1
|
Saritas Erdogan S, Yilmaz AE, Kumbasar A. PIN1 is a novel interaction partner and a negative upstream regulator of the transcription factor NFIB. FEBS Lett 2024. [PMID: 39245791 DOI: 10.1002/1873-3468.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
NFIB is a transcription factor of the Nuclear Factor One (NFI) family that is essential for embryonic development. Post-translational control of NFIB or its upstream regulators have not been well characterized. Here, we show that PIN1 binds NFIB in a phosphorylation-dependent manner, via its WW domain. PIN1 interacts with the well-conserved N-terminal domains of all NFIs. Moreover, PIN1 attenuates the transcriptional activity of NFIB; this attenuation requires substrate binding by PIN1 but not its isomerase activity. Paradoxically, we found stabilization of NFIB by PIN1. We propose that PIN1 represses NFIB function not by regulating its abundance but by inducing a conformational change. These results identify NFIB as a novel PIN1 target and posit a role for PIN1 in post-translational regulation of NFIB and other NFIs.
Collapse
Affiliation(s)
| | - Ahmet Erdal Yilmaz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Turkey
| |
Collapse
|
2
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
3
|
Shukla V, Wang H, Varticovski L, Baek S, Wang R, Wu X, Echtenkamp F, Villa-Hernandez F, Prothro KP, Gara SK, Zhang MR, Shiffka S, Raziuddin R, Neckers LM, Linehan WM, Chen H, Hager GL, Schrump DS. Genome-Wide Analysis Identifies Nuclear Factor 1C as a Novel Transcription Factor and Potential Therapeutic Target in SCLC. J Thorac Oncol 2024; 19:1201-1217. [PMID: 38583771 DOI: 10.1016/j.jtho.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Recent insights regarding mechanisms mediating stemness, heterogeneity, and metastatic potential of lung cancers have yet to be fully translated to effective regimens for the treatment of these malignancies. This study sought to identify novel targets for lung cancer therapy. METHODS Transcriptomes and DNA methylomes of 14 SCLC and 10 NSCLC lines were compared with normal human small airway epithelial cells (SAECs) and induced pluripotent stem cell (iPSC) clones derived from SAEC. SCLC lines, lung iPSC (Lu-iPSC), and SAEC were further evaluated by DNase I hypersensitive site sequencing (DHS-seq). Changes in chromatin accessibility and depths of transcription factor (TF) footprints were quantified using Bivariate analysis of Genomic Footprint. Standard techniques were used to evaluate growth, tumorigenicity, and changes in transcriptomes and glucose metabolism of SCLC cells after NFIC knockdown and to evaluate NFIC expression in SCLC cells after exposure to BET inhibitors. RESULTS Considerable commonality of transcriptomes and DNA methylomes was observed between Lu-iPSC and SCLC; however, this analysis was uninformative regarding pathways unique to lung cancer. Linking results of DHS-seq to RNA sequencing enabled identification of networks not previously associated with SCLC. When combined with footprint depth, NFIC, a transcription factor not previously associated with SCLC, had the highest score of occupancy at open chromatin sites. Knockdown of NFIC impaired glucose metabolism, decreased stemness, and inhibited growth of SCLC cells in vitro and in vivo. ChIP-seq analysis identified numerous sites occupied by BRD4 in the NFIC promoter region. Knockdown of BRD4 or treatment with Bromodomain and extra-terminal domain (BET) inhibitors (BETis) markedly reduced NFIC expression in SCLC cells and SCLC PDX models. Approximately 8% of genes down-regulated by BETi treatment were repressed by NFIC knockdown in SCLC, whereas 34% of genes repressed after NFIC knockdown were also down-regulated in SCLC cells after BETi treatment. CONCLUSIONS NFIC is a key TF and possible mediator of transcriptional regulation by BET family proteins in SCLC. Our findings highlight the potential of genome-wide chromatin accessibility analysis for elucidating mechanisms of pulmonary carcinogenesis and identifying novel targets for lung cancer therapy.
Collapse
Affiliation(s)
- Vivek Shukla
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Present Address: Division of Nonclinical Sciences (DNCS), FDA, Silver Spring, Maryland
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ruihong Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xinwei Wu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank Villa-Hernandez
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine P Prothro
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudheer K Gara
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary R Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie Shiffka
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Present Address: Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
5
|
Mannens CCA, Hu L, Lönnerberg P, Schipper M, Reagor CC, Li X, He X, Barker RA, Sundström E, Posthuma D, Linnarsson S. Chromatin accessibility during human first-trimester neurodevelopment. Nature 2024:10.1038/s41586-024-07234-1. [PMID: 38693260 DOI: 10.1038/s41586-024-07234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/02/2024] [Indexed: 05/03/2024]
Abstract
The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.
Collapse
Affiliation(s)
- Camiel C A Mannens
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Marijn Schipper
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Caleb C Reagor
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Xiaofei Li
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
6
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Choi J, Lee H. NFIB-MLL1 complex is required for the stemness and Dlx5-dependent osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. J Biol Chem 2023; 299:105193. [PMID: 37633334 PMCID: PMC10519831 DOI: 10.1016/j.jbc.2023.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.
Collapse
Affiliation(s)
- Janghyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| |
Collapse
|
8
|
Landi S, Giannetti F, Benzoni P, Campostrini G, Rossi G, Piantoni C, Bertoli G, Bonfanti C, Carnevali L, Bucchi A, Baruscotti M, Careccia G, Messina G, Barbuti A. Lack of the transcription factor Nfix causes tachycardia in mice sinus node and rats neonatal cardiomyocytes. Acta Physiol (Oxf) 2023; 239:e13981. [PMID: 37186371 DOI: 10.1111/apha.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
AIMS Nfix is a transcription factor belonging to the Nuclear Factor I (NFI) family comprising four members (Nfia, b, c, x). Nfix plays important roles in the development and function of several organs. In muscle development, Nfix controls the switch from embryonic to fetal myogenesis by promoting fast twitching fibres. In the adult muscle, following injury, lack of Nfix impairs regeneration, inducing higher content of slow-twitching fibres. Nfix is expressed also in the heart, but its function has been never investigated before. We studied Nfix role in this organ. METHODS Using Nfix-null and wild type (WT) mice we analyzed: (1) the expression pattern of Nfix during development by qPCR and (2) the functional alterations caused by its absence, by in vivo telemetry and in vitro patch clamp analysis. RESULTS AND CONCLUSIONS Nfix expression start in the heart from E12.5. Adult hearts of Nfix-null mice show a hearts morphology and sarcomeric proteins expression similar to WT. However, Nfix-null animals show tachycardia that derives form an intrinsic higher beating rate of the sinus node (SAN). Molecular and functional analysis revealed that sinoatrial cells of Nfix-null mice express a significantly larger L-type calcium current (Cacna1d + Cacna1c). Interestingly, downregulation of Nfix by sh-RNA in primary cultures of neonatal rat ventricular cardiomyocytes induced a similar increase in their spontaneous beating rate and in ICaL current. In conclusion, our data provide the first demonstration of a role of Nfix that, increasing the L-type calcium current, modulates heart rate.
