1
|
Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med 2023; 12:6907. [PMID: 37959372 PMCID: PMC10647359 DOI: 10.3390/jcm12216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Discogenic back pain, a subset of chronic back pain, is caused by intervertebral disc (IVD) degeneration, and imparts a notable socioeconomic health burden on the population. However, degeneration by itself does not necessarily imply discogenic pain. In this review, we highlight the existing literature on the pathophysiology of discogenic back pain, focusing on the biomechanical and biochemical steps that lead to pain in the setting of IVD degeneration. Though the pathophysiology is incompletely characterized, the current evidence favors a framework where degeneration leads to IVD inflammation, and subsequent immune milieu recruitment. Chronic inflammation serves as a basis of penetrating neovascularization and neoinnervation into the IVD. Hence, nociceptive sensitization emerges, which manifests as discogenic back pain. Recent studies also highlight the complimentary roles of low virulence infections and central nervous system (CNS) metabolic state alteration. Targeted therapies that seek to disrupt inflammation, angiogenesis, and neurogenic pathways are being investigated. Regenerative therapy in the form of gene therapy and cell-based therapy are also being explored.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Samantha E. Hoffman
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kemmler CL, Smolikova J, Moran HR, Mannion BJ, Knapp D, Lim F, Czarkwiani A, Hermosilla Aguayo V, Rapp V, Fitch OE, Bötschi S, Selleri L, Farley E, Braasch I, Yun M, Visel A, Osterwalder M, Mosimann C, Kozmik Z, Burger A. Conserved enhancers control notochord expression of vertebrate Brachyury. Nat Commun 2023; 14:6594. [PMID: 37852970 PMCID: PMC10584899 DOI: 10.1038/s41467-023-42151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.
Collapse
Affiliation(s)
- Cassie L Kemmler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jana Smolikova
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hannah R Moran
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Dunja Knapp
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Fabian Lim
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anna Czarkwiani
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Rapp
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Olivia E Fitch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Seraina Bötschi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Emma Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Maximina Yun
- Technische Universität Dresden, CRTD Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Williams RJ, Laagland LT, Bach FC, Ward L, Chan W, Tam V, Medzikovic A, Basatvat S, Paillat L, Vedrenne N, Snuggs JW, Poramba-Liyanage DW, Hoyland JA, Chan D, Camus A, Richardson SM, Tryfonidou MA, Le Maitre CL. Recommendations for intervertebral disc notochordal cell investigation: From isolation to characterization. JOR Spine 2023; 6:e1272. [PMID: 37780826 PMCID: PMC10540834 DOI: 10.1002/jsp2.1272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called "the notochord". However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies.
Collapse
Affiliation(s)
- Rebecca J Williams
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lisanne T Laagland
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Frances C Bach
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Lizzy Ward
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Wilson Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Vivian Tam
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Adel Medzikovic
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Shaghayegh Basatvat
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lily Paillat
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Nicolas Vedrenne
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Joseph W Snuggs
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Deepani W Poramba-Liyanage
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research Centre Central Manchester Foundation Trust, Manchester Academic Health Science Centre Manchester UK
| | - Danny Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Anne Camus
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Marianna A Tryfonidou
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| |
Collapse
|
4
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
5
|
Wang D, Li Z, Huang W, Cao S, Xie L, Chen Y, Li H, Wang L, Chen X, Yang JR. Single-cell transcriptomics reveals heterogeneity and intercellular crosstalk in human intervertebral disc degeneration. iScience 2023; 26:106692. [PMID: 37216089 PMCID: PMC10192848 DOI: 10.1016/j.isci.2023.106692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the human intervertebral disc (IVD) has hindered the elucidation of the microenvironment and mechanisms underlying IVD degeneration (IVDD). Here we determined the landscapes of nucleus pulposus (NP), annulus fibrosus (AF), and immunocytes in human IVD by scRNA-seq. Six NP subclusters and seven AF subclusters were identified, whose functional differences and distribution during different stages of degeneration (Pfirrmann I-V) were investigated. We found MCAM+ progenitor in AF, as well as CD24+ progenitor and MKI67+ progenitor in NP, forming a lineage trajectory from CD24+/MKI67+ progenitors to EffectorNP_⅓ during IVDD. There is a significant increase in monocyte/macrophage (Mφ) in degenerated IVDs (p = 0.044), with Mφ-SPP1 exclusively found in IVDD but not healthy IVDs. Further analyses of the intercellular crosstalk network revealed interactions between major subpopulations and changes in the microenvironment during IVDD. Our results elucidated the unique characteristics of IVDD, thereby shedding light on therapeutic strategies.
Collapse
Affiliation(s)
- Dandan Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - ZiZhang Li
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Shengnan Cao
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Liangyu Xie
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuanzhen Chen
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Huazhong Li
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Lei Wang
- 960th Hospital of PLA, Jinan 250031, China
| | - Xiaoshu Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
7
|
Kemmler CL, Smolikova J, Moran HR, Mannion BJ, Knapp D, Lim F, Czarkwiani A, Hermosilla Aguayo V, Rapp V, Fitch OE, Bötschi S, Selleri L, Farley E, Braasch I, Yun M, Visel A, Osterwalder M, Mosimann C, Kozmik Z, Burger A. Conserved enhancer logic controls the notochord expression of vertebrate Brachyury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.536761. [PMID: 37131681 PMCID: PMC10153258 DOI: 10.1101/2023.04.20.536761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three Brachyury-controlling notochord enhancers T3, C, and I in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, deletion of all three enhancers in mouse abolishes Brachyury/T expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. Sequence and functional conservation of Brachyury-driving notochord enhancers with the brachyury/tbxtb loci from diverse lineages of fishes dates their origin to the last common ancestor of jawed vertebrates. Our data define the enhancers for Brachyury/T/TBXTB notochord expression as ancient mechanism in axis development.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jana Smolikova
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hannah R. Moran
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon J. Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Fabian Lim
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anna Czarkwiani
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Rapp
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Olivia E. Fitch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Seraina Bötschi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Emma Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Maximina Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Berne University Hospital, Berne, Switzerland
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Li P, Zhang M, Chen Z, Tian B, Kang X. Tissue-Engineered Injectable Gelatin-Methacryloyl Hydrogel-Based Adjunctive Therapy for Intervertebral Disc Degeneration. ACS OMEGA 2023; 8:13509-13518. [PMID: 37091429 PMCID: PMC10116505 DOI: 10.1021/acsomega.3c00211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Gelatin-methacryloyl (GelMA) hydrogels are photosensitive with good biocompatibility and adjustable mechanical properties. The GelMA hydrogel composite system is a prospective therapeutic material based on a tissue engineering platform for treating intervertebral disc (IVD) degeneration (IVDD). The potential application value of the GelMA hydrogel composite system in the treatment of IVDD mainly includes three aspects: first, optimization of the current clinical treatment methods, including conservative treatment and surgical treatment; second, regeneration of IVD cells to reverse or repair IVDD; and finally, IVDD instead of injury plays a biomechanical role. In this paper, we summarized and analyzed the preparation of GelMA hydrogels and their excellent biological characteristics as carriers and comprehensively demonstrated the research status and prospects of GelMA hydrogel composite systems in IVDD treatment. In addition, the challenges facing the application of GelMA hydrogel composite systems and the progress of research on new hydrogels modified by GelMA hydrogels are presented. Hopefully, this study will provide theoretical guidance for the future application of GelMA hydrogel composite systems in IVDD.
