1
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
2
|
Shen Z, Zhang Z, Wang X, Yang K. VEGFB-VEGFR1 ameliorates Ang II-induced cardiomyocyte hypertrophy through Ca 2+ -mediated PKG I pathway. J Cell Biochem 2017; 119:1511-1520. [PMID: 28771828 DOI: 10.1002/jcb.26311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023]
Abstract
In response to assorted stimuli, the heart will develop into cardiomyocyte hypertrophy, but sustained cardiomyocyte hypertrophy will finally lead to heart failure. This research is aimed to examine the effect of VEGFB on cardiomyocyte hypertrophy by using the cardiomyocyte-derived cell line H9C2 of cultured rates. It turns out that VEGFB can positively prevent the Ang II-induced rising in the size of cardiomyocyte as well as reduce Ang II-induced mRNA and protein levels of β-MHC (β-myosin heavy chain), BNP (brain natriuretic peptide), and ANP (atrial natriuretic peptide). Moreover, VEGFB can regulate the decline of the Ang II-induced rising in Ca2+ . After VEGFR1 knockdown, these effects of VEGFB were partially reversed. Moreover, VEGFB attenuated the suppression of PKG I, p-VASP, and RGS2 caused by Ang II; whereas VEGFR1 knockdown partially abolished the indicated effect of VEGFB. In a word, the effect of VEGFB on relevant downstream targets and the pathways of PKG I by VEGFR1 may explain its efficacy on cardiomyocyte hypertrophy. Thus, it can be suggested that it is feasible to apply VEGFB-VEGFR1 for reducing the symptoms of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Zhijie Shen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kan Yang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Russo V, Omidi E, Samani A, Hamilton A, Flynn LE. Porous, Ventricular Extracellular Matrix-Derived Foams as a Platform for Cardiac Cell Culture. Biores Open Access 2015; 4:374-88. [PMID: 26487982 PMCID: PMC4598938 DOI: 10.1089/biores.2015.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To more closely mimic the native cellular microenvironment, 3D scaffolds derived from the extracellular matrix (ECM) are being developed as alternatives to conventional 2D culture systems. In the present study, we established methods to fabricate nonchemically cross-linked 3D porous foams derived entirely from decellularized porcine left ventricle (DLV) for use as an in vitro cardiac cell culture platform. Furthermore, we explored the effects of physically preprocessing the DLV through mechanical mincing versus cryomilling, as well as varying the ECM concentration on the structure, composition, and physical properties of the foams. Our results indicate that the less highly processed minced foams had a more cohesive and complex network of ECM components, enhanced mechanical properties, and improved stability under simulated culturing conditions. To validate the DLV foams, a proof-of-concept study was conducted to explore the early cardiomyogenic differentiation of pericardial fat adipose-derived stem/stromal cells (pfASCs) on the minced DLV foams relative to purified collagen I gel controls. Differentiation was induced using a modified cardiomyogenic medium (MCM) or through stimulation with 5-azacytidine (5-aza), and cardiomyocyte marker expression was characterized by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction. Our results indicate that early markers of cardiomyogenic differentiation were significantly enhanced on the DLV foams cultured in MCM, suggesting a synergistic effect of the cardiac ECM-derived scaffolds and the culture medium on the induction of pfASC differentiation. Furthermore, in analyzing the response in the noninduced control groups, the foams were observed to provide a mildly inductive microenvironment for pfASC cardiomyogenesis, supporting the rationale for using tissue-specific ECM as a substrate for cardiac cell culture applications.