Collapse
Affiliation(s)
- Sara Landi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Campostrini
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giuliana Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Carnevali
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Careccia
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [PMID: 37433356 DOI: 10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Nuclear factor 1 X-type (Nfix) is a transcription factor related to mental and physical development. However, very few studies have reported the effects of Nfix on cartilage. This study aims to reveal the influence of Nfix on the proliferation and differentiation of chondrocytes, and to explore its potential action mechanism. We isolated primary chondrocytes from the costal cartilage of newborn C57BL/6 mice and with Nfix overexpression or silencing treatment. We used Alcian blue staining and found that Nfix overexpression significantly promoted ECM synthesis in chondrocytes while silencing inhibited ECM synthesis. Using RNA-seq technology to study the expression pattern of Nfix in primary chondrocytes. We found that Nfix overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. Nfix silencing, however, significantly up-regulated genes associated with cartilage catabolism and significantly down-regulated genes associated with cartilage growth promotion. Furthermore, Nfix exerted a positive regulatory effect on Sox9, and we propose that Nfix may promote chondrocyte proliferation and inhibit differentiation by stimulating Sox9 and its downstream genes. Our findings suggest that Nfix may be a potential target for the regulation of chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jingcheng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Baojin Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
10
|
Walker M, Li Y, Morales-Hernandez A, Qi Q, Parupalli C, Brown S, Christian C, Clements WK, Cheng Y, McKinney-Freeman S. An NFIX-mediated regulatory network governs the balance of hematopoietic stem and progenitor cells during hematopoiesis. Blood Adv 2023; 7:4677-4689. [PMID: 36478187 PMCID: PMC10468369 DOI: 10.1182/bloodadvances.2022007811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.
Collapse
Affiliation(s)
- Megan Walker
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yichao Li
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Scott Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claiborne Christian
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wilson K. Clements
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | |
Collapse
|
11
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [DOI: org/10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
12
|
Ren Y, Zhao Y, Shan Y, Li S, Su N, Cui Z, Yin Z. Circular RNA hsa_circ_0049657 as a Potential Biomarker in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:13237. [PMID: 37686043 PMCID: PMC10487531 DOI: 10.3390/ijms241713237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common lung disorder. In this study, we applied bioinformatics methods to analyze and investigate the role of the NFIX gene in NSCLC. Hsa_circ_0049657 is derived from the NFIX gene, this research aimed to verify the potential role of hsa_circ_0049657 in the development of NSCLC. The results suggested that NFIX was downregulated in most cancers. In addition, the NFIX expression in lung adenocarcinoma (LUAD) was associated with the clinicopathological stage. In LUAD, NFIX expression was associated with the degree of infiltration of most immune cells. The expression levels of hsa_circ_0049657 were significantly lower in cancerous tissues than in paracancerous tissues. Moreover, the results showed that hsa_circ_0049657 expression was downregulated in NSCLC cells. After overexpression of hsa_circ_0049657, the proliferation and migration ability of NSCLC cells were significantly inhibited and the level of apoptosis was increased. We could suppress the proliferation and invasion abilities and promote apoptosis of NSCLC cells by up-regulating hsa_circ_0049657, which might be a potential biomarker for NSCLC.
Collapse
Affiliation(s)
- Yihong Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Yuxin Zhao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Yanan Shan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Nan Su
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, China;
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| |
Collapse
|
13
|
Fernandes J, Uppal K, Liu KH, Hu X, Orr M, Tran V, Go YM, Jones DP. Antagonistic Interactions in Mitochondria ROS Signaling Responses to Manganese. Antioxidants (Basel) 2023; 12:804. [PMID: 37107179 PMCID: PMC10134992 DOI: 10.3390/antiox12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Antagonistic interaction refers to opposing beneficial and adverse signaling by a single agent. Understanding opposing signaling is important because pathologic outcomes can result from adverse causative agents or the failure of beneficial mechanisms. To test for opposing responses at a systems level, we used a transcriptome-metabolome-wide association study (TMWAS) with the rationale that metabolite changes provide a phenotypic readout of gene expression, and gene expression provides a phenotypic readout of signaling metabolites. We incorporated measures of mitochondrial oxidative stress (mtOx) and oxygen consumption rate (mtOCR) with TMWAS of cells with varied manganese (Mn) concentration and found that adverse neuroinflammatory signaling and fatty acid metabolism were connected to mtOx, while beneficial ion transport and neurotransmitter metabolism were connected to mtOCR. Each community contained opposing transcriptome-metabolome interactions, which were linked to biologic functions. The results show that antagonistic interaction is a generalized cell systems response to mitochondrial ROS signaling.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken H. Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
15
|
Cordero-Véliz C, Larraín J, Faunes F. Transcriptome analysis of the response to thyroid hormone in Xenopus neural stem and progenitor cells. Dev Dyn 2023; 252:294-304. [PMID: 36065982 DOI: 10.1002/dvdy.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The thyroid hormones-thyroxine (T4) and 3,5,3'triiodothyronine (T3)-regulate the development of the central nervous system (CNS) in vertebrates by acting in different cell types. Although several T3 target genes have been identified in the brain, the changes in the transcriptome in response to T3 specifically in neural stem and progenitor cells (NSPCs) during the early steps of NSPCs activation and neurogenesis have not been studied in vivo. Here, we characterized the transcriptome of FACS-sorted NSPCs in response to T3 during Xenopus laevis metamorphosis. RESULTS We identified 1252 upregulated and 726 downregulated genes after 16 hours of T3 exposure. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that T3-upregulated genes were significantly enriched in rRNA processing and maturation, protein folding, ribosome biogenesis, translation, mitochondrial function, and proteasome. These results suggest that NSPCs activation induced by T3 is characterized by an early proteome remodeling through the synthesis of the translation machinery and the degradation of proteins by the proteasome. CONCLUSION This work provides new insights into the dynamics of activation of NPSCs in vivo in response to T3 during a critical period of neurogenesis in the metamorphosis.