Collapse
Affiliation(s)
- Peng Li
- Department
of Hand Surgery, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Ming Zhang
- Department
of General Practice, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Zhengyu Chen
- Department
of Spine Surgery, Xianyang First People’s
Hospital, Shaanxi, 712000, P.R. China
| | - Bin Tian
- Department
of Sports Medicine, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Xin Kang
- Department
of Sports Medicine, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
- E-mail:
| |
Collapse
|
9
|
Grangeat AM, Erario MDLA. The Use of Medical Ozone in Chronic Intervertebral Disc Degeneration Can Be an Etiological and Conservative Treatment. Int J Mol Sci 2023; 24:ijms24076538. [PMID: 37047511 PMCID: PMC10095297 DOI: 10.3390/ijms24076538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Degeneration of the intervertebral disc is one of the most frequent causes of lumbar pain, and it puts an extreme strain on worldwide healthcare systems. Finding a solution for this disease is an important challenge as current surgical and conservative treatments fail to bring a short-term or long-term solution to the problem. Medical ozone has yielded excellent results in intervertebral disc pathology. When it comes to extruded disc herniation, ozone is the only etiological treatment because it stimulates the immune system to absorb the herniated portion of the nucleus pulposus, thus resolving discal extrusion. This work aims to examine the biomolecular mechanisms that lead to intervertebral disc degeneration while highlighting the significance of oxidative stress and chronic inflammation. Considering that ozone is a regulator of oxidative stress and, therefore, of inflammation, we assert that medical ozone could modulate this process and obtain inflammatory stage macrophages (M1) to switch to the repair phase (M2). Consequently, the ozone would be a therapeutic resource that would work on the etiology of the disease as an epigenetic regulator that would help repair the intervertebral space.
Collapse
|
10
|
Li Z, Wu Y, Tan G, Xu Z, Xue H. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration. Front Pharmacol 2022; 13:992476. [PMID: 36160436 PMCID: PMC9492865 DOI: 10.3389/fphar.2022.992476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Low back pain has been found as a major cause of global disease burden and disability. Intervertebral disc degeneration is recognized as the vital factor causing low back pain. Intervertebral disc degeneration has a complex mechanism and cannot be avoided. Traditional strategies for the treatment of intervertebral disc degeneration cannot meet the needs of intervertebral disc regeneration, so novel treatment methods are urgently required. Exosomes refer to extracellular vesicles that can be released by most cells, and play major roles in intercellular material transport and information transmission. MicroRNAs have been identified as essential components in exosomes, which can be selectively ingested by exosomes and delivered to receptor cells for the regulation of the physiological activities and functions of receptor cells. Existing studies have progressively focused on the role of exosomes and exosomal microRNAs in the treatment of intervertebral disc degeneration. The focus on this paper is placed on the changes of microenvironment during intervertebral disc degeneration and the biogenesis and mechanism of action of exosomes and exosomal microRNAs. The research results and deficiencies of exosomes and exosomal microRNAs in the regulation of apoptosis, extracellular matrix homeostasis, inflammatory response, oxidative stress, and angiogenesis in intervertebral disc degeneration are primarily investigated. The aim of this paper is to identify the latest research results, potential applications and challenges of this emerging treatment strategy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wu
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medcial Unversity, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haipeng Xue,
| |
Collapse
|
11
|
Yu P, Mao F, Chen J, Ma X, Dai Y, Liu G, Dai F, Liu J. Characteristics and mechanisms of resorption in lumbar disc herniation. Arthritis Res Ther 2022; 24:205. [PMID: 35999644 PMCID: PMC9396855 DOI: 10.1186/s13075-022-02894-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Lumbar disc herniation (LDH) can be spontaneously absorbed without surgical treatment. However, the pathogenesis and physiological indications for predicting protrusion reabsorption are still unclear, which prevents clinicians from preferentially choosing conservative treatment options for LDH patients with reabsorption effects. The purpose of this review was to summarize previous reports on LDH reabsorption and to discuss the clinical and imaging features that favor natural absorption. We highlighted the biological mechanisms involved in the phenomenon of LDH reabsorption, including macrophage infiltration, inflammatory responses, matrix remodeling, and neovascularization. In addition, we summarized and discussed potential clinical treatments for promoting reabsorption. Current evidence suggests that macrophage regulation of inflammatory mediators, matrix metalloproteinases, and specific cytokines in intervertebral disc is essential for the spontaneous reabsorption of LDH.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Feng Mao
- Department of Orthopaedic Surgery, Kunshan Integrated TCM and Western Medicine Hospital, Suzhou, 215332, People's Republic of China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuxiang Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Guanhong Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Jingtao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
12
|
Bhadouria N, Berman AG, Wallace JM, Holguin N. Raloxifene Stimulates Estrogen Signaling to Protect Against Age- and Sex-Related Intervertebral Disc Degeneration in Mice. Front Bioeng Biotechnol 2022; 10:924918. [PMID: 36032728 PMCID: PMC9404526 DOI: 10.3389/fbioe.2022.924918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen agonist raloxifene is an FDA-approved treatment of osteoporosis in postmenopausal women, which may also be a promising prophylactic for painful intervertebral disc (IVD) degeneration. Here, we hypothesized that 1) aging and biological sex contribute to IVD degeneration by reducing estrogen signaling and that 2) raloxifene stimulates estrogen signaling to protect against age- and sex-related IVD degeneration in mice. 2.5-month-old (male and female) and 22.5-month-old (female) C57Bl/6J mice were subcutaneously injected with raloxifene hydrochloride 5x/week for 6 weeks (n = 7-9/grp). Next, female mice were ovariectomized (OVX) or sham operated at 4 months of age and tissues harvested at 6 months (n = 5-6/grp). Advanced aging and OVX increased IVD degeneration score, weakened IVD strength, reduced estrogen receptor-α (ER-α) protein expression, and increased neurotransmitter substance P (SP) expression. Similar to aging and compared with male IVDs, female IVDs were more degenerated, mechanically less viscoelastic, and expressed less ER-α protein, but unlike the effect induced by aging or OVX, IVD mechanical force was greater in females than in males. Therapeutically, systemic injection of raloxifene promoted ER-α protein to quell these dysregulations by enlarging IVD height, alleviating IVD degeneration score, increasing the strength and viscoelastic properties of the IVD, and reducing IVD cell expression of SP in young-adult and old female mice. Transcriptionally, injection of raloxifene upregulated the gene expression of ER-α and extracellular matrix-related anabolism in young-adult and old IVD. In vertebra, advanced aging and OVX reduced trabecular BV/TV, whereas injection of raloxifene increased trabecular BV/TV in young-adult and old female mice, but not in young-adult male mice. In vertebra, advanced aging, OVX, and biological sex (females > males) increased the number of SP-expressing osteocytes, whereas injection of raloxifene reduced the number of SP-expressing osteocytes in young-adult female and male mice and old female mice. Overall, injection of estrogen agonist raloxifene in mice normalized dysregulation of IVD structure, IVD mechanics, and pain-related SP expression in IVD cells and osteocytes induced by aging and biological sex. These data suggest that, in addition to bone loss, raloxifene may relieve painful IVD degeneration in postmenopausal women induced by advanced age, biological sex, and estrogen depletion.
Collapse
Affiliation(s)
- Neharika Bhadouria
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States,Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States
| | - Nilsson Holguin
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States,Indiana Center of Musculoskeletal Health, Indianapolis, IN, United States,Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Nilsson Holguin,
| |
Collapse
|
13
|
Schmitz TC, van Doeselaar M, Tryfonidou MA, Ito K. Detergent-Free Decellularization of Notochordal Cell-Derived Matrix Yields a Regenerative, Injectable, and Swellable Biomaterial. ACS Biomater Sci Eng 2022; 8:3912-3923. [PMID: 35942885 PMCID: PMC9472229 DOI: 10.1021/acsbiomaterials.2c00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Porcine notochordal cell-derived matrix (NCM) has anti-inflammatory
and regenerative effects on degenerated intervertebral discs. For
its clinical use, safety must be assured. The porcine DNA is concerning
because of (1) the transmission of endogenous retroviruses and (2)
the inflammatory potential of cell-free DNA. Here, we present a simple,
detergent-free protocol: tissue lyophilization lyses cells, and matrix
integrity is preserved by limiting swelling during decellularization.
