1
|
Młynarczyk MA, Domian N, Kasacka I. Evaluation of the Canonical Wnt Signaling Pathway in the Hearts of Hypertensive Rats of Various Etiologies. Int J Mol Sci 2024; 25:6428. [PMID: 38928134 PMCID: PMC11204257 DOI: 10.3390/ijms25126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Wnt/β-catenin signaling dysregulation is associated with the pathogenesis of many human diseases, including hypertension and heart disease. The aim of this study was to immunohistochemically evaluate and compare the expression of the Fzd8, WNT1, GSK-3β, and β-catenin genes in the hearts of rats with spontaneous hypertension (SHRs) and deoxycorticosterone acetate (DOCA)-salt-induced hypertension. The myocardial expression of Fzd8, WNT1, GSK-3β, and β-catenin was detected by immunohistochemistry, and the gene expression was assessed with a real-time PCR method. In SHRs, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was attenuated in comparison to that in normotensive animals. In DOCA-salt-induced hypertension, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was enhanced. In SHRs, decreases in the expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin were observed compared to the control group. Increased expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin was demonstrated in the hearts of rats with DOCA-salt-induced hypertension. Wnt signaling may play an essential role in the pathogenesis of arterial hypertension and the accompanying heart damage. The obtained results may constitute the basis for further research aimed at better understanding the role of the Wnt/β-catenin pathway in the functioning of the heart.
Collapse
Affiliation(s)
| | | | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.A.M.); (N.D.)
| |
Collapse
|
2
|
Maddhesiya J, Mohapatra B. Understanding the Genetic and Non-genetic Interconnections in the Aetiology of Isolated Congenital Heart Disease: An Updated Review: Part 1. Curr Cardiol Rep 2024; 26:147-165. [PMID: 38546930 DOI: 10.1007/s11886-024-02022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Congenital heart disease (CHD) is the most frequently occurring birth defect. Majority of the earlier reviews focussed on the association of genetic factors with CHD. A few epidemiological studies provide convincing evidence for environmental factors in the causation of CHD. Although the multifactorial theory of gene-environment interaction is the prevailing explanation, explicit understanding of the biological mechanism(s) involved, remains obscure. Nonetheless, integration of all the information into one platform would enable us to better understand the collective risk implicated in CHD development. RECENT FINDINGS Great strides in novel genomic technologies namely, massive parallel sequencing, whole exome sequencing, multiomics studies supported by system-biology have greatly improved our understanding of the aetiology of CHD. Molecular genetic studies reveal that cardiac specific gene variants in transcription factors or signalling molecules, or structural proteins could cause CHD. Additionally, non-hereditary contributors such as exposure to teratogens, maternal nutrition, parental age and lifestyle factors also contribute to induce CHD. Moreover, DNA methylation and non-coding RNA are also correlated with CHD. Here, we inform that a complex combination of genetic, environmental and epigenetic factors interact to interfere with morphogenetic processes of cardiac development leading to CHD. It is important, not only to identify individual genetic and non-inherited risk factors but also to recognize which factors interact mutually, causing cardiac defects.
Collapse
Affiliation(s)
- Jyoti Maddhesiya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
3
|
Paolini A, Sharipova D, Lange T, Abdelilah-Seyfried S. Wnt9 directs zebrafish heart tube assembly via a combination of canonical and non-canonical pathway signaling. Development 2023; 150:dev201707. [PMID: 37680191 PMCID: PMC10560569 DOI: 10.1242/dev.201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Tim Lange
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | | |
Collapse
|
4
|
Cherianidou A, Kappenberg F, Seidel F, Acharya A, Papazoglou P, Srinivasan SP, Hescheler J, Peng L, Leist M, Hengstler JG, Rahnenführer J, Sachinidis A. Transcriptome-based prediction of drugs, inhibiting cardiomyogenesis in human induced pluripotent stem cells. Cell Death Discov 2023; 9:321. [PMID: 37644023 PMCID: PMC10465524 DOI: 10.1038/s41420-023-01616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Animal studies for embryotoxicity evaluation of potential therapeutics and environmental factors are complex, costly, and time-consuming. Often, studies are not of human relevance because of species differences. In the present study, we recapitulated the process of cardiomyogenesis in human induced pluripotent stem cells (hiPSCs) by modulation of the Wnt signaling pathway to identify a key cardiomyogenesis gene signature that can be applied to identify compounds and/or stress factors compromising the cardiomyogenesis process. Among the 23 tested teratogens and 16 non-teratogens, we identified three retinoids including 13-cis-retinoic acid that completely block the process of cardiomyogenesis in hiPSCs. Moreover, we have identified an early gene signature consisting of 31 genes and associated biological processes that are severely affected by the retinoids. To predict the inhibitory potential of teratogens and non-teratogens in the process of cardiomyogenesis we established the "Developmental Cardiotoxicity Index" (CDI31g) that accurately differentiates teratogens and non-teratogens to do or do not affect the differentiation of hiPSCs to functional cardiomyocytes.
Collapse
Affiliation(s)
- Anna Cherianidou
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Florian Seidel
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Aviseka Acharya
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Panagiota Papazoglou
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Sureshkumar Perumal Srinivasan
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jürgen Hescheler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Luying Peng
- Heart Health Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai and Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO, Box M657, 78457, Constance, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Agapios Sachinidis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany.
| |
Collapse
|
5
|
Astrof S, Arriagada C, Saijoh Y, Francou A, Kelly RG, Moon A. Aberrant differentiation of second heart field mesoderm prefigures cellular defects in the outflow tract in response to loss of FGF8. Dev Biol 2023; 499:10-21. [PMID: 37060937 PMCID: PMC10686765 DOI: 10.1016/j.ydbio.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Development of the outflow tract of the heart requires specification, proliferation and deployment of a progenitor cell population from the second heart field to generate the myocardium at the arterial pole of the heart. Disruption of these processes leads to lethal defects in rotation and septation of the outflow tract. We previously showed that Fibroblast Growth Factor 8 (FGF8) directs a signaling cascade in the second heart field that regulates critical aspects of OFT morphogenesis. Here we show that in addition to the survival and proliferation cues previously described, FGF8 provides instructive and patterning information to OFT myocardial cells and their progenitors that prevents their aberrant differentiation along a working myocardial program.