Collapse
Affiliation(s)
- Camila Cordero-Véliz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Faunes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
16
|
Gao G, Hausmann S, Flores NM, Benitez AM, Shen J, Yang X, Person MD, Gayatri S, Cheng D, Lu Y, Liu B, Mazur PK, Bedford MT. The NFIB/CARM1 partnership is a driver in preclinical models of small cell lung cancer. Nat Commun 2023; 14:363. [PMID: 36690626 PMCID: PMC9870865 DOI: 10.1038/s41467-023-35864-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojie Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria D Person
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Evozyne Inc., Chicago, IL, 60614, USA
| | - Donghang Cheng
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Somuncular E, Hauenstein J, Khalkar P, Johansson AS, Dumral Ö, Frengen NS, Gustafsson C, Mocci G, Su TY, Brouwer H, Trautmann CL, Vanlandewijck M, Orkin SH, Månsson R, Luc S. CD49b identifies functionally and epigenetically distinct subsets of lineage-biased hematopoietic stem cells. Stem Cell Reports 2022; 17:1546-1560. [PMID: 35714596 PMCID: PMC9287668 DOI: 10.1016/j.stemcr.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b− HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b− and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms. CD49b− HSCs are highly enriched for durable and long-term myeloid-biased HSCs CD49b+ HSCs are enriched for less durable cells with lymphoid bias CD49b− and CD49b+ HSCs are transcriptionally similar but epigenetically distinct
Collapse
Affiliation(s)
- Ece Somuncular
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Hauenstein
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Prajakta Khalkar
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Özge Dumral
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai S Frengen
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giuseppe Mocci
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Single Cell Core Facility of Flemingsberg Campus, Karolinska Institutet, Stockholm, Sweden
| | - Tsu-Yi Su
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Brouwer
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christine L Trautmann
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Vanlandewijck
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Single Cell Core Facility of Flemingsberg Campus, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Transcriptional Regulation of RIP2 Gene by NFIB Is Associated with Cellular Immune and Inflammatory Response to APEC Infection. Int J Mol Sci 2022; 23:ijms23073814. [PMID: 35409172 PMCID: PMC8998712 DOI: 10.3390/ijms23073814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic E. coli (APEC) can cause localized or systemic infection, resulting in large economic losses per year, and impact health of humans. Previous studies showed that RIP2 (receptor interacting serine/threonine kinase 2) and its signaling pathway played an important role in immune response against APEC infection. In this study, chicken HD11 cells were used as an in vitro model to investigate the function of chicken RIP2 and the transcription factor binding to the RIP2 core promoter region via gene overexpression, RNA interference, RT-qPCR, Western blotting, dual luciferase reporter assay, CHIP-PCR, CCK-8, and flow cytometry assay following APEC stimulation. Results showed that APEC stimulation promoted RIP2 expression and cells apoptosis, and inhibited cells viability. Knockdown of RIP2 significantly improved cell viability and suppressed the apoptosis of APEC-stimulated cells. Transcription factor NFIB (Nuclear factor I B) and GATA1 (globin transcription factor 1) binding site was identified in the core promoter region of RIP2 from −2300 bp to −1839 bp. However, only NFIB was confirmed to be bound to the core promoter of RIP2. Overexpression of NFIB exacerbated cell injuries with significant reduction in cell viability and increased cell apoptosis and inflammatory cytokines levels, whereas opposite results were observed in NFIB inhibition treatment group. Moreover, RIP2 was up-regulated by NFIB overexpression, and RIP2 silence mitigated the effect of NFIB overexpression in cell apoptosis, inflammation, and activation of NFκB signaling pathways. This study demonstrated that NFIB overexpression accelerated APEC-induced apoptosis and inflammation via up-regulation of RIP2 mediated downstream pathways in chicken HD11 cells.
Collapse
|
19
|
El-Hodiri HM, Campbell WA, Kelly LE, Hawthorn EC, Schwartz M, Jalligampala A, McCall MA, Meyer K, Fischer AJ. Nuclear Factor I in neurons, glia and during the formation of Müller glia-derived progenitor cells in avian, porcine and primate retinas. J Comp Neurol 2021; 530:1213-1230. [PMID: 34729776 DOI: 10.1002/cne.25270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022]
Abstract
The regenerative potential of Müller glia (MG) is extraordinary in fish, poor in chick and terrible in mammals. In the chick model, MG readily reprogram into proliferating Müller glia-derived progenitor cells (MGPCs), but neuronal differentiation is very limited. The factors that suppress the neurogenic potential of MGPCs in the chick are slowly being revealed. Isoforms of Nuclear Factor I (NFI) are cell-intrinsic factors that limit neurogenic potential; these factors are required for the formation of MG in the developing mouse retina (Clark et al., 2019) and deletion of these factors reprograms MG into neuron-like cells in mature mouse retina (Hoang et al., 2020). Accordingly, we sought to characterize the patterns of expression NFIs in the developing, mature and damaged chick retina. In addition, we characterized patterns of expression of NFIs in the retinas of large mammals, pigs and monkeys. Using a combination of single cell RNA-sequencing (scRNA-seq) and immunolabeling we probed for patterns of expression. In embryonic chick, levels of NFIs are very low in early E5 (embryonic day 5) retinal progenitor cells (RPCs), up-regulated in E8 RPCs, further up-regulated in differentiating MG at E12 and E15. NFIs are maintained in mature resting MG, microglia and neurons. Levels of NFIs are reduced in activated MG in retinas treated with NMDA and/or insulin+FGF2, and further down-regulated in proliferating MGPCs. However, levels of NFIs in MGPCs were significantly higher than those seen in RPCs. Immunolabeling for NFIA and NFIB closely matched patterns of expression revealed in different types of retinal neurons and glia, consistent with findings from scRNA-seq. In addition, we find expression of NFIA and NFIB through progenitors in the circumferential marginal zone at the far periphery of the retina. We find similar patterns of expression for NFIs in scRNA-seq databases for pig and monkey retinas. Patterns of expression of NFIA and NFIB were validated with immunofluorescence in pig and monkey retinas wherein these factors were predominantly detected in MG and a few types of inner retinal neurons. In summary, NFIA and NFIB are prominently expressed in developing chick retina and by mature neurons and glia in the retinas of chicks, pigs and monkeys. Although levels of NFIs are decreased in chick, in MGPCs these levels remain higher than those seen in neurogenic RPCs. We propose that the neurogenic potential of MGPCs in the chick retina is suppressed by NFIs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Lisa E Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Maura Schwartz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Kathrin Meyer
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
20
|
Wu X, Wang X, Shan L, Zhou J, Zhang X, Zhu E, Yuan H, Wang B. High-mobility group AT-Hook 1 mediates the role of nuclear factor I/X in osteogenic differentiation through activating canonical Wnt signaling. Stem Cells 2021; 39:1349-1361. [PMID: 34028135 DOI: 10.1002/stem.3418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
It was previously reported that the loss of the transcription factor nuclear factor I/X (NFIX) gene in mice impaired endochondral ossification and mineralization in bone. However, the cellular and molecular basis for the defect remains unexplored. In this study, we investigated if and how NFIX regulates osteoblast differentiation. Nfix mRNA was induced during osteogenic and adipogenic differentiation of progenitor cells. Loss-of-function and gain-of-function studies revealed that NFIX induced osteoblast differentiation and impaired adipocyte formation from progenitor cells. RNA-seq and promoter analysis revealed that NFIX transcriptionally stimulated the expression of high-mobility group AT-Hook 1 (HMGA1). We then demonstrated that HMGA1 stimulated osteogenic differentiation of progenitor cells at the expense of adipogenic differentiation. The effect of Nfix siRNA on the differentiation of progenitor cells could be attenuated when HMGA1 was simultaneously overexpressed. Further investigations revealed the stimulatory effect of NFIX and HMGA1 on canonical wingless-type MMTV integration site family (Wnt) signaling. HMGA1 transcriptionally activates the expression of low-density lipoprotein receptor-related protein 5. Finally, in vivo transfection of Nfix siRNA to the marrow of mice reduced osteoblasts and increased fat accumulation in the marrow, and inactivated HMGA1/β-catenin signaling in bone marrow mesenchymal stem cells. This study suggests that HMGA1 plays a role in osteoblast commitment and mediates the function of NFIX through transcriptionally activating canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Liying Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, Yu Y, Cai Y, Yan K, Li W, Hu B, Chan P, Zhao GG, Belmonte JCI, Zhou Q, Qu J, Wang S, Liu GH. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021; 12:695-716. [PMID: 34052996 PMCID: PMC8403220 DOI: 10.1007/s13238-021-00852-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Beijing, 101408, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guo-Guang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | | | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
22
|
Hourigan B, Balay SD, Yee G, Sharma S, Tan Q. Capicua regulates the development of adult-born neurons in the hippocampus. Sci Rep 2021; 11:11725. [PMID: 34083623 PMCID: PMC8175746 DOI: 10.1038/s41598-021-91168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
New neurons continuously arise from neural progenitor cells in the dentate gyrus of the adult hippocampus to support ongoing learning and memory formation. To generate functional adult-born neurons, neural progenitor cells proliferate to expand the precursor cell pool and differentiate into neurons. Newly generated cells then undergo postmitotic maturation to migrate to their final destination and develop elaborate dendritic branching, which allows them to receive input signals. Little is known about factors that regulate neuronal differentiation, migration, and dendrite maturation during adult hippocampal neurogenesis. Here, we show that the transcriptional repressor protein capicua (CIC) exhibits dynamic expression in the adult dentate gyrus. Conditional deletion of Cic from the mouse dentate gyrus compromises the adult neural progenitor cell pool without altering their proliferative potential. We further demonstrate that the loss of Cic impedes neuronal lineage development and disrupts dendritic arborization and migration of adult-born neurons. Our study uncovers a previously unrecognized role of CIC in neurogenesis of the adult dentate gyrus.