DNA is digested quickly by a high nuclease concentration, followed
by a short washout. Ninety-four percent of DNA was removed, and there
was no loss of glycosaminoglycans or collagen. Forty-three percent
of the total proteins remained in the decellularized NCM (dNCM). dNCM
stimulated as much GAG production as NCM in nucleus pulposus cells
but lost some anti-inflammatory effects. Reconstituted pulverized
dNCM yielded a soft, shear-thinning biomaterial with a swelling ratio
of 350% that also acted as an injectable cell carrier (cell viability
>70%). dNCM can therefore be used as the basis for future biomaterials
aimed at disc regeneration on a biological level and may restore joint
mechanics by creating swelling pressure within the intervertebral
disc.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht 3584 CM, Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
14
|
Jiang W, Glaeser JD, Salehi K, Kaneda G, Mathkar P, Wagner A, Ho R, Sheyn D. Single-cell atlas unveils cellular heterogeneity and novel markers in human neonatal and adult intervertebral discs. iScience 2022; 25:104504. [PMID: 35754733 PMCID: PMC9213722 DOI: 10.1016/j.isci.2022.104504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022] Open
Abstract
The origin, composition, distribution, and function of cells in the human intervertebral disc (IVD) have not been fully understood. Here, cell atlases of both human neonatal and adult IVDs have been generated and further assessed by gene ontology pathway enrichment, pseudo-time trajectory, histology, and immunofluorescence. Comparison of cell atlases revealed the presence of two subpopulations of notochordal cells (NCs) and their associated markers in both the neonatal and adult IVDs. Developmental trajectories predicted 7 different cell states that describe the developmental process from neonatal to adult cells in IVD and analyzed the NC’s role in the IVD development. A high heterogeneity and gradual transition of annulus fibrosus cells (AFCs) in the neonatal IVD was detected and their potential relevance in IVD development assessed. Collectively, comparing single-cell atlases between neonatal and adult IVDs delineates the landscape of IVD cell biology and may help discover novel therapeutic targets for IVD degeneration. Compared scRNA-seq between human neonatal and adult IVD Identified two notochordal cell populations in adults and their novel markers Notochordal cells preserved their identity and functions into adulthood Unveiled heterogeneity of nucleus pulposus and annulus fibrosus cells in human IVD
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pranav Mathkar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anton Wagner
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
15
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
16
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
17
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
18
|
Ekram S, Khalid S, Salim A, Khan I. Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World J Stem Cells 2021; 13:1881-1904. [PMID: 35069988 PMCID: PMC8727226 DOI: 10.4252/wjsc.v13.i12.1881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology. Currently, no therapy for restoring degenerated IVD is available except pain management, reduced physical activities, and surgical intervention. Therefore, it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc, repopulate the cell types to retain water content, synthesize extracellular matrix, and strengthen the disc to restore normal spine flexion. Cellular therapy has gained attention for IVD management as an alternative therapeutic option. In this review, we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD. Modern therapeutic approaches, including proteins and growth factors, cellular and gene therapy, and cell fate regulators are reviewed. Similarly, small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
19
|
Kirnaz S, Capadona C, Wong T, Goldberg JL, Medary B, Sommer F, McGrath LB, Härtl R. Fundamentals of Intervertebral Disc Degeneration. World Neurosurg 2021; 157:264-273. [PMID: 34929784 DOI: 10.1016/j.wneu.2021.09.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Lumbar disc degeneration is one of the leading causes of chronic low back pain. The degenerative cascade is often initiated by an imbalance between catabolic and anabolic processes in the intervertebral discs. As a consequence of extracellular matrix degradation, neoinnervation and neovascularization take place. Ultimately, this degenerative process results in disc bulging and loss of nucleus pulposus and water content and subsequent loss of disc height. Most patients respond to conservative management and surgical interventions well initially, yet a significant number of patients continue to suffer from chronic low back pain. Because of the high prevalence of long-term discogenic pain, regenerative biological therapies, including gene therapies, growth factors, cellular-based injections, and tissue-engineered constructs, have attracted significant attention in light of their potential to directly address the degenerative process. Understanding the pathophysiology of degenerative disc disease is important in both refining existing technologies and developing innovative techniques to reverse the degenerative processes in the discs. In this review, we aimed to cover the underlying pathophysiology of degenerative disc disease as well as its associated risk factors and give a comprehensive summary about the developmental, structural, radiological, and biomechanical properties of human intervertebral discs.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Taylor Wong
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
20
|
Panebianco CJ, Dave A, Charytonowicz D, Sebra R, Iatridis JC. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J 2021; 35:e21919. [PMID: 34591994 PMCID: PMC8496998 DOI: 10.1096/fj.202101149r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Back and neck pain are significant healthcare burdens that are commonly associated with pathologies of the intervertebral disc (IVD). The poor understanding of the cellular heterogeneity within the IVD makes it difficult to develop regenerative IVD therapies. To address this gap, we developed an atlas of bovine (Bos taurus) caudal IVDs using single-cell RNA-sequencing (scRNA-seq). Unsupervised clustering resolved 15 unique clusters, which we grouped into the following annotated partitions: nucleus pulposus (NP), outer annulus fibrosus (oAF), inner AF (iAF), notochord, muscle, endothelial, and immune cells. Analyzing the pooled gene expression profiles of the NP, oAF, and iAF partitions allowed us to identify novel markers for NP (CP, S100B, H2AC18, SNORC, CRELD2, PDIA4, DNAJC3, CHCHD7, and RCN2), oAF (IGFBP6, CTSK, LGALS1, and CCN3), and iAF (MGP, COMP, SPP1, GSN, SOD2, DCN, FN1, TIMP3, WDR73, and GAL) cells. Network analysis on subpopulations of NP and oAF cells determined that clusters NP1, NP2, NP4, and oAF1 displayed gene expression profiles consistent with cell survival, suggesting these clusters may uniquely support viability under the physiological stresses of the IVD. Clusters NP3, NP5, oAF2, and oAF3 expressed various extracellular matrix (ECM)-associated genes, suggesting their role in maintaining IVD structure. Lastly, transcriptional entropy and pseudotime analyses found that clusters NP3 and NP1 had the most stem-like gene expression signatures of the NP partition, implying these clusters may contain IVD progenitor cells. Overall, results highlight cell type diversity within the IVD, and these novel cell phenotypes may enhance our understanding of IVD development, homeostasis, degeneration, and regeneration.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arpit Dave
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Sema4, a Mount Sinai venture, Stamford, CT
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
21
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China ,grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Liu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
22
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z+10.1038/s41413-021-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2024] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
23
|
Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
|
24
|
Abstract
CONTEXT.— Chordomas are uncommon malignant neoplasms with notochordal differentiation encountered by neuropathologists, bone/soft tissue pathologists, and general surgical pathologists. These lesions most commonly arise in the axial skeleton. Optimal therapy typically involves complete surgical resection, which is often technically difficult owing to the anatomic location, leading to a high rate of recurrence. Lesions have been generally resistant to radiation and chemotherapy; however, experimental studies involving targeted therapy and immunotherapy are currently underway. OBJECTIVE.— To summarize the clinical and pathologic findings of the various types of chordoma (conventional chordoma, dedifferentiated chordoma, and poorly differentiated chordoma), the differential diagnosis, and recent advances in molecular pathogenesis and therapeutic modalities that are reliant on accurate diagnosis. DATA SOURCES.— Literature review based on PubMed searches containing the term "chordoma" that address novel targeted and immunomodulatory therapeutic modalities; ongoing clinical trials involved in treating chordoma with novel therapeutic modalities identified through the Chordoma Foundation and ClinicalTrials.gov; and the authors' practice experience combined with various authoritative texts concerning the subject. CONCLUSIONS.— Chordoma is a clinically and histologically unique malignant neoplasm, and numerous diagnostic considerations must be excluded to establish the correct diagnosis. Treatment options have largely been centered on surgical excision with marginal results; however, novel therapeutic options including targeted therapy and immunotherapy are promising means to improve prognosis.