Collapse
Affiliation(s)
- Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Alexandre Francou
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Davidsen N, Ramhøj L, Kugathas I, Evrard B, Darde TA, Chalmel F, Svingen T, Rosenmai AK. PFOS disrupts key developmental pathways during hiPSC-derived cardiomyocyte differentiation in vitro. Toxicol In Vitro 2022; 85:105475. [PMID: 36116746 DOI: 10.1016/j.tiv.2022.105475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Exposure to perfluorooctanesulfonic acid (PFOS) has been associated with congenital heart disease (CHD) and decreased birth weight. PFOS exposure can disrupt signaling pathways relevant for cardiac development in stem cell-derived cardiomyocyte assays, such as the PluriBeat assay, where spheroids of human induced pluripotent stem cells (hiPSCs) differentiate into contracting cardiomyocytes. Notably, cell line origin can also affect how the assay responds to chemical exposure. Herein, we examined the effect of PFOS on cardiomyocyte differentiation by transcriptomics profiling of two different hiPSC lines to see if they exhibit a common pattern of disruption. Two stages of differentiation were investigated: the cardiac progenitor stage and the cardiomyocyte stage. Many differentially expressed genes (DEGs) were observed between cell lines independent of exposure. However, 135 DEGs were identified as common between the two cell lines. Of these, 10 DEGs were associated with GO-terms related to the heart. PFOS exposure disrupted multiple signaling pathways relevant to cardiac development, including WNT, TGF, HH, and EGF. Of these pathways, genes related to the non-canonical WNTCa2+ signaling was particularly affected. PFOS thus has the capacity to disrupt pathways important for cardiac development and function.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | | | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | |
Collapse
|
7
|
Yamamoto T, Kambayashi Y, Otsuka Y, Afouda B, Giuraniuc C, Michiue T, Hoppler S. Positive feedback regulation of frizzled-7 expression robustly shapes a steep Wnt gradient in Xenopus heart development, together with sFRP1 and heparan sulfate. eLife 2022; 11:73818. [PMID: 35942683 PMCID: PMC9363125 DOI: 10.7554/elife.73818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Secreted molecules called morphogens govern tissue patterning in a concentration-dependent manner. However, it is still unclear how reproducible patterning can be achieved with diffusing molecules, especially when that patterning concerns differentiation of thin tissues. Wnt is a morphogen that organizes cardiac development. Wnt6 patterns cardiogenic mesoderm to induce differentiation of a thin tissue, the pericardium, in Xenopus. In this study, we revealed that a Wnt receptor, frizzled-7, is expressed in a Wnt-dependent manner. With a combination of experiments and mathematical modeling, this receptor-feedback appears essential to shape a steep gradient of Wnt signaling. In addition, computer simulation revealed that this feedback imparts robustness against variations of Wnt ligand production and allows the system to reach a steady state quickly. We also found that a Wnt antagonist sFRP1, which is expressed on the opposite side of the Wnt source, accumulates on N-acetyl-rich heparan sulfate (HS). N-acetyl-rich HS concentration is high between the sources of Wnt and sFRP1, achieving local inhibition of Wnt signaling via restriction of sFRP1 spreading. These integrated regulatory systems restrict the Wnt signaling range and ensure reproducible patterning of the thin pericardium.
Collapse
Affiliation(s)
- Takayoshi Yamamoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Yuta Kambayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Yuta Otsuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Boni Afouda
- Institute of Medical Sciences, The University of Aberdeen
| | | | - Tatsuo Michiue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Stefan Hoppler
- Institute of Medical Sciences, The University of Aberdeen
| |
Collapse
|
8
|
Abraham S, Lindo C, Peoples J, Cox A, Lytle E, Nguyen V, Mehta M, Alvarez JD, Yooseph S, Pacher P, Ebert SN. Maternal binge alcohol consumption leads to distinctive acute perturbations in embryonic cardiac gene expression profiles. Alcohol Clin Exp Res 2022; 46:1433-1448. [PMID: 35692084 DOI: 10.1111/acer.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Excessive alcohol consumption during pregnancy is associated with high risk of congenital heart defects, but it is unclear how alcohol specifically affects heart development during the acute aftermath of a maternal binge drinking episode. We hypothesize that administration of a single maternal binge dose of alcohol to pregnant mice at embryonic day 9.5 (E9.5) causes perturbations in the expression patterns of specific genes in the developing heart in the acute period (1-3 days) following the binge episode. To test this hypothesis and identify strong candidate ethanol-sensitive target genes of interest, we adapted a mouse binge alcohol model that is associated with a high incidence of congenital heart defects as described below. METHODS/RESULTS Pregnant mice were administered a single dose of alcohol (2.5 g/kg in saline) or control (saline alone) via oral gavage. To evaluate the impact of maternal binge alcohol on cardiac gene expression profiles, we isolated embryonic hearts from both groups (n = 5/group) at 24, 48, and 72 h post-gavage for transcriptomic analyses. RNA was extracted and evaluated using quantitative RNA-sequencing (RNA-Seq) methods. To identify a cohort of binge-altered cardiac genes, we set the threshold for change at >2.0-fold difference with adjusted p < 0.05 versus control. RNA-Seq analysis of cardiac gene expression revealed that of the 17 genes that were altered within the first 48 h post-binge, with the largest category consisting of transcription factors (Alx1, Alx4, HoxB7, HoxD8, and Runx2), followed by signaling molecules (Adamts18, Dkk2, Rtl1, and Wnt7a). Furthermore, multiple comparative and pathway analyses suggested that several of the candidate genes identified through differential RNA-Seq analysis may interact through certain common pathways. To investigate this further, we performed gene-specific qPCR analyses for three representative candidate targets: Runx2, Wnt7a, and Mlxipl. Notably, only Wnt7a showed significantly (p < 0.05) decreased expression in response to maternal binge alcohol in the qPCR assays. CONCLUSIONS These findings identify Wnt7a and a short list of potential other candidate genes and pathways for further study, which could provide mechanistic insights into how maternal binge alcohol consumption produces congenital cardiac malformations.