Collapse
Affiliation(s)
- Brenna Hourigan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Spencer D Balay
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.,Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Graydon Yee
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Saloni Sharma
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.
| |
Collapse
|
23
|
3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 2021; 184:723-740.e21. [PMID: 33508230 DOI: 10.1016/j.cell.2021.01.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Elucidating the regulatory mechanisms of human brain evolution is essential to understanding human cognition and mental disorders. We generated multi-omics profiles and constructed a high-resolution map of 3D genome architecture of rhesus macaque during corticogenesis. By comparing the 3D genomes of human, macaque, and mouse brains, we identified many human-specific chromatin structure changes, including 499 topologically associating domains (TADs) and 1,266 chromatin loops. The human-specific loops are significantly enriched in enhancer-enhancer interactions, and the regulated genes show human-specific expression changes in the subplate, a transient zone of the developing brain critical for neural circuit formation and plasticity. Notably, many human-specific sequence changes are located in the human-specific TAD boundaries and loop anchors, which may generate new transcription factor binding sites and chromatin structures in human. Collectively, the presented data highlight the value of comparative 3D genome analyses in dissecting the regulatory mechanisms of brain development and evolution.
Collapse
|
24
|
Futrega K, Robey PG, Klein TJ, Crawford RW, Doran MR. A single day of TGF-β1 exposure activates chondrogenic and hypertrophic differentiation pathways in bone marrow-derived stromal cells. Commun Biol 2021; 4:29. [PMID: 33398032 PMCID: PMC7782775 DOI: 10.1038/s42003-020-01520-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Virtually all bone marrow-derived stromal cell (BMSC) chondrogenic induction cultures include greater than 2 weeks exposure to transforming growth factor-β (TGF-β), but fail to generate cartilage-like tissue suitable for joint repair. Herein we used a micro-pellet model (5 × 103 BMSC each) to determine the duration of TGF-β1 exposure required to initiate differentiation machinery, and to characterize the role of intrinsic programming. We found that a single day of TGF-β1 exposure was sufficient to trigger BMSC chondrogenic differentiation and tissue formation, similar to 21 days of TGF-β1 exposure. Despite cessation of TGF-β1 exposure following 24 hours, intrinsic programming mediated further chondrogenic and hypertrophic BMSC differentiation. These important behaviors are obfuscated by diffusion gradients and heterogeneity in commonly used macro-pellet models (2 × 105 BMSC each). Use of more homogenous micro-pellet models will enable identification of the critical differentiation cues required, likely in the first 24-hours, to generate high quality cartilage-like tissue from BMSC.
Collapse
Affiliation(s)
- Kathryn Futrega
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
| | - Pamela G Robey
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA
| | - Travis J Klein
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ross W Crawford
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Michael R Doran
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA.
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Mater Research Institute, University of Queensland (UQ), Brisbane, Queensland, Australia.
| |
Collapse
|
25
|
Yong HJ, Xie G, Liu C, Wang W, Naji A, Irianto J, Wang YJ. Gene Signatures of NEUROGENIN3+ Endocrine Progenitor Cells in the Human Pancreas. Front Endocrinol (Lausanne) 2021; 12:736286. [PMID: 34566896 PMCID: PMC8456125 DOI: 10.3389/fendo.2021.736286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
NEUROGENIN3+ (NEUROG3+) cells are considered to be pancreatic endocrine progenitors. Our current knowledge on the molecular program of NEUROG3+ cells in humans is largely extrapolated from studies in mice. We hypothesized that single-cell RNA-seq enables in-depth exploration of the rare NEUROG3+ cells directly in humans. We aligned four large single-cell RNA-seq datasets from postnatal human pancreas. Our integrated analysis revealed 10 NEUROG3+ epithelial cells from a total of 11,174 pancreatic cells. Noticeably, human NEUROG3+ cells clustered with mature pancreatic cells and epsilon cells displayed the highest frequency of NEUROG3 positivity. We confirmed the co-expression of NEUROG3 with endocrine markers and the high percentage of NEUROG3+ cells among epsilon cells at the protein level based on immunostaining on pancreatic tissue sections. We further identified unique genetic signatures of the NEUROG3+ cells. Regulatory network inference revealed novel transcription factors including Prospero homeobox protein 1 (PROX1) may act jointly with NEUROG3. As NEUROG3 plays a central role in endocrine differentiation, knowledge gained from our study will accelerate the development of beta cell regeneration therapies to treat diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Chengyang Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yue J. Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
- *Correspondence: Yue J. Wang,
| |
Collapse
|
26
|
Geng F, Liu Z, Chen X, Chen H, Liu Y, Yang J, Zheng M, Yang L, Teng Y. High mobility group nucleosomal binding 2 reduces integrin α5/β1-mediated adhesion of Klebsiella pneumoniae on human pulmonary epithelial cells via nuclear factor I. Microbiol Immunol 2020; 64:825-834. [PMID: 33034909 DOI: 10.1111/1348-0421.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
It has been reported that high mobility group nucleosomal binding domain 2 (HMGN2) is a nucleus-related protein that regulates gene transcription and plays a critical role in bacterial clearance. An elevated level of HMGN2 reduced integrin α5/β1 expression of human pulmonary epithelial A549 cells was demonstrated during Klebsiella pneumoniae infection, thus weakening bacterial adhesion and invasion. However, the mechanism by which HMGN2 regulates integrin expression remains unclear. This study found that a transcription factor-nuclear factor I (NFI), which serves as the potential target of HMGN2 regulated integrin expression. The results showed that HMGN2 was able to promote NFIA and NFIB expression by increasing H3K27 acetylation of NFIA/B promoter regions. The integrin α5/β1 expression was significantly enhanced by knockdown of NFIA/B via a siRNA approach. Meanwhile, NFIA/B silence could also compromise the inhibition effect of HMGN2 on the integrin α5/β1 expression. Mechanistically, it was demonstrated that HMGN2 facilitated the recruitment of NFI on the promoter regions of integrin α5/β1 according to the chromatin immunoprecipitation assay. In addition, it was further demonstrated that the knockdown of NFIA/B induced more adhesion of Klebsiella pneumoniae on pulmonary epithelial A549 cells, which could be reversed by the application of an integrin inhibitor RGD. The results revealed a regulatory role of HMGN2 on the transcription level of integrin α5/β1, indicating a potential treatment strategy against Klebsiella pneumoniae-induced infectious lung diseases.