Collapse
Affiliation(s)
- Veronica Ulici
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | - Jesse Hart
- From the Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
25
|
Itsuji T, Tonomura H, Ishibashi H, Mikami Y, Nagae M, Takatori R, Tanida T, Matsuda KI, Tanaka M, Kubo T. Hepatocyte growth factor regulates HIF-1α-induced nucleus pulposus cell proliferation through MAPK-, PI3K/Akt-, and STAT3-mediated signaling. J Orthop Res 2021; 39:1184-1191. [PMID: 32242977 DOI: 10.1002/jor.24679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Intervertebral discs are important for maintaining mobility and offer support to the body trunk. If these discs lose their biomechanical features, lower back pain can occur. We previously reported that hepatocyte growth factor (HGF) promotes cell proliferation and suppresses apoptosis, inflammation, and matrix degradation in nucleus pulposus (NP) cells. In the present study, we investigated the molecular mechanisms of how HGF promotes the proliferation of NP cells in hypoxic conditions. Hypoxic stimulation promoted modest cell proliferation, which was further upregulated by HGF. Expression of hypoxia-inducible factor (HIF-1α) protein, which contributes to the maintenance of homeostasis in NP cells, was also upregulated in hypoxia-treated cell groups; HGF further increased HIF-1α expression in NP cells. Additionally, knockdown of HIF-1α expression significantly reduced the proliferation of NP cells. An MAPK inhibitor inhibited the expression of HIF-1α and pERK, as well as cell proliferation in a dose-dependent manner. Similarly, inhibiting the PI3K/Akt and STAT3 pathways also decreased the expression of HIF-1α and cell proliferation. These results show that under hypoxic conditions, HGF promotes NP cell proliferation via HIF-1α-, MAPK-, PI3K/Akt-, and STAT3-mediated signaling which is involved in this pathway. The control of these signaling pathways may be a target for potential therapeutic strategies for the treatment of disc degeneration in hypoxic conditions.
Collapse
Affiliation(s)
- Tomonori Itsuji
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Tonomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidenobu Ishibashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masateru Nagae
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Takatori
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Tanida
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021. [DOI: 10.3390/ijms22094917
expr 996488947 + 961598850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
|
27
|
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021; 22:ijms22094917. [PMID: 34066404 PMCID: PMC8124861 DOI: 10.3390/ijms22094917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
Affiliation(s)
- Martina Calió
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Lucy Poveda
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland;
| | - Fabian Ille
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
- Correspondence: ; Tel.: +41-41-349-36-15
| |
Collapse
|
28
|
McMorran JG, Gregory DE. The Influence of Axial Compression on the Cellular and Mechanical Function of Spinal Tissues; Emphasis on the Nucleus Pulposus and Annulus Fibrosus: A Review. J Biomech Eng 2021; 143:050802. [PMID: 33454730 DOI: 10.1115/1.4049749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/08/2022]
Abstract
In light of the correlation between chronic back pain and intervertebral disc (IVD) degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus (NP)-annulus fibrosus (AF) interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates (EPs), the NP, and the AF, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized NP on the AF, and how injuries interrupting support to the AF may contribute to IVD degeneration.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5; Department of Health Sciences, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| |
Collapse
|
29
|
Kirnaz S, Capadona C, Lintz M, Kim B, Yerden R, Goldberg JL, Medary B, Sommer F, McGrath LB, Bonassar LJ, Härtl R. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int J Spine Surg 2021; 15:10-25. [PMID: 34376493 DOI: 10.14444/8052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human intervertebral disc (IVD) is a complex organ composed of fibrous and cartilaginous connective tissues, and it serves as a boundary between 2 adjacent vertebrae. It provides a limited range of motion in the torso as well as stability during axial compression, rotation, and bending. Adult IVDs have poor innate healing potential due to low vascularity and cellularity. Degenerative disc disease (DDD) generally arises from the disruption of the homeostasis maintained by the structures of the IVD, and genetic and environmental factors can accelerate the progression of the disease. Impaired cell metabolism due to pH alteration and poor nutrition may lead to autophagy and disruption of the homeostasis within the IVD and thus plays a key role in DDD etiology. To develop regenerative therapies for degenerated discs, future studies must aim to restore both anatomical and biomechanical properties of the IVDs. The objective of this review is to give a detailed overview about anatomical, radiological, and biomechanical features of the IVDs as well as discuss the structural and functional changes that occur during the degeneration process.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Marianne Lintz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Rachel Yerden
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| |
Collapse
|
30
|
Binch ALA, Fitzgerald JC, Growney EA, Barry F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol 2021; 17:158-175. [PMID: 33526926 DOI: 10.1038/s41584-020-00568-w] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain, a prevalent and chronic condition that has a striking effect on quality of life. Currently, no approved pharmacological interventions or therapies are available that prevent the progressive destruction of the IVD; however, regenerative strategies are emerging that aim to modify the disease. Progress has been made in defining promising new treatments for disc disease, but considerable challenges remain along the entire translational spectrum, from understanding disease mechanism to useful interpretation of clinical trials, which make it difficult to achieve a unified understanding. These challenges include: an incomplete appreciation of the mechanisms of disc degeneration; a lack of standardized approaches in preclinical testing; in the context of cell therapy, a distinct lack of cohesion regarding the cell types being tested, the tissue source, expansion conditions and dose; the absence of guidelines regarding disease classification and patient stratification for clinical trial inclusion; and an incomplete understanding of the mechanisms underpinning therapeutic responses to cell delivery. This Review discusses current approaches to disc regeneration, with a particular focus on cell-based therapeutic strategies, including ongoing challenges, and attempts to provide a framework to interpret current data and guide future investigational studies.
Collapse
Affiliation(s)
- Abbie L A Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Emily A Growney
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
31
|
Zhang Y, Hu Y, Wang W, Guo Z, Yang F, Cai X, Xiong L. Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Front Bioeng Biotechnol 2021; 8:629088. [PMID: 33553131 PMCID: PMC7862573 DOI: 10.3389/fbioe.2020.629088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentian Wang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Guo
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Nucleus Pulposus Cell Conditioned Medium Promotes Mesenchymal Stem Cell Differentiation into Nucleus Pulposus-Like Cells under Hypoxic Conditions. Stem Cells Int 2020; 2020:8882549. [PMID: 33424982 PMCID: PMC7773475 DOI: 10.1155/2020/8882549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration. Mesenchymal stem cells (MSCs) can differentiate into multiple mesenchymal lineages under specific stimulatory conditions. This study is aimed at evaluating the effectiveness of the nucleus pulposus cell (NPC) conditioned medium for promoting the expression of MSCs and at confirming the expression of healthy NP phenotypic markers recently recommended by the Spine Research Interest Group. Expression was investigated using quantitative polymerase chain reaction (qPCR) and western blotting under normoxic and hypoxic conditions. qPCR and western blotting demonstrated significant upregulation of NP marker expression in MSCs cultured under hypoxic conditions and treated with the 50% or 100% NPC conditioned medium, compared with those cultured under normoxic conditions. Upregulation was highest in the presence of the 100% NPC conditioned medium compared with the control group (aggrecan, p < 0.01; brachyury, p < 0.05; collagen II, p < 0.001; KRT8, p < 0.01; KRT19, p < 0.001; and Shh, p < 0.01). The expression levels of genes in MSCs treated with the 50% NPC conditioned medium also showed upregulation compared with the control group (collagen II, p < 0.05; KRT8, p < 0.05; and KRT19, p < 0.01). These findings suggested that the NPC conditioned medium stimulated MSC differentiation into an NP-like phenotype with distinct characteristics. The results could inform strategies for IVD regeneration.