Collapse
Affiliation(s)
- Shani Abraham
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Chad Lindo
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jessica Peoples
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Amanda Cox
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Erika Lytle
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Vu Nguyen
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Meeti Mehta
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jose D Alvarez
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Alcohol and Alcohol Abuse (NIAAA), The National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
9
|
Jamet S, Ha S, Ho TH, Houghtaling S, Timms A, Yu K, Paquette A, Maga AM, Greene NDE, Beier DR. The arginine methyltransferase Carm1 is necessary for heart development. G3 GENES|GENOMES|GENETICS 2022; 12:6613934. [PMID: 35736367 PMCID: PMC9339313 DOI: 10.1093/g3journal/jkac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
To discover genes implicated in human congenital disorders, we performed ENU mutagenesis in the mouse and screened for mutations affecting embryonic development. In this work, we report defects of heart development in mice homozygous for a mutation of coactivator-associated arginine methyltransferase 1 (Carm1). While Carm1 has been extensively studied, it has never been previously associated with a role in heart development. Phenotype analysis combining histology and microcomputed tomography imaging shows a range of cardiac defects. Most notably, many affected midgestation embryos appear to have cardiac rupture and hemorrhaging in the thorax. Mice that survive to late gestation show a variety of cardiac defects, including ventricular septal defects, double outlet right ventricle, and persistent truncus arteriosus. Transcriptome analyses of the mutant embryos by mRNA-seq reveal the perturbation of several genes involved in cardiac morphogenesis and muscle development and function. In addition, we observe the mislocalization of cardiac neural crest cells at E12.5 in the outflow tract. The cardiac phenotype of Carm1 mutant embryos is similar to that of Pax3 null mutants, and PAX3 is a putative target of CARM1. However, our analysis does not support the hypothesis that developmental defects in Carm1 mutant embryos are primarily due to a functional defect of PAX3.
Collapse
Affiliation(s)
- Sophie Jamet
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Seungshin Ha
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Kai Yu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Alison Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Ali Murat Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH, UK
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| |
Collapse
|
10
|
Młynarczyk M, Kasacka I. The role of the Wnt / β-catenin pathway and the functioning of the heart in arterial hypertension - A review. Adv Med Sci 2022; 67:87-94. [PMID: 35101653 DOI: 10.1016/j.advms.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Many factors and molecular pathways are involved in the pathogenesis of arterial hypertension. The increase in blood pressure may be determined by the properties of specific gene products and their associated action with environmental factors. In recent years, much attention has been paid to the Wnt/β-catenin signaling pathway which is essential for organ damage repair and homeostasis. Deregulation of the activity of the Wnt/β-catenin pathway may be directly or indirectly related to myocardial hypertrophy, as well as to cardiomyocyte remodeling and remodeling processes in pathological states of this organ. There are reports pointing to the role of the Wnt/β-catenin pathway in the course and development of organ complications in conditions of arterial hypertension. This paper presents the current state of knowledge of the role of the Wnt/β-catenin pathway in the regulation of arterial pressure and its impact on the physiology and the development of the complications of arterial hypertension in the heart.
Collapse
Affiliation(s)
- Maryla Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
11
|
Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells 2022; 11:cells11030460. [PMID: 35159270 PMCID: PMC8833927 DOI: 10.3390/cells11030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in human pluripotent stem cell (hPSC) technology allow one to deconstruct the human body into specific disease-relevant cell types or create functional units representing various organs. hPSC-based models present a unique opportunity for the study of co-occurring disorders where “cause and effect” can be addressed. Poor neurodevelopmental outcomes have been reported in children with congenital heart diseases (CHD). Intuitively, abnormal cardiac function or surgical intervention may stunt the developing brain, leading to neurodevelopmental disorders (NDD). However, recent work has uncovered several genetic variants within genes associated with the development of both the heart and brain that could also explain this co-occurrence. Given the scalability of hPSCs, straightforward genetic modification, and established differentiation strategies, it is now possible to investigate both CHD and NDD as independent events. We will first overview the potential for shared genetics in both heart and brain development. We will then summarize methods to differentiate both cardiac & neural cells and organoids from hPSCs that represent the developmental process of the heart and forebrain. Finally, we will highlight strategies to rapidly screen several genetic variants together to uncover potential phenotypes and how therapeutic advances could be achieved by hPSC-based models.