Collapse
Affiliation(s)
- Fan Geng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Huan Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jing Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Min Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
27
|
Kallarackal J, Burger F, Bianco S, Romualdi A, Schad M. A 3-gene biomarker signature to predict response to taxane-based neoadjuvant chemotherapy in breast cancer. PLoS One 2020; 15:e0230313. [PMID: 32196521 PMCID: PMC7083332 DOI: 10.1371/journal.pone.0230313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/26/2020] [Indexed: 01/24/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide, affecting one in eight women in their lifetime. Taxane-based chemotherapy is routinely used in the treatment of breast cancer. The purpose of this study was to develop and validate a predictive biomarker to improve the benefit/risk ratio for that cytotoxic chemotherapy. We explicitly strived for a biomarker that enables secure translation into clinical practice. We used genome-wide gene expression data of the Hatzis et al. discovery cohort of 310 patients for biomarker development and three independent cohorts with a total of 567 breast cancer patients for validation. We were able to develop a biomarker signature that consists of just the three gene products ELF5, SCUBE2 and NFIB, measured on RNA level. Compared to Hatzis et al., we achieved a significant improvement in predicting responders and non-responders in the Hatzis et al. validation cohort with an area under the receiver operating characteristics curve of 0.73 [95% CI, 69%—77%]. Moreover, we could confirm the performance of our biomarker on two further independent validation cohorts. The overall performance on all three validation cohorts expressed as area under the receiver operating characteristics curve was 0.75 [95% CI, 70%—80%]. At the clinically relevant classifier’s operation point to optimize the exclusion of non-responders, the biomarker correctly predicts three out of four patients not responding to neoadjuvant taxane-based chemotherapy, independent of the breast cancer subtype. At the same time, the response rate in the group of predicted responders increased to 42% compared to 23% response rate in all patients of the validation cohorts.
Collapse
|
28
|
Expression of NFIA and NFIB within the murine spinal cord. Gene Expr Patterns 2020; 35:119098. [PMID: 32068188 DOI: 10.1016/j.gep.2020.119098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The Nuclear factor I proteins comprise a family of transcription factors that are expressed in many developing and mature cell populations, including within the central nervous system. Within the embryonic mouse spinal cord, NFIA and NFIB are expressed by neural progenitor cells lining the central canal, where they act to promote astrocytic and oligodendrocytic lineage specification. Cells lining the mature spinal cord central canal retain characteristics of neural progenitor cells, but the expression of NFIA and NFIB within the mature spinal cord at a cell-type-specific level remains undefined. Here, we investigated where these two transcription factors are expressed within the adult mouse spinal cord. We reveal that both factors are expressed in similar cohorts of mature cells, including ependymal cells, interneurons and motor neurons. We also show robust and widespread expression of NFIA and NFIB within nestin-expressing cells following injury to the spinal cord. Collectively, these data provide a basis to further define what functional role(s) NFIA and NFIB play within the adult spinal cord.
Collapse
|
29
|
Fraser J, Essebier A, Brown AS, Davila RA, Harkins D, Zalucki O, Shapiro LP, Penzes P, Wainwright BJ, Scott MP, Gronostajski RM, Bodén M, Piper M, Harvey TJ. Common Regulatory Targets of NFIA, NFIX and NFIB during Postnatal Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2020; 19:89-101. [PMID: 31838646 PMCID: PMC7815246 DOI: 10.1007/s12311-019-01089-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation plays a central role in controlling neural stem and progenitor cell proliferation and differentiation during neurogenesis. For instance, transcription factors from the nuclear factor I (NFI) family have been shown to co-ordinate neural stem and progenitor cell differentiation within multiple regions of the embryonic nervous system, including the neocortex, hippocampus, spinal cord and cerebellum. Knockout of individual Nfi genes culminates in similar phenotypes, suggestive of common target genes for these transcription factors. However, whether or not the NFI family regulates common suites of genes remains poorly defined. Here, we use granule neuron precursors (GNPs) of the postnatal murine cerebellum as a model system to analyse regulatory targets of three members of the NFI family: NFIA, NFIB and NFIX. By integrating transcriptomic profiling (RNA-seq) of Nfia- and Nfix-deficient GNPs with epigenomic profiling (ChIP-seq against NFIA, NFIB and NFIX, and DNase I hypersensitivity assays), we reveal that these transcription factors share a large set of potential transcriptional targets, suggestive of complementary roles for these NFI family members in promoting neural development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Matthew P Scott
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mikael Bodén
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
30
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
31
|
Liu RZ, Vo TM, Jain S, Choi WS, Garcia E, Monckton EA, Mackey JR, Godbout R. NFIB promotes cell survival by directly suppressing p21 transcription in TP53-mutated triple-negative breast cancer. J Pathol 2018; 247:186-198. [PMID: 30350349 DOI: 10.1002/path.5182] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options and poor prognosis. There is an urgent need to identify and understand the key factors and signalling pathways driving TNBC tumour progression, relapse, and treatment resistance. In this study, we report that gene copy numbers and expression levels of nuclear factor IB (NFIB), a recently identified oncogene in small cell lung cancer, are preferentially increased in TNBC compared to other breast cancer subtypes. Furthermore, increased levels of NFIB are significantly associated with high tumour grade, poor prognosis, and reduced chemotherapy response. Concurrent TP53 mutations and NFIB overexpression (z-scores > 0) were observed in 77.9% of TNBCs, in contrast to 28.5% in non-TNBCs. Depletion of NFIB in TP53-mutated TNBC cell lines promotes cell death, cell cycle arrest, and enhances sensitivity to docetaxel, a first-line chemotherapeutic drug in breast cancer treatment. Importantly, these alterations in growth properties were accompanied by induction of CDKN1A, the gene encoding p21, a downstream effector of p53. We show that NFIB directly interacts with the CDKN1A promoter in TNBC cells. Furthermore, knockdown of combined p21 and NFIB reverses the docetaxel-induced cell growth inhibition observed upon NFIB knockdown, indicating that NFIB's effect on chemotherapeutic drug response is mediated through p21. Our results indicate that NFIB is an important TNBC factor that drives tumour cell growth and drug resistance, leading to poor clinical outcomes. Thus, targeting NFIB in TP53-mutated TNBC may reverse oncogenic properties associated with mutant p53 by restoring p21 activity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - The M Vo
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Saket Jain
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Elizabeth Garcia
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Elizabeth A Monckton
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| |
Collapse
|
32
|