Collapse
|
33
|
Schmitz TC, Salzer E, Crispim JF, Fabra GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL, Ito K. Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomater 2020; 114:1-15. [PMID: 32771592 DOI: 10.1016/j.actbio.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyses the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analysed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement. STATEMENT OF SIGNIFICANCE: Biomaterials intended for restoration of regeneration of the nucleus pulposus within the intervertebral disc must meet biological, biomechanical and clinical demands. Many materials have been investigated, but a lack of consensus on which parameters to evaluate leads to difficulties in comparing materials as well as mostly partial characterization of the materials in question. A gap between current methodology and clinically relevant and meaningful characterization is prevalent. In this article, we identify necessary methods and their implementation for complete biomaterial characterization in the context of clinical applicability. This will allow for a more unified approach to NP-biomaterials research within the field as a whole and enable comparative analysis of novel materials yet to be developed.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Georgina Targa Fabra
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Catherine LeVisage
- Université de Nantes, INSERM UMR 1229, Regenerative Medicine and Skeleton, RMeS School of Dental Surgery, University of Nantes, 1 Place Ricordeau, 44300 Nantes, France.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre Sheffield Hallam University, City Campus, Howard Street, S1 1WB Sheffield, United Kingdom.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| |
Collapse
|
34
|
Xu G, Liu Y, Zhang C, Zhou Y, Hou S, Tang J, Li Z. Temporal and spatial expression of Sox9, Pax1, TGF-β1 and type I and II collagen in human intervertebral disc development. Neurochirurgie 2020; 66:168-173. [PMID: 32201238 DOI: 10.1016/j.neuchi.2019.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/06/2019] [Accepted: 12/08/2019] [Indexed: 10/24/2022]
Abstract
PURPOSE An accurate understanding of cellular biochemical changes in human intervertebral disc (IVD)s and the corresponding mechanisms during the developmental process still remain unknown and important for investigating the function of critical factors in normal IVD development as well as ascertaining the therapeutic targets for the IVD degeneration. METHODS Under ethical conditions, human fetal cervical IVDs at 4, 5, and 6 months of pregnancy were collected at abortion surgery. Normal adult human C3-C7 cervical IVDs were taken from cadaveric donors. Sox9, Pax1, TGF-β1 and type I/II collagen protein and RNA were detected. The number of positive cells was counted to calculate the optical density value for each factor. RESULTS Sox9, Pax1, and TGF-β1 expression in the IVD was remarkably reduced with the developmental stage. The location of high expression of Sox9, Pax1, and TGF-β1 changed with the developmental stage, and migrated from the nucleus pulposus to the annulus fibrosus and endplate. Higher Sox9, Pax1, and TGF-β1 expression was finally observed around the sclerotome of the vertebral body. The anabolism of type I/II collagens is significantly increased in the IVD in the mid-trimester fetus. CONCLUSIONS Sox9, Pax1 and TGF-β1 participate in the developmental process of the human IVD and vertebral body. However, these factors show a separate expression of mRNA and protein, suggesting that they are expressed in the strict time and spatial order.
Collapse
Affiliation(s)
- G Xu
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases Liaoning Province, Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, 116011 Dalian, People's Republic of China
| | - Y Liu
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, 100048 Beijing, People's Republic of China
| | - C Zhang
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, 100048 Beijing, People's Republic of China
| | - Y Zhou
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, 100048 Beijing, People's Republic of China
| | - S Hou
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, 100048 Beijing, People's Republic of China
| | - J Tang
- Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, 100048 Beijing, People's Republic of China.
| | - Z Li
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases Liaoning Province, Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, 116011 Dalian, People's Republic of China.
| |
Collapse
|
35
|
Diaz-Hernandez ME, Khan NM, Trochez CM, Yoon T, Maye P, Presciutti SM, Gibson G, Drissi H. Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics. J Cell Physiol 2019; 235:5241-5255. [PMID: 31840817 DOI: 10.1002/jcp.29411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IDD) is a public health dilemma as it is associated with low back and neck pain, a frequent reason for patients to visit the physician. During IDD, nucleus pulposus (NP), the central compartment of intervertebral disc (IVD) undergo degeneration. Stem cells have been adopted as a promising biological source to regenerate the IVD and restore its function. Here, we describe a simple, two-step differentiation strategy using a cocktail of four factors (LDN, AGN, FGF, and CHIR) for efficient derivation of notochordal cells from human embryonic stem cells (hESCs). We employed a CRISPR/Cas9 based genome-editing approach to knock-in the mCherry reporter vector upstream of the 3' untranslated region of the Noto gene in H9-hESCs and monitored notochordal cell differentiation. Our data show that treatment of H9-hESCs with the above-mentioned four factors for 6 days successfully resulted in notochordal cells. These cells were characterized by morphology, immunostaining, and gene and protein expression analyses for established notochordal cell markers including FoxA2, SHH, and Brachyury. Additionally, pan-genomic high-throughput single cell RNA-sequencing revealed an efficient and robust notochordal differentiation. We further identified a key regulatory network consisting of eight candidate genes encoding transcription factors including PAX6, GDF3, FOXD3, TDGF1, and SOX5, which are considered as potential drivers of notochordal differentiation. This is the first single cell transcriptomic analysis of notochordal cells derived from hESCs. The ability to efficiently obtain notochordal cells from pluripotent stem cells provides an additional tool to develop new cell-based therapies for the treatment of IDD.
Collapse
Affiliation(s)
- Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Nazir M Khan
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | | | - Tim Yoon
- Department of Orthopaedics, Emory University, Atlanta, Georgia
| | - Peter Maye
- UConn Health Center, University of Connecticut, Farmington, Connecticut
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Tech, Atlanta, Georgia
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
36
|
Zhao R, Liu W, Xia T, Yang L. Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration. Polymers (Basel) 2019; 11:polym11071151. [PMID: 31284436 PMCID: PMC6680713 DOI: 10.3390/polym11071151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), commonly induced by intervertebral disc degeneration, is a lumbar disease with worldwide prevalence. However, the mechanism of degeneration remains unclear. The intervertebral disc is a nonvascular organ consisting of three components: Nucleus pulposus, annulus fibrosus, and endplate cartilages. The disc is structured to support our body motion and endure persistent external mechanical pressure. Thus, there is a close connection between force and intervertebral discs in LBP. It is well established that with aging, disordered mechanical stress profoundly influences the fate of nucleus pulposus and the alignment of collagen fibers in the annulus fibrosus. These support a new understanding that disordered mechanical stress plays an important role in the degeneration of the intervertebral discs. Tissue-engineered regenerative and reparative therapies are being developed for relieving disc degeneration and symptoms of lower back pain. In this paper, we will review the current literature available on the role of disordered mechanical stress in intervertebral disc degeneration, and evaluate the existing tissue engineering treatment strategies of the current therapies.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
37
|
Mohanty S, Dahia CL. Defects in intervertebral disc and spine during development, degeneration, and pain: New research directions for disc regeneration and therapy. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e343. [PMID: 30977275 DOI: 10.1002/wdev.343] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Intervertebral discs are cartilaginous joints present between vertebrae. The centers of the intervertebral discs consist of a gelatinous nucleus pulposus derived from the embryonic notochord. With age or injury, intervertebral discs may degenerate, causing neurological symptoms including back pain, which affects millions of people worldwide. Back pain is a multifactorial disorder, and disc degeneration is one of the primary contributing factors. Recent studies in mice have identified the key molecules involved in the formation of intervertebral discs. Several of these key molecules including sonic hedgehog and Brachyury are not only expressed by notochord during development, but are also expressed by neonatal mouse nucleus pulposus cells, and are crucial for postnatal disc maintenance. These findings suggest that intrinsic signals in each disc may maintain the nucleus pulposus microenvironment. However, since expression of these developmental signals declines with age and degeneration, disc degeneration may be related to the loss of these intrinsic signals. In addition, findings from mouse and other mammalian models have identified similarities between the patterning capabilities of the embryonic notochord and young nucleus pulposus cells, suggesting that mouse is a suitable model system to understand disc development and aging. Future research aimed at understanding the upstream regulators of these developmental signals and the modes by which they regulate disc growth and maintenance will likely provide mechanistic insights into disc growth and aging. Further, such findings will likely provide insights relevant to the development of effective therapies for treatment of back pain and reversing the disc degenerative process. This article is categorized under: Birth Defects > Organ Anomalies Vertebrate Organogenesis > Musculoskeletal and Vascular Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging.