Collapse
|
12
|
Świerczek-Lasek B, Dudka D, Bauer D, Czajkowski T, Ilach K, Streminska W, Kominek A, Piwocka K, Ciemerych MA, Archacka K. Comparison of Differentiation Pattern and WNT/SHH Signaling in Pluripotent Stem Cells Cultured under Different Conditions. Cells 2021; 10:cells10102743. [PMID: 34685722 PMCID: PMC8534321 DOI: 10.3390/cells10102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by the ability to self-renew as well as undergo multidirectional differentiation. Culture conditions have a pivotal influence on differentiation pattern. In the current study, we compared the fate of mouse PSCs using two culture media: (1) chemically defined, free of animal reagents, and (2) standard one relying on the serum supplementation. Moreover, we assessed the influence of selected regulators (WNTs, SHH) on PSC differentiation. We showed that the differentiation pattern of PSCs cultured in both systems differed significantly: cells cultured in chemically defined medium preferentially underwent ectodermal conversion while their endo- and mesodermal differentiation was limited, contrary to cells cultured in serum-supplemented medium. More efficient ectodermal differentiation of PSCs cultured in chemically defined medium correlated with higher activity of SHH pathway while endodermal and mesodermal conversion of cells cultured in serum-supplemented medium with higher activity of WNT/JNK pathway. However, inhibition of either canonical or noncanonical WNT pathway resulted in the limitation of endo- and mesodermal conversion of PSCs. In addition, blocking WNT secretion led to the inhibition of PSC mesodermal differentiation, confirming the pivotal role of WNT signaling in this process. In contrast, SHH turned out to be an inducer of PSC ectodermal, not mesodermal differentiation.
Collapse
Affiliation(s)
- Barbara Świerczek-Lasek
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Dudka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Bauer
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Tomasz Czajkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Władysława Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
- Correspondence: ; Tel.: +48-22-55-42-203
| |
Collapse
|
13
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
14
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
van den Hoff MJB, Wessels A. Muscularization of the Mesenchymal Outlet Septum during Cardiac Development. J Cardiovasc Dev Dis 2020; 7:jcdd7040051. [PMID: 33158304 PMCID: PMC7711588 DOI: 10.3390/jcdd7040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
After the formation of the linear heart tube, it becomes divided into right and left components by the process of septation. Relatively late during this process, within the developing outflow tract, the initially mesenchymal outlet septum becomes muscularized as the result of myocardialization. Myocardialization is defined as the process in which existing cardiomyocytes migrate into flanking mesenchyme. Studies using genetically modified mice, as well as experimental approaches using in vitro models, demonstrate that Wnt and TGFβ signaling play an essential role in the regulation of myocardialization. They also show the significance of the interaction between cardiomyocytes, endocardial derived cells, neural crest cells, and the extracellular matrix. Interestingly, Wnt-mediated non-canonical planar cell polarity signaling was found to be a crucial regulator of myocardialization in the outlet septum and Wnt-mediated canonical β-catenin signaling is an essential regulator of the expansion of mesenchymal cells populating the outflow tract cushions.
Collapse
Affiliation(s)
- Maurice J. B. van den Hoff
- Department of Medical Biology, AmsterdamUMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +1-3120-5665-405
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
16
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
17
|
Kalisch-Smith JI, Ved N, Sparrow DB. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:a037234. [PMID: 31548181 PMCID: PMC7050589 DOI: 10.1101/cshperspect.a037234] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) has many forms and a wide range of causes. Clinically, it is important to understand the causes. This allows estimation of recurrence rate, guides treatment options, and may also be used to formulate public health advice to reduce the population prevalence of CHD. The recent advent of sophisticated genetic and genomic methods has led to the identification of more than 100 genes associated with CHD. However, despite these great strides, to date only one-third of CHD cases have been shown to have a simple genetic cause. This is because CHD can also be caused by oligogenic factors, environmental factors, and/or gene-environment interaction. Although solid evidence for environmental causes of CHD have been available for almost 80 years, it is only very recently that the molecular mechanisms for these risk factors have begun to be investigated. In this review, we describe the most important environmental CHD risk factors, and what is known about how they cause CHD.
Collapse
Affiliation(s)
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| | - Duncan Burnaby Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| |
Collapse
|
18
|
Buijtendijk MF, Barnett P, van den Hoff MJ. Development of the human heart. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:7-22. [PMID: 32048790 PMCID: PMC7078965 DOI: 10.1002/ajmg.c.31778] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/01/2023]
Abstract
In 2014, an extensive review discussing the major steps of cardiac development focusing on growth, formation of primary and chamber myocardium and the development of the cardiac electrical system, was published. Molecular genetic lineage analyses have since furthered our insight in the developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Moreover, genetic, molecular and cell biological analyses have driven insights into the mechanisms underlying the development of the different cardiac components. Here, we build on our previous review and provide an insight into the molecular mechanistic revelations that have forwarded the field of cardiac development. Despite the enormous advances in our knowledge over the last decade, the development of congenital cardiac malformations remains poorly understood. The challenge for the next decade will be to evaluate the different developmental processes using newly developed molecular genetic techniques to further unveil the gene regulatory networks operational during normal and abnormal cardiac development.
Collapse
Affiliation(s)
| | - Phil Barnett
- Department of Medical BiologyAmsterdamUMC location AMCAmsterdamThe Netherlands
| | | |
Collapse
|
19
|
Huang A, Huang Y. Role of Sfrps in cardiovascular disease. Ther Adv Chronic Dis 2020; 11:2040622320901990. [PMID: 32064070 PMCID: PMC6987486 DOI: 10.1177/2040622320901990] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related proteins (Sfrps) are a family of secreted proteins that
bind extracellularly to Wnt ligands and frizzled receptors. This binding
modulates the Wnt signaling cascade, and Sfrps interact with their corresponding
receptors. Sfrps are thought to play an important role in the pathological
mechanism of cardiac disease such as myocardial infarction, cardiac remodeling,
and heart failure. However, the overall role of Sfrps in cardiac disease is
unknown. Some members of the Sfrps family modulate cellular apoptosis,
angiogenesis, differentiation, the inflammatory process, and cardiac remodeling.
In this review, we summarize the evidence of Sfrps association with cardiac
disease. We also discuss how multiple mechanisms may underlie Sfrps being
involved in such diverse pathologies.