Fraser J, Essebier A, Brown AS, Davila RA, Sengar AS, Tu Y, Ensbey KS, Day BW, Scott MP, Gronostajski RM, Wainwright BJ, Boden M, Harvey TJ, Piper M. Granule neuron precursor cell proliferation is regulated by NFIX and intersectin 1 during postnatal cerebellar development. Brain Struct Funct 2018; 224:811-827. [PMID: 30511336 DOI: 10.1007/s00429-018-1801-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebellar granule neurons are the most numerous neuronal subtype in the central nervous system. Within the developing cerebellum, these neurons are derived from a population of progenitor cells found within the external granule layer of the cerebellar anlage, namely the cerebellar granule neuron precursors (GNPs). The timely proliferation and differentiation of these precursor cells, which, in rodents occurs predominantly in the postnatal period, is tightly controlled to ensure the normal morphogenesis of the cerebellum. Despite this, our understanding of the factors mediating how GNP differentiation is controlled remains limited. Here, we reveal that the transcription factor nuclear factor I X (NFIX) plays an important role in this process. Mice lacking Nfix exhibit reduced numbers of GNPs during early postnatal development, but elevated numbers of these cells at postnatal day 15. Moreover, Nfix-/- GNPs exhibit increased proliferation when cultured in vitro, suggestive of a role for NFIX in promoting GNP differentiation. At a mechanistic level, profiling analyses using both ChIP-seq and RNA-seq identified the actin-associated factor intersectin 1 as a downstream target of NFIX during cerebellar development. In support of this, mice lacking intersectin 1 also displayed delayed GNP differentiation. Collectively, these findings highlight a key role for NFIX and intersectin 1 in the regulation of cerebellar development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - YuShan Tu
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - Kathleen S Ensbey
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Bryan W Day
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Mikael Boden
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia. .,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
33
|
Kerschner JL, Ghosh S, Paranjapye A, Cosme WR, Audrézet MP, Nakakuki M, Ishiguro H, Férec C, Rommens J, Harris A. Screening for Regulatory Variants in 460 kb Encompassing the CFTR Locus in Cystic Fibrosis Patients. J Mol Diagn 2018; 21:70-80. [PMID: 30296588 DOI: 10.1016/j.jmoldx.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
It is estimated that up to 5% of cystic fibrosis transmembrane conductance regulator (CFTR) pathogenic alleles are unidentified. Some of these errors may lie in noncoding regions of the locus and affect gene expression. To identify regulatory element variants in the CFTR locus, SureSelect targeted enrichment of 460 kb encompassing the gene was optimized to deep sequence genomic DNA from 80 CF patients with an unequivocal clinical diagnosis but only one or no CFTR-coding region pathogenic variants. Bioinformatics tools were used to identify sequence variants and predict their impact, which were then assayed in transient reporter gene luciferase assays. The effect of five variants in the CFTR promoter and four in an intestinal enhancer of the gene were assayed in relevant cell lines. The initial analysis of sequence data revealed previously known CF-causing variants, validating the robustness of the SureSelect design, and showed that 85 of 160 CF alleles were undefined. Of a total 1737 variants revealed across the extended 460-kb CFTR locus, 51 map to known CFTR cis-regulatory elements, and many of these are predicted to alter transcription factor occupancy. Four promoter variants and all those in the intestinal enhancer significantly repress reporter gene activity. These data suggest that CFTR regulatory elements may harbor novel CF disease-causing variants that warrant further investigation, both for genetic screening protocols and functional assays.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sujana Ghosh
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Wilmel R Cosme
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | | | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Johanna Rommens
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio; Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
34
|
Piper M, Gronostajski R, Messina G. Nuclear Factor One X in Development and Disease. Trends Cell Biol 2018; 29:20-30. [PMID: 30287093 DOI: 10.1016/j.tcb.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
The past decade has seen incredible advances in the field of stem cell biology that have greatly improved our understanding of development and provided important insights into pathological processes. Transcription factors (TFs) play a central role in mediating stem cell proliferation, quiescence, and differentiation. One TF that contributes to these processes is Nuclear Factor One X (NFIX). Recently, NFIX activity has been shown to be essential in multiple organ systems and to have important translational impacts for human health. Here, we describe recent studies showing the contribution of NFIX to muscle development and muscular dystrophies, hematopoiesis, cancer, and neural stem cell biology, highlighting the importance of this knowledge in the development of therapeutic targets.
Collapse
Affiliation(s)
- Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Richard Gronostajski
- Department of Biochemistry, Genetics, Genomics & Bioinformatics Graduate Program, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
35
|
Kochmanski J, Marchlewicz EH, Cavalcante RG, Sartor MA, Dolinoy DC. Age-related epigenome-wide DNA methylation and hydroxymethylation in longitudinal mouse blood. Epigenetics 2018; 13:779-792. [PMID: 30079798 PMCID: PMC6224215 DOI: 10.1080/15592294.2018.1507198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023] Open
Abstract
DNA methylation at cytosine-phosphate-guanine (CpG) dinucleotides changes as a function of age in humans and animal models, a process that may contribute to chronic disease development. Recent studies have investigated the role of an oxidized form of DNA methylation - 5-hydroxymethylcytosine (5hmC) - in the epigenome, but its contribution to age-related DNA methylation remains unclear. We tested the hypothesis that 5hmC changes with age, but in a direction opposite to 5-methylcytosine (5mC), potentially playing a distinct role in aging. To characterize epigenetic aging, genome-wide 5mC and 5hmC were measured in longitudinal blood samples (2, 4, and 10 months of age) from isogenic mice using two sequencing methods - enhanced reduced representation bisulfite sequencing and hydroxymethylated DNA immunoprecipitation sequencing. Examining the epigenome by age, we identified 28,196 unique differentially methylated CpGs (DMCs) and 8,613 differentially hydroxymethylated regions (DHMRs). Mouse blood showed a general pattern of epigenome-wide hypermethylation and hypo-hydroxymethylation with age. Comparing age-related DMCs and DHMRs, 1,854 annotated genes showed both differential 5mC and 5hmC, including one gene - Nfic - at five CpGs in the same 250 bp chromosomal region. At this region, 5mC and 5hmC levels both decreased with age. Reflecting these age-related epigenetic changes, Nfic RNA expression in blood decreased with age, suggesting that age-related regulation of this gene may be driven by 5hmC, not canonical DNA methylation. Combined, our genome-wide results show age-related differential 5mC and 5hmC, as well as some evidence that changes in 5hmC may drive age-related DNA methylation and gene expression.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth H. Marchlewicz
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Raymond G. Cavalcante