Collapse
Affiliation(s)
- Sarthak Mohanty
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Chitra L Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, New York
| |
Collapse
|
38
|
Jaworski LM, Kleinhans KL, Jackson AR. Effects of Oxygen Concentration and Culture Time on Porcine Nucleus Pulposus Cell Metabolism: An in vitro Study. Front Bioeng Biotechnol 2019; 7:64. [PMID: 31001527 PMCID: PMC6454860 DOI: 10.3389/fbioe.2019.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/07/2023] Open
Abstract
Low back pain is a common ailment that affects millions of individuals each year and is linked to degeneration of the intervertebral discs in the spine. Intervertebral disc degeneration is known to result from an imbalance in anabolic and catabolic activity by disc cells. Due to the avascular nature of the intervertebral disc, oxygen deficiency may occur in the central nucleus pulposus (NP). The resulting hypoxia affects matrix regulation and energy metabolism of disc cells, although the mechanisms are not fully understood. This study investigates in vitro glucose consumption and gene expression by NP cells over time under varying oxygen tensions. Notochordal porcine NP cells were cultured in agarose discs at 21, 5, or 1% oxygen tension for 1, 5, or 10 days. The expression of 10 key matrix genes, as well as Brachyury (T), by NP cells was analyzed using RT-PCR. Glucose consumption was measured using a two-point method. Results show that culture time and oxygen tension significantly affect glucose consumption rates by porcine NP cells. There were also significant changes in T expression based on oxygen level and culture time. The 1% oxygen tension had a significantly higher T expression on day 10 than the other two groups, which may indicate a better maintenance of the notochordal phenotype. MMP 1 and 13 expression increased over time for all groups, while only the 5% group showed an increase over time for MMP 3. TIMP expression followed the direction of MMPs but to a lesser magnitude. Five percent and twenty-one percent oxygen tensions led to decreases in anabolic gene expression while 1% led to increases. Oxygen concentration and culture time significantly impacted glucose consumption rate and the gene expression of matrix regulatory genes with hypoxic conditions most accurately maintaining the proper NP phenotype. This information is valuable not only for understanding disc pathophysiology, but also for harnessing the potential of notochordal NP cells in therapeutic applications.
Collapse
Affiliation(s)
- Lukas M Jaworski
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Kelsey L Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alicia R Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
39
|
Xu J, Liu S, Wang S, Qiu P, Chen P, Lin X, Fang X. Decellularised nucleus pulposus as a potential biologic scaffold for disc tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1213-1225. [PMID: 30889657 DOI: 10.1016/j.msec.2019.02.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with lower back pain, with the dysfunction of nucleus pulposus (NP) cells instigating degeneration onset. Here, we developed an optimized decellularised NP scaffold that could induce mesenchymal stem cells (MSCs) into NP-like cells in vitro and rescue the degenerated IVD in vivo. We optimized a decellularisation protocol for porcine NP and evaluated the biological properties and microstructure of the NP scaffold. Through co-culture with MSCs, we analysed scaffold bioactivity and potential signalling pathways. We tested the therapeutic efficacy of the scaffold using an IVD degeneration model in vivo. The decellularisation protocol generally removed the cellular components of the NP and preserved the majority of the biological components and regular microstructure. MSCs seeded in the NP-ECM scaffold differentiated into NP-like cells in vitro; this change was attributed to activation of the TGF-β signalling pathway. The NP-ECM exhibited good cytocompatibility ex vivo and decelerated the degeneration of the IVD in vivo. These results indicate the successful establishment of a naturally-derived ECM material that could induce MSCs into NP cells and serve as a potential treatment for degenerated IVDs.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shijie Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
40
|
Snuggs JW, Day RE, Bach FC, Conner MT, Bunning RAD, Tryfonidou MA, Le Maitre CL. Aquaporin expression in the human and canine intervertebral disc during maturation and degeneration. JOR Spine 2019; 2:e1049. [PMID: 31463463 PMCID: PMC6686802 DOI: 10.1002/jsp2.1049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
The intervertebral disc (IVD) is a highly hydrated tissue, the rich proteoglycan matrix imbibes water, enabling the disc to withstand compressive loads. During aging and degeneration increased matrix degradation leads to dehydration and loss of function. Aquaporins (AQP) are a family of transmembrane channel proteins that selectively allow the passage of water in and out of cells and are responsible for maintaining water homeostasis in many tissues. Here, the expression of all 13 AQPs at gene and protein level was investigated in human and canine nondegenerate and degenerate IVDs to develop an understanding of the role of AQPs during degeneration. Furthermore, in order to explore the transition of notochordal cells (NCs) towards nucleus pulposus (NP) cells, AQP expression was investigated in canine IVDs enriched in NCs to understand the role of AQPs in IVD maturation. AQP0, 1, 2, 3, 4, 5, 6, 7, and 9 were expressed at gene and protein level in both nondegenerate and degenerate human NP tissue. AQP2 and 7 immunopositivity increased with degeneration in human NP tissue, whereas AQP4 expression decreased with degeneration in a similar way to AQP1 and 5 shown previously. All AQP proteins that were identified in human NP tissue were also expressed in canine NP tissue. AQP2, 5, 6, and 9 were found to localize to vacuole-like membranes and cell membranes in NC cells. In conclusion, AQPs were abundantly expressed in human and canine IVDs. The expression of many AQP isotypes potentially alludes to multifaceted functions related to adaption of NP cells to the conditions they encounter within their microenvironment in health and degeneration. The presence of AQPs within the IVD may suggest an adaptive role for these water channels during the development and maintenance of the healthy, mature IVD.
Collapse
Affiliation(s)
- Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Rebecca E. Day
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Matthew T. Conner
- Faculty of Science and EngineeringUniversity of WolverhamptonWolverhamptonUK
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
41
|
Wang F, Zhang C, Sinkemani A, Shi R, Xie ZY, Chen L, Mao L, Wu XT. A histocytological and radiological overview of the natural history of intervertebral disk: from embryonic formation to age-related degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:633-648. [PMID: 30715648 DOI: 10.1007/s00586-019-05903-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE To elucidate the natural history of intervertebral disk (IVD) and characterize its embryonic beginnings and age-related degeneration. METHODS Coronal sections of embryonic (E13.5-neonatal) and postnatal (4-60-week-old) Sprague-Dawley rat IVD were stained by a series of histological stainings (hematoxylin and eosin, Alcian blue, Picrosirius red, Masson, Periodic acid-Schiff). Growth kinetics within embryonic IVD were evaluated by immunohistochemical staining of Ki67 and proliferating cell nuclear antigen. Postnatal maturation and degeneration of IVD were visualized on radiology by X-ray, CT, and MR imaging. RESULTS During the formation of rat IVD, inner annulus fibrosus (AF) and cartilaginous endplate (CEP) shared similar cell density, extracellular matrix, and potential of growth kinetics; notochord provided increased and enlarged cytoplasmic vacuoles to generate nucleus pulposus (NP), part of which was retained within CEP. Postnatally, vacuolated notochord cells were reduced by devacuolation, while chondrocytic NP cells increased; cartilaginous layers of CEP were narrowed by vertebrae growth and secondary ossification; fibrotic portion of AF decreased as cartilaginous matrix accumulated and infiltrated outward. In aged and degenerated IVD, large longitudinal fissures were detected near the boundaries between inner and outer AF, whereas both reduced cellularity and accumulated cell clusters were evident within the dehydrated NP; only part of these histocytological changes could be reported on radiology. CONCLUSIONS By showing that the natural history of IVD is orchestrated by a dynamic histocytological regulation, our study may facilitate better understanding of the developmental defects, cellular heterogeneity, age-related degenerative mechanisms, and biological regeneration of IVD. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Rui Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China. .,Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
42
|
Rustenburg CM, Emanuel KS, Peeters M, Lems WF, Vergroesen PA, Smit TH. Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine 2018; 1:e1033. [PMID: 31463450 PMCID: PMC6686805 DOI: 10.1002/jsp2.1033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral discs and can eventually result in degenerative disc disease (DDD), which is accompanied by low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide. In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space, subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint. Inspired by this resemblance, we investigated the analogy between human intervertebral discs and articular joints. Although embryonic origin and anatomy suggest substantial differences between the two types of joint, some features of cell physiology and extracellular matrix in the nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great similarities in the response to mechanical loading and the matrix-degrading factors involved in the cascade of degeneration in both tissues. This suggests that the local environment of the cell is more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a true disease, while intervertebral disc degeneration is often regarded as a radiological finding and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society. Emphasizing the similarities rather than the differences between the two diseases may create more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of clinicians and scientists involved in both intervertebral disc degeneration and OA.