Collapse
Affiliation(s)
- Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, Guangdong 528300, China The George Institute for Global Health, NSW 2042, Australia
| |
Collapse
|
20
|
Liang L, Tu Y, Lu J, Wang P, Guo Z, Wang Q, Guo K, Lan R, Li H, Liu P. Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/β-catenin signaling pathway. J Cell Sci 2019; 132:jcs.228478. [PMID: 31028181 DOI: 10.1242/jcs.228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/09/2019] [Indexed: 01/13/2023] Open
Abstract
The cancer clinical therapy of doxorubicin (Dox) treatment is limited by its life-threatening cardiotoxic effects. Dickkopf-1 (Dkk1), the founding and best-studied member of the Dkk family, functions as an antagonist of canonical Wnt/β-catenin. Dkk1 is considered to play a broad role in a variety of biological processes, but its effects on Dox-induced cardiomyopathy are poorly understood. Here, we found that the level of Dkk1 was significantly increased in Dox-treated groups, and this increase exacerbated Dox-induced cardiomyocyte apoptosis and mitochondrial dysfunction. Overexpressing Dkk1 aggravated Dox-induced cardiotoxicity in H9C2 cells. Similar results were detected when adding active Dkk1 protein extracellularly. Conversely, adding specific antibody blocking extracellular Dkk1 attenuated the cardiotoxic response to Dox. Adenovirus encoding Dkk1 was transduced through intramyocardial injection and exacerbated Dox-induced cardiomyocyte apoptosis, mitochondrial damage and heart injury in vivo Furthermore, Wnt/β-catenin signaling was inhibited during Dox-induced cardiotoxicity, and the re-activation of β-catenin prevented the effect of overexpressed Dkk1 and Dox-induced cardiotoxicity. In conclusion, these results reveal the crucial role of the Dkk1-Wnt/β-catenin signaling axis in the process of Dox-induced cardiotoxicity and provide novel insights into the potential mechanism of cardiomyopathy caused by clinical application of Dox.
Collapse
Affiliation(s)
- Liying Liang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yalin Tu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China .,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhen Guo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qianqian Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Kaiteng Guo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Rui Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, P. R. China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China .,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Warkus ELL, Marikawa Y. Fluoxetine Inhibits Canonical Wnt Signaling to Impair Embryoid Body Morphogenesis: Potential Teratogenic Mechanisms of a Commonly Used Antidepressant. Toxicol Sci 2018; 165:372-388. [PMID: 29893963 PMCID: PMC6154268 DOI: 10.1093/toxsci/kfy143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fluoxetine is one of the most commonly prescribed antidepressants in the selective serotonin reuptake inhibitor (SSRI) class. Epidemiologic studies have suggested a link between maternal fluoxetine use during pregnancy and an increased incidence of birth defects. However, the mechanisms by which fluoxetine adversely impacts embryonic developments are unknown. Here, we used the mouse P19C5 embryoid body (EB) as a 3D morphogenesis model to investigate the developmental toxicity of fluoxetine. Morphological and molecular changes in P19C5 EBs replicate the processes of axial elongation and patterning seen in early embryos, and these changes are specifically and sensitively altered by exposure to developmental toxicants. Treatment with fluoxetine, or its major metabolite, norfluoxetine, adversely affected EB morphogenesis at concentrations of 6 µM and above. Treatment with other serotonin reuptake inhibitors or serotonin itself did not impair EB morphogenesis, suggesting that the adverse effects of fluoxetine are independent of serotonin signaling. Gene expression analyses showed that various key developmental regulators were affected by fluoxetine, particularly those involved in mesodermal differentiation. Reporter assays demonstrated that fluoxetine inhibited canonical Wnt signaling, and that the pharmacologic activation of canonical Wnt signaling partially alleviated the morphogenetic effects of fluoxetine. Fluoxetine also exhibited cytostatic effects independently of inhibition of the serotonin transporter or canonical Wnt signaling. These results suggest that the SSRI-independent actions of fluoxetine, namely inhibition of canonical Wnt signaling and reduction of cellular proliferation, are largely responsible for the observed adverse morphogenetic impacts. This study provides mechanistic insight for further investigations on the teratogenicity of fluoxetine.
Collapse
Affiliation(s)
- Erica L L Warkus
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813
| |
Collapse
|
22
|
Xiao D, Wang H, Hao L, Guo X, Ma X, Qian Y, Chen H, Ma J, Zhang J, Sheng W, Shou W, Huang G, Ma D. The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish. PLoS Genet 2018; 14:e1007578. [PMID: 30110327 PMCID: PMC6110521 DOI: 10.1371/journal.pgen.1007578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/27/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts. SMYD4 belongs to a SET and MYND domain-containing lysine methyltransferase. In zebrafish, smyd4 is ubiquitously expressed in early embryos and becomes enriched in the developing heart at 48 hours post-fertilization (hpf). We generated a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated a strong defect in cardiomyocyte proliferation, which led to a severe cardiac malformation, including left-right looping defects and hypoplastic ventricles. More importantly, two rare genetic variants of SMYD4 were enriched in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was highly pathogenic. Using mass spectrometric analysis, SMYD4 was shown to specifically interact with histone deacetylase 1 (HDAC1) via its MYND domain. Altered di- and tri-methylation of histone 3 lysine 4 (H3K4me2 and H3K4me3) and acetylation of histone 3 in smyd4L544Efs*1 mutants suggested that smyd4 plays an important role in epigenetic regulation. Transcriptome and pathway analyses demonstrated that the expression levels of 3,856 genes were significantly altered, which included cardiac contractile genes, key signaling pathways in cardiac development, the endoplasmic reticulum-mediated protein processing pathway, and several important metabolic pathways. Taken together, our data suggests that smyd4 is a key epigenetic regulator of cardiac development.