Collapse
Affiliation(s)
- Valerio Russo
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada . ; Human Mobility Research Centre, Kingston General Hospital , Kingston, Ontario, Canada
| | - Ehsan Omidi
- Biomedical Engineering Graduate Program, The University of Western Ontario , London, Ontario, Canada
| | - Abbas Samani
- Biomedical Engineering Graduate Program, The University of Western Ontario , London, Ontario, Canada . ; Department of Electrical and Computer Engineering, The University of Western Ontario , London, Ontario, Canada
| | - Andrew Hamilton
- Department of Surgery, Kingston General Hospital , Kingston, Ontario, Canada
| | - Lauren E Flynn
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada . ; Biomedical Engineering Graduate Program, The University of Western Ontario , London, Ontario, Canada . ; Department of Chemical and Biochemical Engineering, The University of Western Ontario , London, Ontario, Canada . ; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario , London, Ontario, Canada
| |
Collapse
|
4
|
Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J Thorac Cardiovasc Surg 2015; 150:1198-1207, 1208.e1-2. [PMID: 26232942 DOI: 10.1016/j.jtcvs.2015.06.076] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Our aim was to assess midterm safety and clinical outcomes of intracoronary infusion of cardiosphere-derived cells (CDCs) after staged palliation in patients with hypoplastic left heart syndrome (HLHS). METHODS In this prospective, controlled study, 14 consecutive patients with HLHS who were undergoing 2- or 3-stage surgical palliations were assigned to receive intracoronary CDC infusion 1 month after cardiac surgery (n = 7), followed by 7 patients allocated to a control group with standard care alone. The primary end point was to assess procedural feasibility and safety; the secondary end point was to evaluate cardiac function and heart failure status through 36-month follow-up. RESULTS No complications, including tumor formation, were reported within 36 months after CDC infusion. Echocardiography showed significantly greater improvement in right ventricular ejection fraction (RVEF) in infants receiving CDCs than in controls at 36 months (+8.0% ± 4.7% vs +2.2% ± 4.3%; P = .03). These cardiac function improvements resulted in reduced brain natriuretic peptide levels (P = .04), lower incidence of unplanned catheter interventions (P = .04), and higher weight-for-age z score (P = .02) at 36 months relative to controls. As independent predictors of treatment responsiveness, absolute changes in RVEF at 36 months were negatively correlated with age, weight-for-age z score, and RVEF at CDC infusion. CONCLUSIONS Intracoronary CDC infusion after staged procedure in patients with HLHS is safe and improves RVEF, which persists during 36-month follow-up. This therapeutic strategy may enhance somatic growth and reduce incidence of heart failure.
Collapse
|
5
|
Abstract
The construction and prediction of cell fate maps at the whole embryo level require the establishment of an accurate atlas of gene expression patterns throughout development and the identification of the corresponding cis-regulatory sequences. However, while the expression and regulation of genes encoding upstream developmental regulators such as transcription factors or signaling pathway components have been analyzed in detail, up to date the number of cis-regulatory sequences identified for downstream effector genes, like ion channels, pumps and exchangers, is very low. The control and regulation of ion homeostasis in each cell, including at blastoderm stages, are essential for normal embryonic development. In this study, we analyzed in detail the embryonic expression pattern and cis-regulatory modules of the Drosophila Na+-driven anion exchanger 1 (Ndae1) gene, involved in the regulation of pH homeostasis. We show that Ndae1 is expressed in a tight and complex spatial-temporal pattern. In particular, we report that this downstream effector gene is under the control of the canonical dorsal-ventral patterning cascade through dorsal, Toll, twist and snail at early embryogenesis. Moreover, we identify several cis-regulatory modules, some of which control discrete and non-overlapping aspects of endogenous gene expression throughout development.
Collapse
|
6
|
Cox EJ, Marsh SA. A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One 2014; 9:e92903. [PMID: 24663494 PMCID: PMC3963983 DOI: 10.1371/journal.pone.0092903] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/27/2014] [Indexed: 02/04/2023] Open
Abstract
Pathological cardiac hypertrophy activates a suite of genes called the fetal gene program (FGP). Pathological hypertrophy occurs in diabetic cardiomyopathy (DCM); therefore, the FGP is widely used as a biomarker of DCM in animal studies. However, it is unknown whether the FGP is a consistent marker of hypertrophy in rodent models of diabetes. Therefore, we analyzed this relationship in 94 systematically selected studies. Results showed that diabetes induced with cytotoxic glucose analogs such as streptozotocin was associated with decreased cardiac weight, but genetic or diet-induced models of diabetes were significantly more likely to show cardiac hypertrophy (P<0.05). Animal strain, sex, age, and duration of diabetes did not moderate this effect. There were no correlations between the heart weight:body weight index and mRNA or protein levels of the fetal genes α-myosin heavy chain (α-MHC) or β-MHC, sarco/endoplasmic reticulum Ca2+-ATPase, atrial natriuretic peptide (ANP), or brain natriuretic peptide. The only correlates of non-indexed heart weight were the protein levels of α-MHC (Spearman's ρ = 1, P<0.05) and ANP (ρ = −0.73, P<0.05). These results indicate that most commonly measured genes in the FGP are confounded by diabetogenic methods, and are not associated with cardiac hypertrophy in rodent models of diabetes.
Collapse
Affiliation(s)
- Emily J. Cox
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, United States of America
| | - Susan A. Marsh
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
Fatkin D, Nikolova-Krstevski V. Atrial cardiomyopathy an orphan disease or common disorder? CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:5-6. [PMID: 23424254 DOI: 10.1161/circgenetics.111.000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|