Collapse
Affiliation(s)
- Christine M.E. Rustenburg
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Kaj S. Emanuel
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Mirte Peeters
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Willem F. Lems
- Department of RheumatologyAmsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Theodoor H. Smit
- Department or Orthopaedic SurgeryAmsterdam Movement Sciences, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
43
|
Feng X, Liu L, Yu BQ, Huang JM, Gu LD, Xu DF. Effect of optimized collagenase digestion on isolated and cultured nucleus pulposus cells in degenerated intervertebral discs. Medicine (Baltimore) 2018; 97:e12977. [PMID: 30383649 PMCID: PMC6221615 DOI: 10.1097/md.0000000000012977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study aims to explore the optimized digestive method of collagenase to nucleus pulposus (NP) cells by observing the digestive effects of type I and II collagenase in different concentrations to NP in degenerated intervetebral discs.NP were collected from 18 human herniated intervertebral disc samples, and digested by type I and II collagenase, which were separated or combined in different concentrations. NP cells were counted using an inverted microscope, and the activities were determined by trypan blue staining at 4, 8, 16, and 24 hours after digestion. The growth of NP cells was also observed.The amount of NP cells with combined collagenases was greater than that separated in an identical concentration. With the combined collagenases at 4 and 8 hours, the higher concentration, the greater the amount of NP cells became. The amount of cells in extremely low concentrations of collagenase increased after 16 and 24 hours, and its activities remained at a higher level.The optimized digestion of extremely low concentrations of type I and II collagenase combined could save enzymes, was less harmful to NP cells, and was more adapted to separated and cultured NP cells.
Collapse
|
44
|
Wang F, Zhang C, Shi R, Xie ZY, Chen L, Wang K, Wang YT, Xie XH, Wu XT. The embryonic and evolutionary boundaries between notochord and cartilage: a new look at nucleus pulposus-specific markers. Osteoarthritis Cartilage 2018; 26:1274-1282. [PMID: 29935307 DOI: 10.1016/j.joca.2018.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 02/02/2023]
Abstract
The adult nucleus pulposus (NP) and articular cartilage are similar in terms of their histocytological components and biomechanical functionalities, requiring a deep understanding of NP-specific markers to better evaluate stem-cell-based NP regeneration. Here, we seek to distinguish NP cells from articular chondrocytes (ACs), focusing on differences in their embryonic formation and evolutionary origin. Embryonically, NP cells are conservatively derived from the axial notochord, whereas ACs originate in a diversified manner from paraxial mesoderm and neural crest cells. Evolutionarily, although the origins of vertebrate NP and AC cells can be traced to similar structures within protostomia-like bilaterian ancestors, the distant phylogenetic relationship between the two groups of animals and the differences in the bodily origins of the tissues suggest that the tissues may in fact have undergone parallel evolution within the protostomia and deuterostomia. The numbers of supposedly NP-specific markers are increasing gradually as microarray studies proceed, but no final consensus has been attained on the specificity and physiology of "exclusive" NP markers because of innate variations among species; intrinsic expression of genes that destabilize the circadian clock; and cooperation by, and crosstalk among, different genes in terms of physiology-related phenotypes. We highlight the embryonic and evolutionary boundaries between NP and AC cells, to aid in recognition of the challenges associated with evaluation of the role played by nucleopulpogenic differentiation during stem-cell-based intervertebral disc regeneration.
Collapse
Affiliation(s)
- F Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - C Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - R Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - Z-Y Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - L Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - K Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - Y-T Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-H Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-T Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| |
Collapse
|
45
|
Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging. Bone Res 2018; 6:21. [PMID: 30038820 PMCID: PMC6050246 DOI: 10.1038/s41413-018-0022-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 02/05/2023] Open
Abstract
Degenerative disc disease (DDD) is associated with intervertebral disc degeneration of spinal instability. Here, we report that the cilia of nucleus pulposus (NP) cells mediate mechanotransduction to maintain anabolic activity in the discs. We found that mechanical stress promotes transport of parathyroid hormone 1 receptor (PTH1R) to the cilia and enhances parathyroid hormone (PTH) signaling in NP cells. PTH induces transcription of integrin αvβ6 to activate the transforming growth factor (TGF)-β-connective tissue growth factor (CCN2)-matrix proteins signaling cascade. Intermittent injection of PTH (iPTH) effectively attenuates disc degeneration of aged mice by direct signaling through NP cells, specifically improving intervertebral disc height and volume by increasing levels of TGF-β activity, CCN2, and aggrecan. PTH1R is expressed in both mouse and human NP cells. Importantly, knockout PTH1R or cilia in the NP cells results in significant disc degeneration and blunts the effect of PTH on attenuation of aged discs. Thus, mechanical stress-induced transport of PTH1R to the cilia enhances PTH signaling, which helps maintain intervertebral disc homeostasis, particularly during aging, indicating therapeutic potential of iPTH for DDD. Sensory structures found in the jelly-like space between spinal discs release a hormone that helps preserve back health in aging mice. Xu Cao from Johns Hopkins University in Baltimore, Maryland, USA, and colleagues observed that levels of a critical growth factor declined in the space between adjacent vertebrae as mice aged, and that injecting a naturally occurring hormone that activates this growth factor could attenuate disc degeneration in older animals. The researchers showed, in response to mechanical stresses, receptor proteins that respond to this hormone relocate themselves to particular sensory organelles known as cilia that found within cells of the intervertebral core. That results in elevated hormone signaling—and drugs designed to have the same effect could help treat degenerative disc disease, one of the most common causes of chronic back pain.
Collapse
|
46
|
Schubert AK, Smink JJ, Arp M, Ringe J, Hegewald AA, Sittinger M. Quality Assessment of Surgical Disc Samples Discriminates Human Annulus Fibrosus and Nucleus Pulposus on Tissue and Molecular Level. Int J Mol Sci 2018; 19:ijms19061761. [PMID: 29899321 PMCID: PMC6032144 DOI: 10.3390/ijms19061761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
- CO.DON AG, 14513 Teltow, Germany.
| | | | - Mirko Arp
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Jochen Ringe
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| | - Aldemar A Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Neurosurgery and Spine Surgery, Helios Baltic Sea Hospital Damp, 24351 Damp, Germany.