Collapse
Affiliation(s)
- Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Weinian Shou
- Cardiovascular Developmental Biology Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail: (WS); (GH); (DM)
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Pediatric Heart Center, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WS); (GH); (DM)
| |
Collapse
|
23
|
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA. Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors 2018; 36:58-68. [PMID: 30035654 DOI: 10.1080/08977194.2018.1491848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ryk is a member of the receptor tyrosine kinase (RTK) family of proteins that control and regulate cellular processes. It is distinguished by binding Wnt ligands and having no detectable intrinsic protein tyrosine kinase activity suggesting Ryk is a pseudokinase. Here, we show an essential role for Ryk in directing morphogenetic events required for normal cardiac development through the examination of Ryk-deficient mice. We employed vascular corrosion casting, vascular perfusion with contrast dye, and immunohistochemistry to characterize cardiovascular and pharyngeal defects in Ryk-/- embryos. Ryk-/- mice exhibit a variety of malformations of the heart and outflow tract that resemble human congenital heart defects. This included stenosis and interruption of the aortic arch, ventriculoarterial malalignment, ventricular septal defects and abnormal pharyngeal arch artery remodelling. This study therefore defines a key intersection between a subset of growth factor receptors involved in planar cell polarity signalling, the Wnt family and mammalian cardiovascular development.
Collapse
Affiliation(s)
- Kumudhini Kugathasan
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Peter G Farlie
- d Craniofacial Development Laboratory , Murdoch Children's Research Institute , Parkville , Australia
| | - Damien Bates
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Darrin P Smith
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
| | - You Fang Zhang
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - James P Roy
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| | - Maria L Macheda
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Dong Zhang
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - James L Wilkinson
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Margaret L Kirby
- g The Neonatal Perinatal Research Institute, Division of Neonatology , Duke University Medical Center , Durham , NC , USA
| | - Donald F Newgreen
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Steven A Stacker
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| |
Collapse
|
24
|
Gao LR, Wang G, Zhang J, Li S, Chuai M, Bao Y, Hocher B, Yang X. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation. J Cell Physiol 2018; 233:7120-7133. [PMID: 29574800 DOI: 10.1002/jcp.26528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022]
Abstract
An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI+ cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes.
Collapse
Affiliation(s)
- Lin-Rui Gao
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jing Zhang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Shuai Li
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Berthold Hocher
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Xuesong Yang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Carmona R, Ariza L, Cañete A, Muñoz-Chápuli R. Comparative developmental biology of the cardiac inflow tract. J Mol Cell Cardiol 2018; 116:155-164. [PMID: 29452155 DOI: 10.1016/j.yjmcc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 02/03/2023]
Abstract
The vertebrate heart receives the blood through the cardiac inflow tract. This area has experienced profound changes along the evolution of vertebrates; changes that have a reflection in the cardiac ontogeny. The development of the inflow tract involves dynamic changes due to the progressive addition of tissue derived from the secondary heart field. The inflow tract is the site where oxygenated blood coming from lungs is received separately from the systemic return, where the cardiac pacemaker is established and where the proepicardium develops. Differential cell migration towards the inflow tract breaks the symmetry of the primary heart tube and determines the direction of the cardiac looping. In air-breathing vertebrates, an inflow tract reorganization is essential to keep separate blood flows from systemic and pulmonary returns. Finally, the sinus venosus endocardium has recently been recognized as playing a role in the constitution of the coronary vasculature. Due to this developmental complexity, congenital anomalies of the inflow tract can cause severe cardiac diseases. We aimed to review the recent literature on the cellular and molecular mechanisms that regulate the morphogenesis of the cardiac inflow tract, together with comparative and evolutionary details, thus providing a basis for a better understanding of these mechanisms.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Laura Ariza
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain.
| |
Collapse
|
26
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
27
|
Estarás C, Hsu HT, Huang L, Jones KA. YAP repression of the WNT3 gene controls hESC differentiation along the cardiac mesoderm lineage. Genes Dev 2017; 31:2250-2263. [PMID: 29269485 PMCID: PMC5769769 DOI: 10.1101/gad.307512.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
Here, Estaras et al. researched how the Hippo effector YAP represses hESC differentiation and demonstrate that YAP binds to the WNT3 gene enhancer and prevents the gene from being induced by Activin in proliferating hESCs. Their findings indicate that YAP maintains hESC pluripotency by preventing WNT3 expression in response to Activin, thereby blocking a direct route to embryonic cardiac mesoderm formation. Activin/SMAD signaling in human embryonic stem cells (hESCs) ensures NANOG expression and stem cell pluripotency. In the presence of Wnt ligand, the Activin/SMAD transcription network switches to cooperate with Wnt/β-catenin and induce mesendodermal (ME) differentiation genes. We show here that the Hippo effector YAP binds to the WNT3 gene enhancer and prevents the gene from being induced by Activin in proliferating hESCs. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) data show that YAP impairs SMAD recruitment and the accumulation of P-TEFb-associated RNA polymerase II (RNAPII) C-terminal domain (CTD)-Ser7 phosphorylation at the WNT3 gene. CRISPR/CAS9 knockout of YAP in hESCs enables Activin to induce Wnt3 expression and stabilize β-catenin, which then synergizes with Activin-induced SMADs to activate a subset of ME genes that is required to form cardiac mesoderm. Interestingly, exposure of YAP−/− hESCs to Activin induces cardiac mesoderm markers (BAF60c and HAND1) without activating Wnt-dependent cardiac inhibitor genes (CDX2 and MSX1). Moreover, canonical Wnt target genes are up-regulated only modestly, if at all, under these conditions. Consequently, YAP-null hESCs exposed to Activin differentiate precisely into beating cardiomyocytes without further treatment. We conclude that YAP maintains hESC pluripotency by preventing WNT3 expression in response to Activin, thereby blocking a direct route to embryonic cardiac mesoderm formation.