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Sathyan S, Barzilai N, Atzmon G, Milman S, Ayers E, Verghese J. Genetic Insights Into Frailty: Association of 9p21-23 Locus With Frailty. Front Med (Lausanne) 2018; 5:105. [PMID: 29765957 PMCID: PMC5938407 DOI: 10.3389/fmed.2018.00105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Frailty is a complex aging phenotype associated with increased vulnerability to disability and death. Understanding the biological antecedents of frailty may provide clues to healthy aging. The genome-wide association study hotspot, 9p21-23 region, is a risk locus for a number of age-related complex disorders associated with frailty. Hence, we conducted an association study to examine whether variations in 9p21-23 locus plays a role in the pathogenesis of frailty in 637 community-dwelling Ashkenazi Jewish adults aged 65 and older enrolled in the LonGenity study. The strongest association with frailty (adjusted for age and gender) was found with the SNP rs518054 (odds ratio: 1.635, 95% CI = 1.241-2.154; p-value: 4.81 × 10-04) intergenic and located between LOC105375977 and C9orf146. The prevalence of four SNPs (rs1324192, rs7019262, rs518054, and rs571221) risk alleles haplotype in this region was significantly higher (compared with other haplotypes) in frail older adults compared with non-frail older adults (29.7 vs. 20.8%, p = 0.0005, respectively). Functional analyses using in silico approaches placed rs518054 in the CTCF binding site as well as DNase hypersensitive region. Furthermore, rs518054 was found to be in an enhancer site of NFIB gene located downstream. NFIB is a transcription factor that promotes cell differentiation during development, has antiapoptotic effect, maintains stem cell populations in adult tissues, and also acts as epigenetic regulators. Our study found novel association of SNPs in the regulatory region in the 9p21-23 region with the frailty phenotype; signifying the importance of this locus in aging.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
37
|
Vidovic D, Davila RA, Gronostajski RM, Harvey TJ, Piper M. Transcriptional regulation of ependymal cell maturation within the postnatal brain. Neural Dev 2018; 13:2. [PMID: 29452604 PMCID: PMC5816376 DOI: 10.1186/s13064-018-0099-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Radial glial stem cells within the developing nervous system generate a variety of post-mitotic cells, including neurons and glial cells, as well as the specialised multi-ciliated cells that line the walls of the ventricular system, the ependymal cells. Ependymal cells separate the brain parenchyma from the cerebrospinal fluid and mediate osmotic regulation, the flow of cerebrospinal fluid, and the subsequent dispersion of signalling molecules via the co-ordinated beating of their cilia. Deficits to ependymal cell development and function have been implicated in the formation of hydrocephalus, but the transcriptional mechanisms underpinning ependymal development remain poorly characterised. Findings Here, we demonstrate that the transcription factor nuclear factor IX (NFIX) plays a central role in the development of the ependymal cell layer of the lateral ventricles. Expression of ependymal cell-specific markers is delayed in the absence of Nfix. Moreover, Nfix-deficient mice exhibit aberrant ependymal cell morphology at postnatal day 15, culminating in abnormal thickening and intermittent loss of this cell layer. Finally, we reveal Foxj1, a key factor promoting ependymal cell maturation, as a target for NFIX-mediated transcriptional activation. Conclusions Collectively, our data indicate that ependymal cell development is reliant, at least in part, on NFIX expression, further implicating this transcription factor as a mediator of multiple aspects of radial glial biology during corticogenesis. Electronic supplementary material The online version of this article (10.1186/s13064-018-0099-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Vidovic
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
38
|
Harris L, Zalucki O, Clément O, Fraser J, Matuzelski E, Oishi S, Harvey TJ, Burne THJ, Heng JIT, Gronostajski RM, Piper M. Neurogenic differentiation by hippocampal neural stem and progenitor cells is biased by NFIX expression. Development 2018; 145:145/3/dev155689. [DOI: 10.1242/dev.155689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
ABSTRACT
Our understanding of the transcriptional programme underpinning adult hippocampal neurogenesis is incomplete. In mice, under basal conditions, adult hippocampal neural stem cells (AH-NSCs) generate neurons and astrocytes, but not oligodendrocytes. The factors limiting oligodendrocyte production, however, remain unclear. Here, we reveal that the transcription factor NFIX plays a key role in this process. NFIX is expressed by AH-NSCs, and its expression is sharply upregulated in adult hippocampal neuroblasts. Conditional ablation of Nfix from AH-NSCs, coupled with lineage tracing, transcriptomic sequencing and behavioural studies collectively reveal that NFIX is cell-autonomously required for neuroblast maturation and survival. Moreover, a small number of AH-NSCs also develop into oligodendrocytes following Nfix deletion. Remarkably, when Nfix is deleted specifically from intermediate progenitor cells and neuroblasts using a Dcx-creERT2 driver, these cells also display elevated signatures of oligodendrocyte gene expression. Together, these results demonstrate the central role played by NFIX in neuroblasts within the adult hippocampal stem cell neurogenic niche in promoting the maturation and survival of these cells, while concomitantly repressing oligodendrocyte gene expression signatures.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Olivier Clément
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia 6102
| | - James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Elise Matuzelski
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Tracey J. Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia 4072
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia 4076
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia 6102
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia 4072
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
39
|
Rolando C, Taylor V. Non-canonical post-transcriptional RNA regulation of neural stem cell potential. Brain Plast 2017; 3:111-116. [PMID: 29765864 PMCID: PMC5928563 DOI: 10.3233/bpl-170046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Adult brain structures and complexity emerge from a single layer of neuroepithelial cells that early during the development give rise to neural stem cells (NSCs). NSCs persist in restricted regions of the postnatal brain where they support neurogenesis throughout life thus allowing brain plasticity and adaptation. NSC regulation involves a precise coordination of intrinsic and extrinsic mechanisms that finely modulate the neurogenic process. Here we will discuss new mechanisms of post-transcriptional gene regulation that act in the embryonic and adult brain to regulate NSC maintenance and differentiation. In our recent work we found that the RNAaseIII Drosha not only regulates microRNA production, but also directly affects the stability of mRNAs and thereby controls proteome composition. This non-canonical (miRNA-independent) function of Drosha is central in the maintenance and fate choices made by adult hippocampal NSCs in the healthy brain. We found that Drosha targets the mRNA of the gliogenic transcription factor Nuclear Factor I/B and thereby blocks its expression in the NSCs. In the absence of Drosha, NSCs aberrantly differentiate into oligodendrocytes and are lost leading to an impairment of neurogenesis. Overall these findings reveal an unprecedented Drosha-mediated post-transcriptional mechanism for the regulation of hippocampal NSC potential.
Collapse
Affiliation(s)
- Chiara Rolando
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Transcriptional regulation of Nfix by NFIB drives astrocytic maturation within the developing spinal cord. Dev Biol 2017; 432:286-297. [PMID: 29106906 DOI: 10.1016/j.ydbio.2017.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/15/2023]
Abstract
During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown. Here, we reveal that ventricular zone progenitor cells within the spinal cord express NFIX after the onset of NFIA and NFIB expression, and after the gliogenic switch has occurred. Mice lacking NFIX exhibit normal neurogenesis within the spinal cord, and, while early astrocytic differentiation proceeds normally, aspects of terminal astrocytic differentiation are impaired. Finally, we report that, in the absence of Nfia or Nfib, there is a marked reduction in the spinal cord expression of NFIX, and that NFIB can transcriptionally activate Nfix expression in vitro. These data demonstrate that NFIX is part of the downstream transcriptional program through which NFIA and NFIB coordinate gliogenesis within the spinal cord. This hierarchical organisation of NFI protein expression and function during spinal cord gliogenesis reveals a previously unrecognised auto-regulatory mechanism within this gene family.