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| |
Collapse
|
47
|
Tang R, Jing L, Willard VP, Wu CL, Guilak F, Chen J, Setton LA. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 2018. [PMID: 29523190 PMCID: PMC5845143 DOI: 10.1186/s13287-018-0797-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is characterized by an early decrease in cellularity of the nucleus pulposus (NP) region, and associated extracellular matrix changes, reduced hydration, and progressive degeneration. Cell-based IVD therapy has emerged as an area of great interest, with studies reporting regenerative potential for many cell sources, including autologous or allogeneic chondrocytes, primary IVD cells, and stem cells. Few approaches, however, have clear strategies to promote the NP phenotype, in part due to a limited knowledge of the defined markers and differentiation protocols for this lineage. Here, we developed a new protocol for the efficient differentiation of human induced pluripotent stem cells (hiPSCs) into NP-like cells in vitro. This differentiation strategy derives from our knowledge of the embryonic notochordal lineage of NP cells as well as strategies used to support healthy NP cell phenotypes for primary cells in vitro. Methods An NP-genic phenotype of hiPSCs was promoted in undifferentiated hiPSCs using a stepwise, directed differentiation toward mesodermal, and subsequently notochordal, lineages via chemically defined medium and growth factor supplementation. Fluorescent cell imaging was used to test for pluripotency markers in undifferentiated cells. RT-PCR was used to test for potential cell lineages at the early stage of differentiation. Cells were checked for NP differentiation using immunohistochemistry and histological staining at the end of differentiation. To enrich notochordal progenitor cells, hiPSCs were transduced using lentivirus containing reporter constructs for transcription factor brachyury (T) promoter and green fluorescent protein (GFP) fluorescence, and then sorted on T expression based on GFP intensity by flow cytometry. Results Periods of pellet culture following initial induction were shown to promote the vacuolated NP cell morphology and NP surface marker expression, including CD24, LMα5, and Basp1. Enrichment of brachyury (T) positive cells using fluorescence-activated cell sorting was shown to further enhance the differentiation efficiency of NP-like cells. Conclusions The ability to efficiently differentiate human iPSCs toward NP-like cells may provide insights into the processes of NP cell differentiation and provide a cell source for the development of new therapies for IVD diseases. Electronic supplementary material The online version of this article (10.1186/s13287-018-0797-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | | | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.,Cytex Therapeutics, Inc., Durham, NC, USA
| | - Jun Chen
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA. .,Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
48
|
Meng X, Zhuang L, Wang J, Liu Z, Wang Y, Xiao D, Zhang X. Hypoxia-inducible factor (HIF)-1alpha knockout accelerates intervertebral disc degeneration in mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:548-557. [PMID: 31938140 PMCID: PMC6957989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The abnormality of nucleus pulposus (NP) plays a critical role in intervertebral disc (IVD) degeneration, in which NP cells show apoptosis and fibrosis, leading to the ability of the disc to transfer and distribute loads between the vertebrae is decreased. Considering that hypoxia inducible factor-1α (HIF-1α) is abundantly expressed in NP and that it mediates cell proliferation, migration and apoptosis in various cell types, we hypothesized that NP-HIF-1α plays an important role in NP and evaluate whether NP-HIF-1α is involved in IVD degeneration. MATERIAL AND METHODS Sonic Hedgehog-Cre+/- mice were crossed with HIF-1αflox/flox mice to generate NP specific HIF-1α-deficient (HIF-1α-/-) mice. Magnetic resonance imaging (MRI) study was used to evaluate NP dehydration and X-ray study was used to acquire the changes of disc height. Histological changese, content of glycoproteins and the in situ expression of aggrecan were evaluated by hematoxylin & eosin (H&E) staining, safranin-O/fast green staining and immunohistochemistry assay, respectively. Western bloting was used to detect the change of extracellular matrix in IVD. RESULTS Firstly, the results of in situ hybridization confirmed that HIF-1α in NP was successfully knocked out in HIF-1α-/- mice. Next, for HIF-1α deficiency mice, imaging study shows IVD was narrowed in X-ray and signal intensity of NP was decreased in MR T2-weight imaging. Accordingly, the size and cell number of NP and proteoglycan content was decreased in NP-HIF-1α-/- mice. Finally, Western bloting shows that protein level of collagen II and aggrecan, two main matrix in disc, were both decreased in NP-HIF-1α-/- mice. CONCLUSIONS The present study demonstrates that HIF-1α is essential for NP development and homeostasis and the deficiency of NP-HIF-1α leads to IVD degeneration in mice.
Collapse
Affiliation(s)
- Xiangchao Meng
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Lingling Zhuang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jun Wang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Zhuochao Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Dechang Xiao
- Department of Orthopedics, Qingdao Municipal HospitalQingdao, China
| | - Xingkai Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
49
|
Palacio-Mancheno PE, Evashwick-Rogler TW, Laudier DM, Purmessur D, Iatridis JC. Hyperosmolarity induces notochordal cell differentiation with aquaporin3 upregulation and reduced N-cadherin expression. J Orthop Res 2018; 36:788-798. [PMID: 28853179 PMCID: PMC5832547 DOI: 10.1002/jor.23715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/19/2017] [Indexed: 02/04/2023]
Abstract
The nucleus pulposus (NP) of intervertebral discs (IVD) undergoes dramatic changes with aging including loss of its gelatinous structure and large, vacuolated notochordal cells (NCs) in favor of a matrix-rich structure populated by small NP cells (sNPCs). NP maturation also involves a loading-pattern shift from pressurization to matrix deformations, and these events are thought to predispose to degeneration. Little is known of the triggering events and cellular alterations involved with NP maturation, which remains a fundamental open spinal mechanobiology question. A mouse IVD organ culture model was used to test the hypotheses that hyperosmotic overloading will induce NP maturation with transition of NCs to sNPCs while also increasing matrix accumulation and altering osmoregulatory and mechanotransductive proteins. Results indicated that static hyperosmolarity, as might occur during growth, caused maturation of NCs to sNPCs and involved a cellular differentiation process since known NC markers (cytokeratin-8, -19, and sonic hedgehog) persisted without increased cell apoptosis. Osmosensitive channels Aquaporin 3 (Aqp3) and transient receptor potential vanilloid-4 (TRPV4) expression were both modified with altered osmolarity, but increased Aqp3 with hyperosmolarity was associated with NC to sNPC differentiation. NC to sNPC differentiation was accompanied by a shift in cellular mechanotransduction proteins with decreased N-cadherin adhesions and increased Connexin 43 connexons. We conclude that hyperosmotic overloading can promote NC differentiation into sNPCs. This study identified osmolarity as a triggering mechanism for notochordal cell differentiation with associated shifts in osmoregulatory and mechanotransductive proteins that are likely to play important roles in intervertebral disc aging. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:788-798, 2018.
Collapse
Affiliation(s)
| | | | - Damien M. Laudier
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Devina Purmessur
- Dept. of Biomedical Engineering, Ohio State University, Columbus, OH
| | - James C. Iatridis
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
50
|
Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells. Oncotarget 2017; 8:88845-88856. [PMID: 29179481 PMCID: PMC5687651 DOI: 10.18632/oncotarget.21483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022] Open
Abstract
During intervertebral disc ageing, chondrocyte-like cells (CLCs) replace notochordal cells (NCs). NCs have been shown to induce regenerative effects in CLCs. Since vesicles released by NCs may be responsible for these effects, we characterized NC-derived extracellular vesicles (EVs) and determined their effect on CLCs. EVs were purified from porcine NC-conditioned medium (NCCM) through size exclusion chromatography, ultracentrifugation or density gradient centrifugation. Additionally, the EVs were quantitatively analyzed by high-resolution flow cytometry. The effect of NCCM-derived EVs was studied on canine and human CLC micro-aggregates in vitro and compared with NCCM-derived proteins and unfractionated NCCM. Porcine NCCM contained a considerable amount of EVs. NCCM-derived EVs induced GAG deposition in canine CLCs to a comparable level as NCCM-derived proteins and unfractionated NCCM, and increased the DNA and glycosaminoglycan (GAG) content of human micro-aggregates, although to a lesser extent than unfractionated NCCM. The biological EV effects were not considerably influenced by ultracentrifugation compared with size exclusion-based purification. Upon ultracentrifugation, interfering GAGs, but not collagens, were lost. Nonetheless, collagen type I or II supplemented to CLCs in a concentration as present in NCCM induced no anabolic effects. Porcine NCCM-derived EVs exerted anabolic effects comparable to NCCM-derived proteins, while unfractionated NCCM was more potent in human CLCs. GAGs and collagens appeared not to mediate the regenerative EV effects. Thus, NC-derived EVs have regenerative potential, and their effects may be influenced by the proteins present in NCCM. The optimal combination of NC-secreted factors needs to be determined to fully exploit the regenerative potential of NC-based technology.
Collapse
|