Collapse
Affiliation(s)
- Conchi Estarás
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Hui-Ting Hsu
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ling Huang
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
28
|
Abstract
Wnt signalling regulates cardiogenesis during specification of heart tissue and the morphogenetic movements necessary to form the linear heart. Wnt11-mediated non-canonical signalling promotes early cardiac development whilst Wnt11-R, which is expressed later, also signals through the non-canonical pathway to promote heart development. It is unclear which Frizzled proteins mediate these interactions. Frizzled-7 (fzd7) is expressed during gastrulation in the mesodermal cells fated to become heart, and then in the primary heart field. This expression is complementary to the expression of wnt11 and wnt11-R. We further show co-localisation of fzd7 with other early- and late-heart-specific markers using double in situ hybridisation. We have used loss of function analysis to determine the role of fzd7 during heart development. Morpholino antisense oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We propose that Fzd7 has an important role during Xenopus heart development. Summary: Wnt signalling has been shown to be important in heart development. Here, we demonstrate that the wnt receptor fzd7 is required in mediating these Wnt signals.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216 Jeddah 21589, Kingdom of Saudi Arabia.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Joanna Mulvaney
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
29
|
Sun C, Kontaridis MI. Physiology of Cardiac Development: From Genetics to Signaling to Therapeutic Strategies. CURRENT OPINION IN PHYSIOLOGY 2017. [PMID: 29532042 DOI: 10.1016/j.cophys.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The heart is one of the first organs to form and function during embryonic development. It is comprised of multiple cell lineages, each integral for proper cardiac development, and include cardiomyocytes, endothelial cells, epicardial cells and neural crest cells. The molecular mechanisms regulating cardiac development and morphogenesis are dependent on signaling crosstalk between multiple lineages through paracrine interactions, cell-ECM interactions, and cell-cell interactions, which together, help facilitate survival, growth, proliferation, differentiation and migration of cardiac tissue. Aberrant regulation of any of these processes can induce developmental disorders and pathological phenotypes. Here, we will discuss each of these processes, the genetic factors that contribute to each step of cardiac development, as well as the current and future therapeutic targets and mechanisms of heart development and disease. Understanding the complex interactions that regulate cardiac development, proliferation and differentiation is not only vital to understanding the causes of congenital heart defects, but to also finding new therapeutics that can treat both pediatric and adult cardiac disease in the near future.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med (Maywood) 2017; 242:1735-1745. [PMID: 28920469 PMCID: PMC5714149 DOI: 10.1177/1535370217732737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Collapse
Affiliation(s)
- Oksana O Piven
- Institute of Molecular Biology and Genetic, Kyiv 0314, Ukraine
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| |
Collapse
|
31
|
Inhibition of Histone Methyltransferase, Histone Deacetylase, and β-Catenin Synergistically Enhance the Cardiac Potential of Bone Marrow Cells. Stem Cells Int 2017; 2017:3464953. [PMID: 28791052 PMCID: PMC5534312 DOI: 10.1155/2017/3464953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022] Open
Abstract
Previously, we reported that treatment with the G9a histone methyltransferase inhibitor BIX01294 causes bone marrow mesenchymal stem cells (MSCs) to exhibit a cardiocompetent phenotype, as indicated by the induction of the precardiac markers Mesp1 and brachyury. Here, we report that combining the histone deacetylase inhibitor trichostatin A (TSA) with BIX01294 synergistically enhances MSC cardiogenesis. Although TSA by itself had no effect on cardiac gene expression, coaddition of TSA to MSC cultures enhanced BIX01294-induced levels of Mesp1 and brachyury expression 5.6- and 7.2-fold. Moreover, MSCs exposed to the cardiogenic stimulus Wnt11 generated 2.6- to 5.6-fold higher levels of the cardiomyocyte markers GATA4, Nkx2.5, and myocardin when pretreated with TSA in addition to BIX01294. MSC cultures also showed a corresponding increase in the prevalence of sarcomeric protein-positive cells when treated with these small molecule inhibitors. These results correlated with data showing synergism between (1) TSA and BIX01294 in promoting acetylation of lysine 27 on histone H3 and (2) BIX01294 and Wnt11 in decreasing β-catenin accumulation in MSCs. The implications of these findings are discussed in light of observations in the early embryo on the importance of β-catenin signaling and histone modifications for cardiomyocyte differentiation and heart development.
Collapse
|
32
|
A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells. PLoS One 2017; 12:e0179613. [PMID: 28654683 PMCID: PMC5487013 DOI: 10.1371/journal.pone.0179613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
The development of high-throughput biomolecular technologies has resulted in generation of vast omics data at an unprecedented rate. This is transforming biomedical research into a big data discipline, where the main challenges relate to the analysis and interpretation of data into new biological knowledge. The aim of this study was to develop a framework for biomedical big data analytics, and apply it for analyzing transcriptomics time series data from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. To this end, transcriptome profiling by microarray was performed on differentiating human pluripotent stem cells sampled at eleven consecutive days. The gene expression data was analyzed using the five-stage analysis framework proposed in this study, including data preparation, exploratory data analysis, confirmatory analysis, biological knowledge discovery, and visualization of the results. Clustering analysis revealed several distinct expression profiles during differentiation. Genes with an early transient response were strongly related to embryonic- and mesendoderm development, for example CER1 and NODAL. Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation shortly after onset of differentiation. Rapid induction of genes related to metal ion response, cardiac tissue development, and muscle contraction were observed around day five and six. Several transcription factors were identified as potential regulators of these processes, e.g. POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed temporal activity of several signaling pathways, for example the inhibition of WNT signaling on day 2 and its reactivation on day 4. This study provides a comprehensive characterization of biological events and key regulators of the early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. The proposed analysis framework can be used to structure data analysis in future research, both in stem cell differentiation, and more generally, in biomedical big data analytics.