Collapse
|
41
|
Romanovskaya EV, Vikhnina MV, Grishina TV, Ivanov MP, Leonova LE, Tsvetkova EV. Transcription factors of the NF1 family: Possible mechanisms of inducible gene expression in the evolutionary lineage of multicellular animals. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s123456781702001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Becker-Santos DD, Lonergan KM, Gronostajski RM, Lam WL. Nuclear Factor I/B: A Master Regulator of Cell Differentiation with Paradoxical Roles in Cancer. EBioMedicine 2017; 22:2-9. [PMID: 28596133 PMCID: PMC5552107 DOI: 10.1016/j.ebiom.2017.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that nuclear factor I/B (NFIB), a transcription factor required for proper development and regulation of cellular differentiation in several tissues, also plays critical roles in cancer. Despite being a metastatic driver in small cell lung cancer and melanoma, it has become apparent that NFIB also exhibits tumour suppressive functions in many malignancies. The contradictory contributions of NFIB to both the inhibition and promotion of tumour development and progression, corroborates its diverse and context-dependent roles in many tissues and cell types. Considering the frequent involvement of NFIB in cancer, a better understanding of its multifaceted nature may ultimately benefit the development of novel strategies for the management of a broad spectrum of malignancies. Here we discuss recent findings which bring to light NFIB as a crucial and paradoxical player in cancer. NFIB, a versatile regulator of cell differentiation, is emerging as a crucial driver of cancer metastasis. Paradoxically, NFIB also exhibits tumour suppressive functions in several cancer types. A deeper understanding of the multifaceted and context-dependent nature of NFIB has the potential to improve the clinical management of a variety of cancers.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| | - Kim M Lonergan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Chen KS, Harris L, Lim JWC, Harvey TJ, Piper M, Gronostajski RM, Richards LJ, Bunt J. Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice. J Comp Neurol 2017; 525:2465-2483. [PMID: 28295292 DOI: 10.1002/cne.24206] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Zhou J, Wang S, Qi Q, Yang X, Zhu E, Yuan H, Li X, Liu Y, Li X, Wang B. Nuclear factor I‐C reciprocally regulates adipocyte and osteoblast differentiation
via
control of canonical Wnt signaling. FASEB J 2017; 31:1939-1952. [DOI: 10.1096/fj.201600975rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/09/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Jie Zhou
- Key Laboratory of Hormones and DevelopmentMinistry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjinChina
- 2011 Collaborative Innovation Center for Metabolic DiseasesMetabolic Diseases Hospital and Institute of EndocrinologyTianjinChina
| | - Shan Wang
- College of Basic Medical SciencesTianjinChina
| | - Qi Qi
- Key Laboratory of Hormones and DevelopmentMinistry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjinChina
| | - Xiaoyue Yang
- Stomatological HospitalTianjin Medical UniversityTianjinChina
| | - Endong Zhu
- Key Laboratory of Hormones and DevelopmentMinistry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjinChina
| | - Hairui Yuan
- Key Laboratory of Hormones and DevelopmentMinistry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjinChina
| | - Xuemei Li
- Key Laboratory of Hormones and DevelopmentMinistry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjinChina
| | - Ying Liu
- Stomatological HospitalTianjin Medical UniversityTianjinChina
| | - Xiaoxia Li
- College of Basic Medical SciencesTianjinChina
| | - Baoli Wang
- Key Laboratory of Hormones and DevelopmentMinistry of HealthTianjin Key Laboratory of Metabolic DiseasesTianjinChina
- 2011 Collaborative Innovation Center for Metabolic DiseasesMetabolic Diseases Hospital and Institute of EndocrinologyTianjinChina
| |
Collapse
|
45
|
NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF. EBioMedicine 2017; 16:63-75. [PMID: 28119061 PMCID: PMC5474438 DOI: 10.1016/j.ebiom.2017.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
Abstract
While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis. NFIB mediates a slow cycling, highly invasive/migratory melanoma cell phenotype downstream of BRN2. NFIB increases EZH2 expression downstream of BRN2, which further decreases MITF levels. NFIB expression is defined by an invasive gene signature and colocalises with BRN2 in primary and metastatic human melanoma tumours.
Melanoma is a heterogeneous cancer, made up of many cellular populations that differ in their ability to induce tumour growth or invasion throughout the body (metastasis). These populations have been found to switch back and forth to drive invasion and progression. This process appears to be controlled by an inverse axis between two genes, MITF and BRN2. BRN2 drives metastatic spread, but the process by which it acts is not well characterized and cannot be targeted clinically. This study has uncovered a role for the gene NFIB in driving invasion downstream of BRN2. Importantly, it appears to drive this process through EZH2, which can be targeted therapeutically to reduce metastasis.
Collapse
|
46
|
Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct 2016; 222:2251-2270. [PMID: 27878595 DOI: 10.1007/s00429-016-1340-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.
Collapse
|
47
|
Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale P, Milo M, Wegleiter T, Jessberger S, Taylor V. Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB. Cell Stem Cell 2016; 19:653-662. [DOI: 10.1016/j.stem.2016.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 05/23/2016] [Accepted: 07/06/2016] [Indexed: 11/26/2022]
|
48
|
Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 2016; 62:34-49. [PMID: 27771362 DOI: 10.1016/j.semcdb.2016.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
49
|
Teng Y, Miao J, Shen X, Yang X, Wang X, Ren L, Wang X, Chen J, Li J, Chen S, Wang Y, Huang N. The modulation of MiR-155 and MiR-23a manipulates Klebsiella pneumoniae Adhesion on Human pulmonary Epithelial cells via Integrin α5β1 Signaling. Sci Rep 2016; 6:31918. [PMID: 27534887 PMCID: PMC4989230 DOI: 10.1038/srep31918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Micro-RNAs (miRNAs) critically regulate several host defense mechanisms, but their roles in the bacteria-epithelium interplay remain unclear. Our results displayed that the expression of miR-155 and miR-23a were down-regulated in K. pneumoniae-infected pulmonary epithelial cells. The elevated bacterial adhesion on A549 cells followed the enhancement of the cellular levels of these two miRNAs. Meanwhile, a mechanistic study demonstrated that miR-155 promoted integrin α5β1 function and resulted in the increased actin polymerization. Moreover, a non-histone nuclear protein, high mobility group nucleosomal-binding domain 2 (HMGN2) served as the potential target of miR-155 and miR-23a to regulate the integrin α5β1 expression and K. pneumoniae adhesion. Furthermore, the expression of a known integrin transcription suppressor-Nuclear Factor-I (NFI) was also repressed by miR-155, which paralleled with its chromatin location in the promoter regions of integrin α5 and β1. These results uncover novel links between miRNAs and integrin function to regulate bacterial adhesion, indicating a potential mechanism of host cell autonomous immune response to K. pneumoniae infection.
Collapse
Affiliation(s)
- Yan Teng
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junming Miao
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaofei Shen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaolong Yang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xinyuan Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Laibin Ren
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoying Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junli Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingyu Li
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shanze Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ning Huang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Grüner BM, Chiou SH, Schep AN, Baral J, Hamard C, Antoine M, Wislez M, Kong CS, Connolly AJ, Park KS, Sage J, Greenleaf WJ, Winslow MM. Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility. Cell 2016; 166:328-342. [PMID: 27374332 PMCID: PMC5004630 DOI: 10.1016/j.cell.2016.05.052] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
Metastases are the main cause of cancer deaths, but the mechanisms underlying metastatic progression remain poorly understood. We isolated pure populations of cancer cells from primary tumors and metastases from a genetically engineered mouse model of human small cell lung cancer (SCLC) to investigate the mechanisms that drive the metastatic spread of this lethal cancer. Genome-wide characterization of chromatin accessibility revealed the opening of large numbers of distal regulatory elements across the genome during metastatic progression. These changes correlate with copy number amplification of the Nfib locus, and differentially accessible sites were highly enriched for Nfib transcription factor binding sites. Nfib is necessary and sufficient to increase chromatin accessibility at a large subset of the intergenic regions. Nfib promotes pro-metastatic neuronal gene expression programs and drives the metastatic ability of SCLC cells. The identification of widespread chromatin changes during SCLC progression reveals an unexpected global reprogramming during metastatic progression.
Collapse
Affiliation(s)
- Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Shan Lim
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alicia N Schep
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessika Baral
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cécile Hamard
- Service de Pneumologie, Hôpital Tenon-APHP, Université Paris 6 Pierre et Marie Curie, 75020 Paris, France
| | - Martine Antoine
- Service de Pneumologie, Hôpital Tenon-APHP, Université Paris 6 Pierre et Marie Curie, 75020 Paris, France
| | - Marie Wislez
- Service de Pneumologie, Hôpital Tenon-APHP, Université Paris 6 Pierre et Marie Curie, 75020 Paris, France
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew J Connolly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Julien Sage
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Monte M Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|