorsal vestibular chamber and a ventral auditory chamber, which collectively constitute the membranous labyrinth of the inner ear. We identified the earliest morphogenetic event heralding the formation of the vestibular chamber, a rapid thinning and expansion of the dorsolateral wall of the otocyst, and showed that this process is generated by changes in otocyst cell shape from columnar to squamous, as opposed to changes in other cell behaviors, such as localized changes in cell proliferation or cell death. Moreover, we showed that thinning and expansion of the dorsolateral otocyst is regulated by BMP/SMAD signaling, which is both sufficient and necessary for localized thinning and expansion. Finally, we showed that BMP/SMAD signaling causes fragmentation of E-cadherin in the dorsolateral otocyst, occurring concomitantly with cell shape change, suggesting that BMP/SMAD signaling regulates cell-cell adhesion during the initial morphogenesis of the otocyst epithelium. Collectively, our results show that BMP signaling via SMADs regulates the cell behaviors that drive the initial dorsal-specific morphogenesis of the otocyst, providing new information about how regional morphogenesis of a complex organ rudiment, the developing membranous labyrinth, is initiated.
Collapse
|
44
|
Diermeier‐Daucher S, Brockhoff G. Dynamic Proliferation Assessment in Flow Cytometry. ACTA ACUST UNITED AC 2010; Chapter 8:Unit 8.6.1-23. [DOI: 10.1002/0471143030.cb0806s48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Gero Brockhoff
- Department of Gynaecology and Obstetrics, University of Regensburg Regensburg Germany
| |
Collapse
|
45
|
Ustinov AV, Stepanova IA, Dubnyakova VV, Zatsepin TS, Nozhevnikova EV, Korshun VA. Modification of nucleic acids using [3 + 2]-dipolar cycloaddition of azides and alkynes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:437-81. [DOI: 10.1134/s1068162010040011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. Tgfbeta2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos. BMC DEVELOPMENTAL BIOLOGY 2010; 10:69. [PMID: 20565961 PMCID: PMC2906442 DOI: 10.1186/1471-213x-10-69] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/21/2010] [Indexed: 01/17/2023]
Abstract
Background Transforming growth factor β proteins (Tgfβs) are secreted cytokines with well-defined functions in the differentiation of the musculoskeletal system of the developing limb. Here we have studied in chicken embryos, whether these cytokines are implicated in the development of the embryonic limb bud at stages preceding tissue differentiation. Results Immunohistochemical detection of phosphorylated Smad2 and Smad3 indicates that signaling by this pathway is active in the undifferentiated mesoderm and AER. Gene expression analysis shows that transcripts of tgfβ2 and tgfβ3 but not tgfβ1 are abundant in the growing undifferentiated limb mesoderm. Transcripts of tgfβ2 are also found in the AER, which is the signaling center responsible for limb outgrowth. Furthermore, we show that Latent Tgfβ Binding protein 1 (LTBP1), which is a key extracellular modulator of Tgfβ ligand bioavailability, is coexpressed with Tgfβs in the early limb bud. Administration of exogenous Tgfβs to limb buds growing in explant cultures provides evidence of these cytokines playing a role in the regulation of mesodermal limb proliferation. In addition, analysis of gene regulation in these experiments revealed that Tgfβ signaling has no effect on the expression of master genes of musculoskeletal tissue differentiation but negatively regulates the expression of the BMP-antagonist Gremlin. Conclusion We propose the occurrence of an interplay between Tgfβ and BMP signaling functionally associated with the regulation of early limb outgrowth by modulating limb mesenchymal cell proliferation.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria/IFIMAV, Santander 39011, Spain
| | | | | | | |
Collapse
|
47
|
Kotogány E, Dudits D, Horváth GV, Ayaydin F. A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine. PLANT METHODS 2010; 6:5. [PMID: 20181034 PMCID: PMC2828981 DOI: 10.1186/1746-4811-6-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 01/28/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Progress in plant cell cycle research is highly dependent on reliable methods for detection of cells replicating DNA. Frequency of S-phase cells (cells in DNA synthesis phase) is a basic parameter in studies on the control of cell division cycle and the developmental events of plant cells. Here we extend the microscopy and flow cytometry applications of the recently developed EdU (5-ethynyl-2'-deoxyuridine)-based S-phase assay to various plant species and tissues. We demonstrate that the presented protocols insure the improved preservation of cell and tissue structure and allow significant reduction in assay duration. In comparison with the frequently used detection of bromodeoxyuridine (BrdU) and tritiated-thymidine incorporation, this new methodology offers several advantages as we discuss here. RESULTS Applications of EdU-based S-phase assay in microscopy and flow cytometry are presented by using cultured cells of alfalfa, Arabidopsis, grape, maize, rice and tobacco. We present the advantages of EdU assay as compared to BrdU-based replication assay and demonstrate that EdU assay -which does not require plant cell wall digestion or DNA denaturation steps, offers reduced assay duration and better preservation of cellular, nuclear and chromosomal morphologies. We have also shown that fast and efficient EdU assay can also be an efficient tool for dual parameter flow cytometry analysis and for quantitative assessment of replication in thick root samples of rice. CONCLUSIONS In plant cell cycle studies, EdU-based S-phase detection offers a superior alternative to the existing S-phase assays. EdU method is reliable, versatile, fast, simple and non-radioactive and it can be readily applied to many different plant systems.
Collapse
Affiliation(s)
- Edit Kotogány
- Cellular Imaging Laboratory, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Dénes Dudits
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Gábor V Horváth
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| |
Collapse
|