Collapse
|
33
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
34
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
35
|
Seigfried FA, Cizelsky W, Pfister AS, Dietmann P, Walther P, Kühl M, Kühl SJ. Frizzled 3 acts upstream of Alcam during embryonic eye development. Dev Biol 2017; 426:69-83. [PMID: 28427856 DOI: 10.1016/j.ydbio.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/09/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Formation of a functional eye during vertebrate embryogenesis requires different processes such as cell differentiation, cell migration, cell-cell interactions as well as intracellular signalling processes. It was previously shown that the non-canonical Wnt receptor Frizzled 3 (Fzd3) is required for proper eye formation, however, the underlying mechanism is poorly understood. Here we demonstrate that loss of Fzd3 induces severe malformations of the developing eye and that this defect is phenocopied by loss of the activated leukocyte cell adhesion molecule (Alcam). Promoter analysis revealed the presence of a Fzd3 responsive element within the alcam promoter, which is responsible for alcam expression during anterior neural development. In-depth analysis identified the jun N-terminal protein kinase 1 (JNK1) and the transcription factor paired box 2 (Pax2) to be important for the activation of alcam expression. Altogether our study reveals that alcam is activated through non-canonical Wnt signalling during embryonic eye development in Xenopus laevis and shows that this pathway plays a similar role in different tissues.
Collapse
Affiliation(s)
- Franziska A Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany; Tissue Homeostasis Joint-PhD-Programme in Cooperation with the University of Oulu, Finland
| | - Wiebke Cizelsky
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
36
|
Qian Y, Xiao D, Guo X, Chen H, Hao L, Ma X, Huang G, Ma D, Wang H. Multiple gene variations contributed to congenital heart disease via GATA family transcriptional regulation. J Transl Med 2017; 15:69. [PMID: 28372585 PMCID: PMC5379520 DOI: 10.1186/s12967-017-1173-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Background Congenital heart disease (CHD) is a common birth defect, and most cases occur sporadically. Mutations in key genes that are responsible for cardiac development could contribute to CHD. To date, the genetic causes of CHD remain largely unknown. Methods In this study, twenty-nine candidate genes in CHD were sequenced in 106 patients with Tetralogy of Fallot (TOF) using target exome sequencing (TES). The co-immunoprecipitation (CO-IP) and luciferase reporter gene assays were performed in HEK293T cells, and wild-type and mutant mRNA of ZFPM2 were microinjected into zebrafish embryos. Results Rare variants in key cardiac transcriptional factors and JAG1 were identified in the patients. Four patients carried multiple gene variants. The novel E1148K variant was located at the eighth Zinc-finger domain of FOG2 protein. The CO-IP assays in the HEK293T cells revealed that the variant significantly damaged the interaction between ZFPM2/FOG2 and GATA4. The luciferase reporter gene assays revealed that the E1148K mutant ZFPM2 protein displayed a significantly greater inhibition of the transcriptional activation of GATA4 than the wild-type protein. The wild-type mRNA and the E1148K mutant mRNA of ZFPM2 were injected into zebrafish embryos. At 48 hpf, in the mutant mRNA injection group, the number of embryos with an abnormal cardiac chamber structure and a loss of left–right asymmetry was increased. By 72 hpf, the defects in the chamber and left–right asymmetry became obvious. Conclusions We performed TES in sporadic TOF patients and identified rare variants in candidate genes in CHD. We first validated the E1148 K variant in ZFPM2, which is likely involved in the pathogenesis of CHD via GATA4. Moreover, our results suggest that TES could be a useful tool for discovering sequence variants in CHD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1173-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanyan Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China.,Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China. .,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Research Center for Birth Defects, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, China.
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Molecular Genetics Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
37
|
Münsterberg A, Hoppler S. WNT and BMP regulate roadblocks toward cardiomyocyte differentiation: lessons learned from embryos inform human stem cell differentiation. Stem Cell Investig 2016; 3:33. [PMID: 27580968 DOI: 10.21037/sci.2016.07.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Andrea Münsterberg
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
38
|
Cross-talk of SFRP4, integrin α1β1, and Notch1 inhibits cardiac differentiation of P19CL6 cells. Cell Signal 2016; 28:1806-15. [PMID: 27542621 DOI: 10.1016/j.cellsig.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Abstract
Signaling pathways play an important role in cardiogenesis. Secreted frizzled-related protein 4 (SFRP4), a member of the Wnt family, contributes to adipogenesis and tumorigenesis. However, how SFRP4 participates in cardiogenesis and the detailed molecular mechanisms involved have not been elucidated. The aim of this work was to determine cross-talk between SFRP4, integrin α1β1, and Notch1 during cardiac differentiation of P19CL6 cells. Using a well-established in vitro P19CL6 cell cardiomyocyte differentiation system, we found that SFRP4 inhibited P19CL6 cell cardiac differentiation via SFRP4 overexpression or knockdown. In addition, the SFRP4 overexpression augmented Notch1 and HES1 production. Further investigation demonstrated that SFRP4 bound to integrin α1β1 to activate the focal adhesion kinase (FAK) pathway and that phosphorylated FAK Y397 (p-FAK Y397) aided Notch intracellular domain 1 (NICD1) nuclear translocation to form a p-FAK Y397-NICD1 complex that activated the Hes1 promoter. Taken together, the cross-talk between SFRP4, integrin α1β1, and Notch1 suppresses the cardiac differentiation of P19CL6 cells.
Collapse
|
39
|
Wittig JG, Münsterberg A. The Early Stages of Heart Development: Insights from Chicken Embryos. J Cardiovasc Dev Dis 2016; 3:jcdd3020012. [PMID: 29367563 PMCID: PMC5715676 DOI: 10.3390/jcdd3020012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|